Category Archives: Toán phổ thông

Đáp án và bình luận thi vào lớp 10 PTNK năm 2013: Đề chuyên toán

ĐỀ BÀI

BÀI 1. Cho phương trình $x^2-4mx+m^2-2m+1=0$ (1) với m là tham số .

a) Tìm m sao cho phương trình (1) có hai nghiệm phân biệt. Chứng minh rằng khi đó hai
nghiệm không thể trái dấu.
b)  Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $|x_1 -x_2| =1$.

BÀI 2.  Giải hệ phương trình $\left\{ \begin{array}{l}
3{x^2} + 2y + 1 = 2z\left( {x + 2} \right)\\
3{y^2} + 2z + 1 = 2x\left( {y + 2} \right)\\
3{z^2} + 2x + 1 = 2y\left( {z + 2} \right)
\end{array} \right.$

BÀI 3. Cho $x, y$ là hai số không âm thỏa $x^3+y^3 < x- y$.

a) Chứng minh rằng $y \leq x \leq 1$.
b) Chứng minh rằng $x^3+y^3 \leq x^2 + y^2 \leq 1$.

BÀI 4.  Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.

a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?

BÀI 5.  Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.

a) Chứng minh rằng các tứ giác $IFMK$ và $IMAN$ nội tiếp .
b) Gọi $J$ là trung điểm cạnh $BC$.Chứng minh rằng ba điểm $A,K,J$ thẳng hàng.
c) Gọi $r$ là bán kính của dường tròn $(I)$ và $S$ là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

BÀI 6.  Trong một kỳ thi, 60 thí sinh phải giải 3 bài toán. Khi kết thúc kỳ thi , người ta nhận
thấy rằng: Với hai thí sinh bất kỳ luôn có ít nhất một bài toán mà cả hai thí sinh đó đều giải
được. Chứng minh rằng :

a) Nếu có một bài toán mà mọi thí sinh đều không giải được thì phải có một bài toán khác mà
mọi thí sinh đều giải được .
b) Có một bài toán mà có ít nhất 40 thí sinh giải được.

LỜI GIẢI

Nhìn vào đề này thấy độ phức tạp nhẹ nhàng, các câu dễ có thể một phát ăn ngay là bài 1, 3a, 4a, 4b ý đầu, 5a.

Tiếp theo là các câu khó hơn như 2,3b ý sau, 5b, 5c và khó nhằn nhất có lẽ là bài tổ hợp.

Bài hình trong đề này là một bài rất quen thuộc, do đó việc giải lại các bài toán đã học là một việc quan trọng. Chú ý những lỗi suy luận trong làm bài, các em tự làm và tự đánh giá điểm để xem được nhiêu điểm nhé, đáp án sẽ có sau vài ngày nữa.

Bài 1. (1,5 điểm) 

a) Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta ‘ = 3m^2+2m-1> 0 \Leftrightarrow m > \dfrac{1}{3}$ hoặc $m < – 1$. Khi đó tích hai nghiệm của phương trình $x_1x_2 = (m-1)^2 \geq 0$ nên phương trình không thể có hai nghiệm trái dấu.

b) Điều kiện để phương trình có hai nghiệm $x_1, x_2$ không âm:

$\Delta’ = 3m^2+2m-1\geq 0; S = x_1+x_2 \geq 0; P=x_1x_2 = m^2-2m+1 \geq 0$

$\Leftrightarrow m \geq \dfrac{1}{3} $
Ta có $|\sqrt{x_1}-\sqrt{2}| = 1 $
$\Leftrightarrow x_1 + x_2 – \sqrt{x_1x_2} = 1 $
$\Leftrightarrow 4m – 2\sqrt{m^2-2m+1} = 1 $
$\Leftrightarrow m = \dfrac{1}{2} (n), m = \dfrac{-1}{2} (l)$.

Bình luận Nhiều bạn xét $P \geq 0$ suy ra phương trình có hai nghiệm cùng dấu, cái này là suy luận sai, vì còn trường hợp bằng 0, tốt nhất là dùng phản chứng.

Bài 2. (1 điểm) Cộng ba phương trình lại ta có:
$3(x^2+y^2+z^2) + 2(x+y+z)+3 = 2(xy+yz+zx) + 4(x+y+z)$

$\Leftrightarrow 3(x^2+y^2+z^2)-2(xy+yz+xz) – 2(x+y+z)+3 = 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2 + (x-1)^2+(y-1)^2+(z-1)^2 = 0$
$\Leftrightarrow \left\{\begin{array}{l}x=1\\y=1\\z=1
\end{array} \right.$
Thử lại thấy $(1, 1,1)$ là nghiệm của hệ.

Bình luận: Bài này hệ hoái vị vòng quanh, bất đẳng thức là một trong những cách hay dùng.

Bài 3. (1,5 điểm) 

a) Ta có $x – y \geq x^3 + y^3 \geq 0$, suy ra $x \geq y$.
Ta có $x \geq y + y^3 + x^3 \geq x^3$, suy ra $x(1-x)(1+x) \geq 0$. \Suy ra $0\leq x \leq 1$.
Do đó $0 \leq y \leq x \leq 1$.
b) Từ câu a ta có $0 \leq y \leq x \leq 1$, suy ra $x^3 \leq x^2, y^3 \leq y^2$. Suy ra $x^3+y^3 \leq x^2+y^2$.
Ta có $x – y \geq x^3+y^3 \geq x^3-y^3 \geq 0$.
Suy ra $x^2+y^2+xy \leq 1$, suy ra $x^2+y^2 \leq 1$.
Vậy $x^3+y^3\leq x^2+y^2 \leq 1$.

Bình luận: Đây là bất đẳng thức tương đối dễ, chỉ dùng các biến đổi đơn giản, tuy vậy để làm được ý cuối trong điều kiện phòng thi thì không đơn giản.

Bài 4. (1,5 điểm) 

a)Ta có $M = a^2 + 3a + 1 = a(a+1) + 2a + 1$. Mà $a(a+1)$ là tích hai số tự nhiên liến tiếp nên chia hết cho 2, suy ra $M = a(a+1) + 2a +1$ là số lẻ, do đó mọi ước của $M$ đều là số lẻ.
b) Giả sử $M = a^2 + 3a + 1$ chia hết cho 5. Mà $M = (a-1)^2 + 5a$ nên $(a-1)^2$ chia hết cho 5. Suy ra $a = 5k + 1$ ($k$ là số tự nhiên).
Thử lại thấy với $a = 5k + 1$ thì M chia hết cho 5.
Giả sử $M = (a-1)^2+ 5a = 5^n$.
Nếu $n \geq $ ta có $M$ chia hết cho 25.
Từ M chia hết cho 5, tương tự trên ta có $a = 5k + 1$.
Khi đó $M = 25k^2 + 25k + 5 = 5(5k^2+5k+1)$. Ta có $5k^2 + 5k + 1$ không chia hết cho 5 nên M không chia hết cho 25. (mâu thuẫn).
Nếu $n = 1$. Khi đó $k = 0, a= 1$ và $A=5$ thỏa đề bài.
Đáp số $a = 1$.

Bình luận: Bài này thực chất là bài phương trình nghiệm nguyên, cách hay sử dụng là đồng dư, và đưa ra điều kiện của $a$, ta cũng có thể thử vài giá trị để đoán được nghiệm, từ đó cho ra cách giải.

Bên cạnh đó, nắm chắc một chút các phương pháp chia hết như biến đổi thành tổng.

Bài 5.  (3 điểm) 

a) Do $MN|| BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^\circ$ nên tứ giác $IFMK$ nội tiếp. Tam giác $AEF$ đều nên $\angle KFI = 30^\circ$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^\circ$ nên tứ giác $IMAN$ nội tiếp.
b) Ta có $\angle IMN = \angle INM = 30^\circ$ nên tam giác $IMN$ cân tại $I$.
Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.
b) Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF\cdot AF = r^2 \sqrt{3}$.

Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.

Bình luận. Đây là một mô hình quen thuộc của đường tròn nội tiếp, hầu hết các bạn đã gặp bài toán này, do đó nắm chắc các bài toán là một lợi thế.

Bài 6. (1,5 điểm) 

a) Kí hiệu các bài toán là BT1, BT2, BT3.
Từ giả thiết suy ra rằng mọi thí sinh đều giải được ít nhất một bài toán.
Ta giả sử, mọi thí sinh đều không giải được BT1. Khi đó mọi thí sinh đều giải được BT2 hoặc BT3. Nếu có một thí sinh chỉ giải được 1 bài toán, giả sử đó là bài toán 2. Khi đó theo đề bài thì mọi thí sinh khác đều giải được bài toán 2. Vậy mọi thí sinh đều giải được bài toán 2. Còn nếu tất cả các thí sinh đều giải được 2 bài toán thì cũng thỏa.

b) Ta xét hai trường hợp:
TH1: Có một thí sinh nào đó giải đúng một bài toán, theo câu a thì mọi thí sinh đều giải được bài toán đó, ta có điều cần chứng minh.
TH2: Mọi thí sinh đều giải được ít nhất 2 bài toán. Gọi $a$ là số thi sinh giải được cả 3 bài toán, $b$ là số thí sinh giải được BT1 và BT2, $c$ là số thí sinh giải được BT2 và BT3, $d$ là số thí sinh giải được BT1 và BT3.
Ta có $a + b+ c+ d = 60$.
Nếu $b, c, d > 20$, suy ra $b+c+d > 60$ vô lý. Do đó có một trong ba số $b, c, d$ phải nhỏ hơn hoặc bằng 20. Giả sử là $b \leq 20$. Suy ra $a+c+d \geq 40$.

Hay số thí sinh giải được bài BT3 không ít hơn 40. Điều cần chứng minh.

Bình luận: Đây là bài tổ hợp vừa phải, câu a, chỉ cần đọc kĩ giả thiết là làm được.

Câu b, là biểu đồ venn có thể suy nghĩ đến khi cần phân ra các tập rời nhau.

Bên cạnh đó phản chứng là phương pháp được sử dụng.

Nhìn chung đề này có nhiều câu dễ và quen thuộc, với những câu đó phải làm trước và làm thật chắc, khi đó mới có nhiều thời gian làm các câu khó.

Bổ đề về số mũ đúng

BỔ ĐỀ VỀ SỐ MŨ ĐÚNG

(Thầy Nguyễn Ngọc Duy giáo viên trường PTNK TP Hồ Chí Minh)

Bổ đề số mũ đúng của một số nguyên là một hướng tiếp cận khá mới đối với các bài toán sơ cấp. Nó cung cấp một công cụ khá hữu hiệu để giải các phương trình Diophante hoặc các bài toán chia hết liên quan đến số mũ. Trong bài viết này tôi sẽ cố gắng mang đến một cái nhìn thật sơ cấp và tự nhiên đến vấn đề, trang bị thêm kiến thức và kĩ năng cho các các em học sinh để giải quyết các bài toán số học. Đặc biệt, ta sẽ dùng bổ đề số mũ đúng để giải quyết một số trường hợp đặc biệt của định lí lớn Fermat.

1. Kiến thức cần nhớ

Định nghĩa 1.1: Cho $\left( a,n \right)=1$. Kí hiệu cấp của a theo modulo n là $or{{d}_{n}}\left( a \right)$, là số nguyên dương d nhỏ nhất thỏa $a^d\equiv 1\, \left( \bmod n \right)$.

Tính chất 1.1: Nếu $x$ là số nguyên dương thỏa mãn $a^x \equiv 1\, \left( \bmod n \right)$ thì $or{{d}_{n}}\left( a \right)|x$.

Định nghĩa 1.2: Cho $p$ là số nguyên tố, $x$ là số nguyên bất kì, kí hiệu $v_p \left( x \right)=n$ nếu $x$ chia hết cho $p^n$ nhưng không chia hết cho $p^{n+1}$ .

Tính chất 1.2: Với $a,b$ là các số nguyên và $n$ là số nguyên dương thì:

  • $v_p \left( ab \right)=v_p \left( a \right)+v_p \left( b \right)$.
  • Nếu $p|a$ thì $v_p(a) >0.$
  • $v_p \left( a^n \right)=n v_p \left( a \right)$.
  • $v_p \left( a+b \right) \ge \min \left\{ v_p \left( a \right), v_p \left( b \right) \right\}$. Đẳng thức xảy ra chẳng hạn khi $v_p(a) \neq v_p(b).$
  • $v_p(\text{gcd}(a,b)) = \min(v_p(a), v_p(b))$ và $v_p(\text{lcm}(a,b)) = \max(v_p(a), v_p(b)).$

Định lý 1.1: Bổ đề số mũ đúng. Cho $p$ là số nguyên tố lẻ; $a,b$ không chia hết cho $p$

$i)$  Nếu $a-b$ chia hết cho p thì $v_p \left( a^n – b^n \right)=v_p \left( a-b \right)+v_p \left( n \right)$.

$ii)$  Nếu $a+b$ chia hết cho $p, n$ lẻ thì $v_p\left( a^n+b^n \right)=v_p\left( a+b \right)+v_p \left( n \right)$.

$iii)$  Nếu $a, b$ lẻ thì $v_2 \left( a^n – b^n \right)=v_2 \left( \dfrac{x^2 – y^2}{2} \right) + v_2 \left( n \right)$.

Chứng minh
  • Trước tiên, ta chứng minh: ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$ $(*)$. Ta có:

$${{a}^{p}}-{{b}^{p}}=\left( a-b \right)\left( {{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \right).$$

Do $a\equiv b\left( \bmod p \right)$ nên ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}\equiv p.{{a}^{p-1}}\equiv 0\left( \bmod p \right)$.

Suy ra : ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}$ chia hết cho $p$  $(1)$.

Ta chứng minh tiếp $${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \text{không chia hết cho } {{p}^{2}}. $$

Thật vậy, do $a\equiv b\left( \bmod p \right)$ nên $a=b+kp$ . Sử dụng khai triển nhị thức Newton ta có

$ {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+{{b}^{p-1}}$

$\equiv \left[ \left( p-1 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+\left[ \left( p-2 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+  \cdots+\left[ kp{{b}^{p-2}}+{{b}^{p-1}} \right]+{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

$\equiv \dfrac{p\left( p-1 \right)}{2}kp{{b}^{n-2}}+p.{{b}^{p-1}}$

$\equiv p{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

Theo giả thiết thì $b$ không chia hết cho $p$ nên $p{{b}^{p-1}}$ không chia hết cho ${{p}^{2}}$. Do đó ${{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}}$ cũng không chia hết cho ${{p}^{2}}$  $(2)$.

Từ $(1), (2)$ ta có: ${{v}_{p}}\left( {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}} \right)=1$.

Vậy ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$.

  • Tương tự, ta cũng có: nếu m không chia hết cho p thì ${{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)={{v}_{p}}\left( a-b \right)$ $(**)$.

Ta quay lại định lí. Đặt ${{v}_{p}}\left( n \right)=k\Rightarrow n={{p}^{k}}.m$, với $\left( m,p \right)=1$.

Áp dụng $(*)$ và $(**)$ ta có:

${{v}_{p}}\left( {{a}^{n}}-{{b}^{n}} \right)  ={{v}_{p}}\left( {{\left( {{a}^{{{p}^{k-1}}.m}} \right)}^{p}}-{{\left( {{b}^{{{p}^{k-1}}.m}} \right)}^{p}} \right) $

$={{v}_{p}}\left( {{a}^{{{p}^{k-1}}.m}}-{{b}^{{{p}^{k-1}}.m}} \right)+1=\ldots={{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)+k $

$={{v}_{p}}\left( a-b \right)+{{v}_{p}}\left( n \right).$

Vậy ta đã chứng minh xong phần $i)$ của định lí.

Vì $n$ lẻ nên thay $b$ bởi $-b$ trong i. ta được ${{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)={{v}_{p}}\left( {{a}^{n}}-{{\left( -b \right)}^{n}} \right)={{v}_{p}}\left( a+b \right)+{{v}_{p}}\left( n \right)$

Vậy ta đã chứng minh xong phần $ii)$ của định lí. Tương tự cách làm trong $i)$ ta cũng có kết quả $iii)$.

Như vậy ta đã chứng minh xong bổ đề số mũ đúng. Sau đây ta sẽ sử dụng bổ đề để giải quyết một bài toán thú vị.

2. Các bài toán áp dụng

Bài toán Fermat lớn: Cho $n$ là số tự nhiên lớn hơn $2.$ Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{c}^{n}}$ không có nghiệm nguyên dương.

Bài Toán Fermat lớn là bài toán cực kì thú vị. Nó tồn tại gần bốn thế kỉ, kích thích biết bao nhà toán học thế giới. Bài toán cuối cùng được chứng minh bởi nhà toán học Andrew Wiles vào năm 1993. Và người ta nói rằng sẽ không có phương pháp sơ cấp nào có thể chứng minh bài toán trên. Bài báo sẽ đề cập một trường hợp đặc biệt của bài toán: số $c$ là số nguyên tố. Và chúng ta sẽ giải quyết thông qua bổ đề số mũ đúng.

Bài toán 1: Cho số nguyên lẻ $n>2$, $p$ là số nguyên tố. Chứng minh rằng phương trình $a^n + b^n = p^n$ không có nghiệm nguyên dương.

Giải

Không mất tính tổng quát, giả sử phương trình có nghiệm $a\ge b$ .

$1.$ Nếu $a=1\Rightarrow b=1$, thế vào phương trình suy ra vô lí.

$2.$ Nếu $a=2\Rightarrow b=1;2$.

  • Trường hợp $\left( a,b \right)=\left( 2,2 \right)\Rightarrow p=2$ (vô lí).
  • Trường hợp $\left( a,b \right)=\left( 2,1 \right)\Rightarrow p=3$ , thế vào phương trình ta được ${{3}^{n}}-{{2}^{n}}=1$ , cũng suy ra vô lí.

Vậy bắt buộc $a\ge 3$, mà ${{p}^{n}}>{{a}^{n}}\Rightarrow p>3$ , nên p là số nguyên tố lẻ. Do n lẻ, ta có : $${{p}^{n}}={{a}^{n}}+{{b}^{n}}=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right) $$

Suy ra $p|a+b$ (do $a+b>1$ ). Áp dụng bổ đề số mũ đúng cho $p$, ta có

$${{v}_{p}}\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( n \right) $$

Mà ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Do ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}=\frac{1}{2}\left[ {{a}^{n-1}}+{{a}^{n-3}}{{\left( a-b \right)}^{2}}+\cdots+{{b}^{n-3}}{{\left( a-b \right)}^{2}}+{{b}^{n-1}} \right]\ge \dfrac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)$

Vì $a\ge 3$, $n\ge 3$ nên $\frac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)>n$ nên không thể $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Vậy phương trình vô nghiệm khi $p$ là số nguyên tố.

Bài tập 2: Cho số nguyên $n>2$ có ước lẻ khác 1, $p$ là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Gọi $k>1$ là ước lẻ của $n$, giả sử $n=km$ . Đặt $x={{a}^{m}};y={{b}^{m}}$. Phương trình trên trở thành

$${{x}^{k}}+{{y}^{k}}={{p}^{n}}.$$

Không mất tính tổng quát, giả sử $x\ge y$ . Tương tự bài toán $1$ ta sẽ loại được các trường hợp tầm thường $x=1;x=2$ . Nên ta xét bài toán với trường hợp $x,p\ge 3.$ Do $k$ lẻ, ta có ${{p}^{n}}={{a}^{k}}+{{b}^{k}}=\left( a+b \right)\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)$

Suy ra $p|b+a$. Áp dụng bổ đề số mũ đúng cho $p$ ta có

$${{v}_{p}}\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)={{v}_{p}}\left( {{a}^{k}}+{{b}^{k}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( k \right) $$

Mà ${{a}^{k-1}}-{{a}^{k-2}}b+ \cdots-a{{b}^{k-2}}+{{b}^{k-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right) | k$$

Lập luận tương tự bài toán $1$ ta cũng suy ra vô lí. Vậy phương trình vô nghiệm .

Bài tập 3: Cho số nguyên $n={{2}^{k}},k>1$ , p là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Tương tự Bài toán $1$, ta loại được các trường hợp tầm thường nên ta chỉ xét đối với trường hợp $a,b$ có ít nhất một số lớn hơn $2$, khi đó $p>3$. Phương trình trở thành dạng

$${{x}^{4}}+{{y}^{4}}={{p}^{{{2}^{k}}}}$$

trong đó $x, y$ có ít nhất một số lớn hơn $2$ và $\left( x,y \right)=1$.

Do $p$ lẻ nên $x, y$ khác tính chẵn lẻ. Không mất tính tổng quát, giả sử $x$ lẻ, $y$ chẵn. Ta có

$${{y}^{4}}={{p}^{{{2}^{k}}}}-{{x}^{4}}=\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}} \right)\left( {{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)$$

Do $\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}};{{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)=2$ nên

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}+{{x}^{2}}=2{{m}_{1}}^{2} \\ {{p}^{{{2}^{k-1}}}}-{{x}^{2}}=2{{n}_{1}}^{2} \end{array} \right. $$

Suy ra

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}={{m}_{1}}^{2}+{{n}_{1}}^{2} \\ {{x}^{2}}={{m}_{1}}^{2}-{{n}_{1}}^{2} \end{array} \right. $$

và ${{y}^{2}}=2{{m}_{1}}{{n}_{1}}.$

Ta thấy $\left( {{m}_{1}};{{n}_{1}} \right)=1$ vì nếu ngược lại thì ${{m}_{1}}$ và ${{m}_{2}}$ đều phải chia hết cho $p$ (vô lí) nên có các trường hợp sau

$1)$ Nếu $m_1 = m_2^2, n_1=2n_2^2$ và $(m_2,n_2)=1$ thì thế vào ta được

$${{p}^{{{2}^{k-1}}}}={{m}_{2}}^{4}+4{{n}_{2}}^{4}=\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)\left( {{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)$$

mà \[\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2},{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)=1\] nên \[{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2}=1\Leftrightarrow {{\left( {{m}_{2}}-{{n}_{2}} \right)}^{2}}+{{n}_{2}}^{2}=1\Leftrightarrow {{m}_{2}}={{n}_{2}}=1.\] Trường hợp này không thỏa.

$2)$ Nếu $m_1=2m_2^2,n_1=n_2^2$ và $(m_2,n_2)=1$ thì cũng tương tự.

Vậy phương trình không có nghiệm nguyên dương.

Như vậy sử dụng bổ đề số mũ đúng ta đã chứng minh được một trường hợp đặc biệt của Định lí lớn Fermat.

Sau đây, chúng ta sẽ sử dụng Bổ đề số mũ đúng để giải quyết một số bài toán khác.

Bài tập 4: Tìm bộ số nguyên dương $\left( a,b,p \right)$ trong đó $p$ là số nguyên tố thỏa $${{2}^{a}}+{{p}^{b}}={{15}^{a}}.$$

Giải

Ta có $\forall x,y\in \mathbb{Z};n\in \mathbb{N}$ thì ${{x}^{n}}-{{y}^{n}}\vdots x+y$ nên ${{p}^{b}}={{15}^{a}}-{{2}^{a}}\vdots 13\Rightarrow p=13.$

Áp dụng bổ đề

$$b={{v}_{13}}\left( {{13}^{b}} \right)={{v}_{13}}\left( {{15}^{a}}-{{2}^{a}} \right)={{v}_{13}}\left( 15-2 \right)+{{v}_{13}}\left( a \right)\Rightarrow {{v}_{13}}\left( a \right)=b-1\Rightarrow a \ \vdots \  {{13}^{b-1}}$$

Mà $a>0$ nên $a\ge {{13}^{b-1}}$, suy ra

${{13}^{b}}  ={{15}^{a}}-{{2}^{a}}=\left( 15-2 \right)\left( {{15}^{a-1}}+{{15}^{a-2}}.2+\cdots +{{15.2}^{a-2}}+{{2}^{a-1}} \right) $

$ \ge \left( 15-2 \right)\left( {{15}^{{{13}^{b-1}}-1}}+{{15}^{{{13}^{b-1}}-2}}.2+\cdots+{{15.2}^{{{13}^{b-1}}-2}}+{{2}^{{{13}^{b-1}}-1}} \right) $

$\Rightarrow b=1\Rightarrow a=1.$

Vậy nghiệm bài toán là $\left( a,b,p \right)=\left( 1,1,13 \right)$.

 

Bài tập 5: Chứng minh rằng không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ , sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

Giải

Giả sử tồn tại số nguyên dương $m$ sao cho $${{\left( a+1 \right)}^{n}}-{{a}^{n}}={{5}^{m}}.$$

Nhận xét: nếu$a$ hoặc $a+1$ chia hết cho $5$ thì số còn lại cũng cũng chia hết cho $5$ (vô lí). Nên cả hai số đều không chia hết cho $5.$ Ta xét các trường hợp:

$1.$  Nếu $a\equiv 1\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{2}^{n}}-1\left( \bmod 5 \right)$ . Suy ra $4|n$.

$2.$  Nếu $a\equiv 2\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{3}^{n}}-{{2}^{n}}\left( \bmod 5 \right)$. Suy ra $2|n$.

$3.$  Nếu $a\equiv 3\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{4}^{n}}-{{3}^{n}}\left( \bmod 5 \right)$. Suy ra $4|n$.

Do đó, $n$ luôn là số chẵn, đặt $n=2{{n}_{1}}$, $\left( {{n}_{1}}\in \mathbb{N},{{n}_{1}}\ge 2 \right)$. Ta có

$ {{5}^{m}} = {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}}=\left( {{\left( a+1 \right)}^{2}}-{{a}^{2}} \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+ \cdots + {{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$=\left( 2a+1 \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right). $

Suy ra $5| 2a+15$ , áp dụng bổ đề số mũ đúng ta được

${{v}_{5}}\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$= {{v}_{5}}\left( {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}} \right)-{{v}_{5}}\left( 2a+1 \right)={{v}_{5}}\left( {{n}_{1}} \right). $

Do ${{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+ \cdots +{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}}$ là lũy thừa của $5$ nên $${{n}_{1}}\vdots \left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right)$$ (vô lí vì về phải gồm ${{n}_{1}}$ số nguyên dương, ${{n}_{1}}>1$ và $a+1\ge 2$).

Vậy không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

 

Bài tập 6: Cho hai số nguyên $a,n\ge 2$ sao cho tồn tại số nguyên dương k thỏa $n|{{\left( a-1 \right)}^{k}}$ . Chứng minh rằng n là ước của $1+a+{{a}^{2}}+…+{{a}^{n-1}}$ .

Giải

Giả sử $p$ là ước nguyên tố bất kì của $n$ . Theo giả thiết $n|{{\left( a-1 \right)}^{k}}$ nên p cũng là ước của $a-1$ .

Do ${{a}^{n}}-1=\left( a-1 \right)\left( 1+a+{{a}^{2}}+\cdots +{{a}^{n-1}} \right)$ nên áp dụng bổ đề số mũ đúng ta có

$${{v}_{p}}\left( 1+a+{{a}^{2}}+\cdots+{{a}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}-1 \right)-{{v}_{p}}\left( a-1 \right)={{v}_{p}}\left( n \right).$$

Do mọi ước nguyên tố $p$ của n đều thỏa điều trên nên ta có $$n|1+a+{{a}^{2}}+\cdots+{{a}^{n-1}}.$$

Bài tập 7 (HSG Trung Quốc 2009): Tìm cặp số nguyên tố $\left( p,q \right)$ thỏa $pq|{{5}^{p}}+{{5}^{q}}$ (*).

Giải

Ta xét các trường hợp

$1.$   $p=q=5$ thỏa mãn bài toán.

$2.$   Nếu có một số bằng $5$, một số khác $5$. Không mất tính tổng quát, giả sử $p=5;q\ne 5$. Ta có :

$$5q|{{5}^{5}}+{{5}^{q}}\Leftrightarrow q|{{5}^{4}}+{{5}^{q-1}}\Leftrightarrow q|{{5}^{4}}+1=626$$ do ${{5}^{q-1}}\equiv 1\left( \bmod \,q \right)$ nên suy ra $q=2$ hoặc $q=313$.

$3.$  Nếu cả hai số $p,q\ne 5$ . Do ${{5}^{p}}\equiv 5\left( \bmod p \right),\,\,{{5}^{q}}\equiv 5\,\,\,\,\left( \bmod \,q \right)$ nên

$$\left( * \right)\Leftrightarrow \left\{ \begin{array}{l}  {{5}^{p-1}}+1\vdots q \\ {{5}^{q-1}}+1\vdots p \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {{5}^{2\left( p-1 \right)}}-1\vdots q \\ {{5}^{2\left( q-1 \right)}}-1\vdots p \end{array} \right.$$

Do ${{5}^{2\left( p-1 \right)}}-1$ chia hết cho $q$ nhưng ${{5}^{p-1}}-1$ không chia hết cho $q$ nên

$${{v}_{2}}\left( \text{ord}_{q}\left( 5 \right) \right)=1+{{v}_{2}}\left( p-1 \right) .$$

Do ${{5}^{q-1}}-1$ chia hết $q$ nên $q-1\vdots or{{d}_{q}}\left( 5 \right)$ nên

$${{v}_{2}}\left( q-1 \right)\ge 1+{{v}_{2}}\left( p-1 \right) .$$

Tương tự khi xét chia hết cho $p$ ta lại có ${{v}_{2}}\left( p-1 \right)\ge 1+{{v}_{2}}\left( q-1 \right)$ (vô lí).

Vậy các cặp số thỏa mãn là $\left( p,q \right)=\left( 2,5 \right);\left( 5,2 \right);\left( 5,5 \right);\left( 5,313 \right);\left( 313,5 \right).$

Bài tập 8 (HSG Brazil 2009): Cho hai số nguyên tố $p, q$ sao cho $q=2p+1$ . Chứng minh rằng tồn tại một số là bội của $q$ có tổng các chữ số của nó trong hệ cơ số $10$ nhỏ hơn $4.$

Giải

Do $p,q$ đều là số nguyên tố nên $q\ge 5$ .

Nếu $q=5$ thì ta chỉ cần chọn số $10$ thì thỏa yêu cầu bài toán.

Nếu $q>5$ , áp dụng Định lí Fermat nhỏ thì $q|{{10}^{q-1}}-1={{10}^{2p}}-1=\left( {{10}^{p}}-1 \right)\left( {{10}^{p}}+1 \right)$

Suy ra $q|{{10}^{p}}+1$ hoặc $q|{{10}^{p}}-1$.

$1.$  Nếu $q|{{10}^{p}}+1$ thì số $a={{10}^{p}}+1$ là số thỏa yêu cầu đề bài.

$2.$  Nếu $q|{{10}^{p}}-1$. Do $p$ là số nguyên tố và $q$ không là ước của $10-1$(do $q>5$ ) nên $p$ cũng chính là $or{{d}_{q}}\left( 10 \right)$. Do đó $10;{{10}^{2}};\ldots ;{{10}^{p}}$ sẽ có số dư khác nhau khi chia cho $q.$

Ta sẽ có các trường hợp

  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv p\left( \bmod \,q \right)$ thì ${{2.10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{2.10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv 2p\left( \bmod \,q \right)$ thì ${{10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu không tồn tại $1\le k\le p$ mà ${{10}^{k}}$ có số dư là $p$ hay $2p$ khi chia cho $q.$ Thì ta sẽ chia các số dư còn lại của $q$ thành $p$ bộ $$\left( 1;2p-1 \right),\left( 2;2p-2 \right),\ldots,\left( p-1;p+1 \right)$$ (tổng $2$ phần tử của một bộ bằng $2p$) . Do tập số dư khi chia cho $q$ của tập $\left\{ 10;{{10}^{2}};\ldots ;{{10}^{p}} \right\}$ có $p$ phần tử nên Theo nguyên lí Dirichlet sẽ có ít nhất hai số ${{10}^{k}}$ và ${{10}^{l}}$ thuộc cùng một bộ. Khi đó số $a={{10}^{k}}+{{10}^{l}}+1$ sẽ chia hết cho $q$ là số thỏa yêu cầu đề bài.

Bài tập 9 (IMO Shortlist 1997): Cho $b,m,n$ là các số nguyên dương thỏa$m>1;\,\,m\ne n$. Biết ${{b}^{m}}-1$và ${{b}^{n}}-1$ có cùng tập hợp các ước nguyên tố. Chứng minh $b+1$ là lũy thừa của $2.$

Giải

Theo đề, gọi $p$ là ước nguyên tố bất kì của ${{b}^{m}}-1$và ${{b}^{n}}-1$.

Ta có kết quả quen thuộc: $$\left( {{b}^{m}}-1,{{b}^{n}}-1 \right)={{b}^{\left( m,n \right)}}-1,$$ đặt $\alpha =\left( m,n \right)$ nên $p|{{b}^{\alpha }}-1$. Suy ra tồn tại $k,l\in \mathbb{N}*$ thỏa $m=\alpha k;\,\,n=\alpha l$.

Đặt $a={{b}^{\alpha }}$ , từ giả thiết suy ra mọi ước nguyên tố của ${{a}^{k}}-1$ và ${{a}^{l}}-1$ đều là ước của $a-1$ . Nói cách khác, tập hợp các ước nguyên tố của ${{a}^{k}}-1,{{a}^{l}}-1$ và $a-1$ là trùng nhau.

Do $m\ne n$ suy ra tồn tại một số $k$ hoặc $l$ lớn hơn 1. Giả sử số đó là k.

Ta chứng minh $a+1$ là lũy thừa của 2.

Thật vậy:

$1.$  Nếu $k$ là số chẵn, đặt $k={{2}^{\beta }}.k’$($k’$ là số lẻ).

Ta có: $${{a}^{k}}-1=\left( {{a}^{k’}}-1 \right)\left( {{a}^{k’}}+1 \right)\left( {{a}^{2k’}}+1 \right)…\left( {{a}^{{{2}^{\beta -1}}k’}}+1 \right).$$

Do đó mọi ước nguyên tố $q$ của ${{a}^{k’}}+1$ cũng là ước của $a-1$

Mà ${{a}^{k’}}+1\vdots a+1$, $\left( a+1;a-1 \right)=1$ hoặc $2.$ Suy ra $2\vdots q\Rightarrow q=2$ nên ${{a}^{k’}}+1$ là lũy thừa của $2.$ Suy ra $a+1$ cũng là lũy thừa của $2.$

$2.$  Nếu $k$ là số lẻ, ta có ${{a}^{k}}-1=\left( a-1 \right)\left( {{a}^{k-1}}+{{a}^{k-2}}+…+a+1 \right)$

Gọi $q$ là ước nguyên tố bất kì của ${{a}^{k-1}}+{{a}^{k-2}}+…+1$. Do ${{a}^{k-1}}+{{a}^{k-2}}+…+a+1$ là số lẻ nên, nên $q$ cũng lẻ và là ước của ${{a}^{k}}-1$ . Do đó q cũng là ước của $a-1$ .

Áp dụng bổ đề số mũ đúng của $q$ ta có

${{v}_{q}}\left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)={{v}_{q}}\left( {{a}^{k}}-1 \right)-{{v}_{q}}\left( a-1 \right)={{v}_{q}}\left( k \right)$

Suy ra $k\vdots \left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)$ (vô lí vì vế phải có k số nguyên dương, $a>1$ ).

Vậy $a+1={{b}^{\alpha }}+1$ là lũy thừa của $2$.

Vì ${{b}^{\alpha }}+1$ là lũy thừa của $2$ nên nếu $\alpha $ là số chẵn thì ${{b}^{\alpha }}+1={{\left( {{b}^{\alpha ‘}} \right)}^{2}}+1$ hoặc là số lẻ hoặc chia 4 dư 2 nên chỉ có một trường hợp thỏa là $b=1$ . Còn nếu $\alpha $ là số lẻ thì ${{b}^{\alpha }}+1=\left( b+1 \right)\left( {{b}^{\alpha -1}}+{{b}^{\alpha -2}}+…+b+1 \right)$ nên $b+1$ cũng là lũy thừa của $2$.

Bài tập 10 (IMO Shortlist 1999): Tìm các số nguyên dương $n,p$ trong đó p nguyên tố thỏa ${{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$.

Giải

Ta xét các trường hợp sau

$1.$  Nếu $p=2\Rightarrow n|2\Rightarrow n=1;2$ (thỏa).

$2.$  Nếu $p>2$ , suy ra $p$ lẻ nên ${{\left( p-1 \right)}^{n}}+1$ lẻ $\Rightarrow n$ lẻ

Gọi $q$ là ước nguyên tố nhỏ nhất của n $\Rightarrow q|{{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$ $\Rightarrow q|{{\left( p-1 \right)}^{2n}}-1$

Mà : $q|{{\left( p-1 \right)}^{q-1}}-1\Rightarrow q|{{\left( p-1 \right)}^{\left( 2n,q-1 \right)}}-1$

Do n lẻ và $q$ là ước nguyên tố nhỏ nhất của n nên $\left( 2n;q-1 \right)=2$ .

Suy ra $q|{{\left( p-1 \right)}^{2}}-1=\left( p-2 \right)p$ $\Rightarrow $ $q|p-2$ hoặc $q=p$. Ta lại có các trường hợp nhỏ

$(a)$  Nếu $q|p-2\Rightarrow 0\equiv {{\left( p-1 \right)}^{n}}+1\equiv 1+1\equiv 2\left( \bmod \,q \right)$ $\Rightarrow q=2$ (vô lí vì q lẻ)

$(b)$  Nếu $q=p$ . Áp dụng bổ đề số mũ đúng cơ số q ta có

$\left( p-1 \right){{v}_{p}}\left( n \right)={{v}_{p}}\left( {{n}^{p-1}} \right)\le {{v}_{p}}\left[ {{\left( p-1 \right)}^{n}}+1 \right]={{v}_{p}}\left( p-1+1 \right)+{{v}_{p}}\left( n \right)=1+{{v}_{p}}\left( n \right)$

Suy ra : $\left( p-2 \right){{v}_{p}}\left( n \right)\le 1\Rightarrow p=3$ và ${{v}_{p}}\left( n \right)=1.$

Đến đây, bài toán trở thành : Tìm n để ${{n}^{2}}|{{2}^{n}}+1$.

Nhận xét $n=1$ thỏa yêu cầu bài toán nên ta xét $n>1$. Suy ra $n$ là số lẻ, gọi $r$ là ước nguyên tố nhỏ nhất của $n$. Suy ra $r|{{2}^{n}}+1\,\,|{{2}^{2n}}-1$, mà $r|{{2}^{r-1}}-1$ nên suy ra $r|{{2}^{\left( 2n;r-1 \right)}}-1$.

Do $n$ là số lẻ và $r$ là ước nguyên tố nhỏ nhất của $n$ nên $\left( 2n;r-1 \right)=2$ nên $r=3$. Ta có đánh giá sau

$$2{{v}_{3}}\left( n \right)\le {{v}_{3}}\left( {{4}^{n}}-1 \right)={{v}_{3}}\left( 4-1 \right)+{{v}_{3}}\left( n \right)\Rightarrow {{v}_{3}}\left( n \right)\le 1\Rightarrow {{v}_{3}}\left( n \right)=1.$$ Suy ra $n=3.m$, $\left( m,n \right)=1$. Thế vào đề bài, ta được $${{m}^{2}}|{{8}^{m}}+1|{{8}^{2m}}-1.$$

Nếu $m>1$ , tương tự ta gọi $s$ là ước nguyên tố nhỏ nhất của $m.$ Suy ra $m$ là ước của ${{8}^{2}}-1=63$. Do đó $s=7$, điều này vô lí vì ${{8}^{m}}+1$ chia $7$ dư $2.$ Suy ra $m=1\Rightarrow n=3$.

Vậy $\left( n,p \right)=\left( 1,2 \right);\left( 2,2 \right);\left( 3;3 \right)$ .

Một số lưu ý chuẩn bị cho kì thi vào lớp 10: Toán chung

Năm nay TPHCM và PTNK thi vào lớp 10 ba môn chung: Toán, Văn, Anh. Cũng sắp tới ngày thi, giai đoạn này cần tập trung vào việc học tập, ôn luyện rèn luyện giải đề…để có một kì thi thành công, kết quả như ý. Nhân đây tôi cũng có một số điều muốn chia sẻ trong giai đoạn nước rút này.

Đại số

  • Ôn tập rút gọn các biểu thức, chú ý các hằng đẳng thức, chú ý sai dấu.
  • Phương trình: Xem lại các giải pt vô tỷ, điều kiện, phương pháp giải, phương trình tích. Hệ phương trình xe, kĩ phương pháp thế, cộng đại số, ẩn phụ.
  • Viete chú ý các xử lí biểu thức chứa biết đối xứng hay không đối xứng, điều kiện có nghiệm.

Hình học

  • Nắm chắc hệ thức lượng, tỉ số lượng giác, công thức diện tích, chú ý các bài tính toán độ dài.
  • Hình học chú ý các các tính chất tiếp tuyến, phương pháp chứng minh tiếp tuyến, tính chất 2 tiếp tuyến cắt nhau và các bài toán liên quan.
  • Phương pháp chứng minh tứ giác nội tiếp,  các loại góc, các tính chất quen thuộc.

Toán thực tế

  • Chú ý các bài toán về phần trăm, giá cả, năng suất.
  • Hỏi cái nào, đặt ẩn cái đó, tìm mối tương quan giữa các đại lượng để lập phương trình hay hệ phương trình.
  • Nắm chắc các kĩ thuật giải pt, hpt, chú ý điều kiện của  ẩn.
  • Chú ý các công thức tính chu vi, diện tích, thể tích các hình quen thuộc.

Chúc các em có mùa thi thành công!

Phương pháp ánh xạ trong các bài toán tổ hợp

Bài viết dựa vào bài giảng của NCS. Vương Trung Dũng (trường PTNK-ĐHQG) trong lớp chuyên đề 10 toán tại Star Education.

 

Ánh xạ là một khái niệm khó và quan trọng trong toán học, có vai trò trong hầu hết các lĩnh vực toán học. Trong bài giảng này ta xét ứng dụng của ánh xạ trong các bài toán tổ hợp.

Ánh xạ và một số tính chất

Định nghĩa. Cho hai tập hợp $X$ và $Y$ khác rỗng. Một ánh xạ $f$ từ tập $X$ đến tập $Y$ là một quy tắc đặt tương ứng mỗi phần tử $x$ của $X$ với một và chỉ một phần tử $y$ của $Y$, kí hiệu là $y = f(x)$.

Kí hiệu $f: X \longrightarrow Y$.

$f(x) = y$.

Các khái niệm: Cho ánh xạ $f: X \longrightarrow Y$.

  • $y = f(x)$ được gọi là ảnh của $x$.
  • $f(X) = \{f(x)|x \in X\}$ tập ảnh của $f$.
  • $y \in Y$ thì $f^-1(y) = \{x\in X|f(x) = y\}$ được gọi là tạo ảnh của $y$.

Đơn ánh, toàn ánh, song ánh

  1. Ánh xạ $f: X \longrightarrow Y$ được gọi là đơn ánh nếu với $a,b \in X$ mà $a \ne b$ thì $f(a) \ne f(b)$. Nói một cách khác ánh xạ $f$ là một đơn ánh nếu và chỉ nếu với $a, b \in X$ mà $f(a)=f(b)$ thì suy ra $a=b.$
  2. Ánh xạ $f:X \longrightarrow Y$ được gọi là toàn ánh nếu với mỗi phần tử $y \in Y$ đều tồn tại một phần tử $x \in X$ sao cho $f(x)=y$. Như vậy $f$ là toàn ánh nếu và chỉ nếu $f(X)=Y$.
  3. Ánh xạ $f: X \longrightarrow Y$ được gọi là song ánh giữa $X$ và $Y$ nếu và chỉ nếu nó vừa là đơn ánh và vừa là toàn ánh. Như vậy $f$ là song ánh nếu với mỗi $y \in Y$ tồn tại duy nhất một phần tử $x \in X$ sao cho $y=f(x).$

Ánh xạ và tập hợp

Cho $A = { 1, 2,\cdots, n }$. $X$ là tập khác rỗng. Nếu có một song ánh từ tập $X$ đến $A$ thì ta nói $X$ có $n$ phần tử và kí hiệu $|X| = n$.

Nếu không tồn tại song ánh thì ta nói $X$ có vô hạn phần tử.

  • Nếu tồn tại một song ánh từ $X$ vào tập các số tự nhiên, ta nói $X$ có lực lượng đếm được, ngược lại thì ta nó $X$ có lực lượng không đếm được.
  • Các tập số tự nhiên, số nguyên và hữu tỷ là các tập có lực lượng đếm được.

Định lý Cho $A$ và $B$ là hai tập hợp hữu hạn.

  • Nếu có một đơn ánh $f: X \longrightarrow Y$ thì $|X| \le |Y|.$
  • Nếu có một toàn ánh $f: X \longrightarrow Y$ thì $|X| \ge |Y|.$
  • Nếu có một song ánh $f: X \longrightarrow Y$ thì $|X| = |Y|.$

Ánh xạ và các bài toán đếm, đẳng thức tổ hợp.

Ví dụ 1. Cho tập $X_n = {1, 2, \cdots, n}$, gọi $P(X_n)$ là tập các tập con của $X_n$, và $S_n$ là tập các dãy nhị phân có độ dài $n$. Tìm một song ánh từ $P(X_n)$ vào $S_n$, suy ra số tập con của $X_n$.

Gợi ý

Định nghĩa một ánh xạ $f: P(X_n) \longrightarrow S_n$ như sau:
Với mỗi $S \in P(X_n)$ (tức là $S \subset X_n$) ta đặt $$ f(S)=y_1y_2 \dots y_n$$
trong đó
$$y_i=\begin{cases}
1, y_i \in S&\\
0, y_i \notin S.&
\end{cases}
$$
Ví dụ , nếu $X=\{1; 2; 3; 4; 5\}, S_1=\{4\}, S_2=\{2; 3; 5\}$ thì $f(S_1)=00010, f(S_2)=01101, f(\emptyset)=00000, f(X)=11111$ .
Dễ dàng kiểm tra đây là một song ánh từ $P(X)$ vào $Y$.
Do đó theo nguyên lý song ánh ta có $|P(X)|=|Y|=2^n$.

Ví dụ 2. Hãy tính trung bình cộng của tất cả các số N gồm 2014 chữ số thỏa mãn N chia hết cho 9 và các chữ số của N được lập từ $X={1,2,…,8}$

Gợi ý

Gọi M là tập các số thỏa yêu cầu đề bài.

Ta xây dựng một ánh xạ đi từ M đến M như sau: Với mỗi $N=\overline{a_1a_2…a_{2014}} \in M$ dặt $f(N)=\overline{b_1,b_2,…,b_{2014}}$ với $b_i=9-a_i$ với mọi $i=1,2,…,2014$. Vì $N+f(N)=99…9$ (2014 số 9) chia hết cho 9 và N chia hết cho 9 nên suy ra $f(N)$ cũng chia hết cho 9. Do đó $f$ là một ánh xạ đi từ M vào M. Hơn nữa dễ thấy $f$ là một song ánh. Từ đó suy ra $$ 2\sum_{N \in M}N=\sum_{N \in M}(N+f(N))=|M|.99…9 .$$ Vậy trung bình cộng của các số trong M là $99…9:2.$

Ví dụ 3. Cho tập S gồm tất cả các số nguyên dương trong đoạn $[1,2,…,2002]$. Gọi T là tập hợp tất cả các tập con khác rỗng của S. Với mỗi X thuộc T ký hiệu m(X) là trung bình cộng các phần tử thuộc X. Tính $$ m=\frac{\sum_{X \in T}m(X)}{|T|}. $$

Gợi ý

Xây dựng song ánh $f: T \longrightarrow T$ như sau: với mọi $X \in T $ đặt tương ứng $f(X)=\{2003-x: x \in X\}$.\\
Khi đó $m(X)+m(f(X))=2003$. Do đó $$2 \sum m(X)=\sum (m(X)+m( f(X)))=|T|.2003 \Rightarrow m=\dfrac{\sum m(X)}{|T|}=\dfrac{2003}{2}$$

Ví dụ 4.  Cho $X={1,2,…,n}$. Có bao nhiêu tập con $k$ phần tử của X sao cho trong mỗi tập con không chứa 2 số nguyên liên tiếp.

Gợi ý

Gọi A là tập tất cả các tập con $k $ phần tử của X mà trong mỗi tập không chứa 2 số nguyên liên tiếp và B là tập tất cả các tập con của tập $Y=\{1,2,…, n-(k-1) \}$. Ta xây dựng song ánh từ A đến B như sau: Lấy $S=\{s_1,s_2,…,s_k \} \in A$ (không mất tổng quát có thể giả sử $s_1<s_2<…<s_k$) đặt tương ứng với $f(S)=\{s_1, s_2-1, s_3-2,…, s_k-(k-1) \}$. Dễ chứng minh đây là một song ánh. Từ đó có $C^k_{n-k+1}$ tập thoả yêu cầu đề bài.

Bài tập rèn luyện 

Bài 1. Cho $X={ 1,2,..,n}$. Một tập con $S={s_1,s_2,…,s_k }$ của X ($s_1<s_2<…<s_k$) được gọi là \textit{m- tách được} $(m \in \mathbb{N})$ nếu $s_i-s_{i-1} \ge m; i=1,2,…,k$. Có bao nhiêu tập con m- tách được gồm $k$ phần tử của X, trong đó $0 \le k \le n-(m-1)(k-1)$.

Bài 2. Cho $X={1,2,…,n}$, với mỗi tập con khác rỗng $A_i={a_1,a_2,…,a_i }$ (không mất tổng quát giả sử $a_1>a_2>…>a_i$) ta định nghĩa \textit{tổng hỗn tạp} của $A_i$ là số $m(A_i)=a_1-a_2+a_3-… \pm a_i$. Tính $\sum \limits_{A_i \subset X} m(A_i)$.

Bài 3. Cho số nguyên dương $n$ và $d$ là một ước dương của $n$. Gọi S là tập tất cả những bộ $(x_1,x_2,…,x_n)$ nguyên dương thỏa $0 \le x_1 \le x_2 \le… \le x_n \le n$ và $d| x_1+x_2+…+x_n$. Chứng minh rằng có đúng một nửa các phần tử của S có tính chất $x_n=n$.

Bài 4. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 5. Cho các số tự nhiên $k, n, m$ thỏa điều kiện $1<k \le n, m>1$. Hỏi có bao nhiêu chỉnh hợp chập $k: (a_1,a_2,…,a_k)$ của $n$ số tự nhiên đầu tiên mà mỗi chỉnh hợp đều thỏa mãn ít nhất một trong hai điều kiện sau:

i) Tồn tại $i, j \in {1,2,…,k}$ sao cho $i < j$ và $a_i>a_j$.

ii) Tồn tại $i \in {1,2,…,k}$ sao cho $a_i-i$ không chia hết cho $m$.

Bài 6. Cho các số nguyên dương $n, k, p$ với $k \ge 2$ và $k(p+1) \le n.$ Cho $n$ điểm phân biệt cùng nằm trên một đường tròn. Tô tất cả $n$ điểm đó bởi hai màu xanh, đỏ (mỗi điểm được tô bởi một màu) sao cho có đúng $k$ điểm được tô bởi màu xanh và trên mỗi cung tròn mà hai đầu mút là hai điểm màu xanh liên tiếp (tính theo chiều quay kim đồng hồ) đều có ít nhất $p$ điểm được tô màu đỏ. Hỏi có tất cả bao nhiêu cách tô khác nhau?

Bài 7. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 8. Trong một hội nghị có $n$ nhà toán học. Biết rằng nếu hai nhà toán học nào đó quen nhau thì họ không quen chung thêm một người nào nữa, còn nếu hai nhà toán học này không quen nhau thì họ quen chung với đúng hai nhà toán học khác nữa. Chứng minh rằng $8n-7$ là số chính phương.

Bài 9. Trong một trại hè toán học có 40 học sinh. Biết rằng cứ 19 học sinh bất kỳ thì đều viết thư hỏi bài một học sinh khác (Nếu học sinh A viết thư hỏi bài học sinh B thì không nhất thiết học sinh B phải viết thư hỏi bài học sinh A và dĩ nhiên A cũng không viết thư hỏi chính mình). Chứng minh rằng trong trại hè này tồn tại một tập $T_0$ gồm 20 học sinh sao cho với mỗi $P \in T_0$ thì 19 người còn lại không đồng thời viết thư hỏi bài P.

Bài 10. Gọi M là số số nguyên dương trong hệ thập phân có $2n$ chữ số trong đó có $n$ chữ số 1 và $n$ chữ số 2. Gọi N là số số nguyên dương có $n$ chữ số trong hệ thập phân trong đó chỉ có các chữ số 1, 2, 3, 4 và số chữ số 1 bằng số chữ số 2. Chứng minh $|M|=|N|.$

(Hết phần 1)

Một số bài toán số học ôn thi vào 10 – P1

Bài 1. Tìm tất cả các số nguyên tố $p$ sao cho tổng các ước dương của $p^4$ là một số chính phương.

Lời giải

  • Theo đề ta có phương trình $1+p+p^2+p^3+p^4 = x^2$.
  • Ta có $(2p^2+p)^2< 4x^2 < (2p^2+p+2)$.
  • Do đó $4x^2 = (2p^2+p+1) = 4p^2+4p^3+4p^2+4p+4$
  • $p^2 -2p – 3 = 0 \Leftrightarrow p=3$.

Bài 2.  Cho $m,n$ là các số nguyên dương thỏa $m+m+1$ là một ước nguyên tố của $2(m^2+n^2)-1$. Chứng minh rằng $m.n$ là một số chính phương.

Lời giải

Ta có $2m^2+2n^2 -1 = (m+n)^2+(m-n)^2 -1 = (m+n-1)(m+n+1) + (m-n)^2$ chia hết cho $m+n-1$,

suy ra $(m-n)^2$ chia hết cho $m+n+1$.

Mà $m+n+1$ nguyên tố, suy ra $(|m-n|,m+n+1) = 1$, do đó $m=n$, suy ra $mn = m^2$ là số chính phương.

Bài 3.  Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.

Lời giải

Cho $ab = x^2$, trong đó $(a,b)=1$.\
Đặt $d = (a,x), a=a’d, x=x’d$ ta có $a’b = x’^2d$. \
Do $(a’,x’^2)=1$ nên $b$ chia hết cho $x’^2$. \
Mặt khác do $(a,b) = 1$ nên $(b,d) = 1$, suy ra $x’^2$ chia hết cho $b$.\
Do đó $b=x’^2$, $a’=d$. Từ đó ta có $a=a’^2, b= x’^2$ là các số chính phương.\
\textbf{Nhận xét} Tương tự nếu $(a,b) = 1$ và $ab = x^k$ thì $a, b$ là lũy thừa bậc $k$ của một số nguyên.\
Đây là một bổ đề rất hay sử dụng.

Bài 4. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.
a) Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.

Lời giải

a) $a(2a+1) = b(3b+1)$. Ta có $3b +1$ chia hết cho $a$ và $2a+1$ chia hết cho $b$.
Đặt $2a + 1 = kb$, suy ra $3b+1 = ka$. Suy ra $6ab + 2a+3b+1 = k^2ab$, suy ra $k = 1, 2$.
Nếu $k = 1$ ta có $2a+1 = b, 3b+1 = a$ (Vô nghiệm).
Nếu $k = 2$ ta có $2a+1 = 2b, 3b+1 = 2a$. (Vô nghiệm).
Phương trình vô nghiệm.
b) Ta có $(a-b)(2a+2b+1) = b^2$.
Giả sử $p$ là ước nguyên tố của $a-b, 2a+2b+1$, suy ra $p|b^2 \Rightarrow p|b$, suy ra $p|a$, suy ra $p|1$ (vô lý).\
Do đó $(a-b,2a+2b+1) = 1$.
Từ đó ta có $a-b, 2a+2b+1$ là các số chính phương.

Bài 5. Tìm tất cả số tự nhiên $a$ để tồn tại các số nguyên tố $p, q, r$ thỏa $$a=\dfrac{p+q}{r}+
\dfrac{q+r}{p}+ \dfrac{p+r}{q}$$.

Lời giải

  •  Nếu trong 3 số có đúng 2 số bằng nhau, giả sử $p = q \neq r$. Khi đó ta có $a = 2(\dfrac{p}{r}+\dfrac{r}{p}) + 2$. Suy ra $\dfrac{2(p^2+r^2)}{pr} = a-2$.

Suy ra $pr|2(p^2+r^2)$, mà $(p,r) = 1$, suy ra $p|2$, suy ra $p=2$. Vô lý.

  • Nếu 3 số đều khác nhau. Ta có $apqr = pq(p+q) + qr(q+r) + pr(p+r)$. Suy ra $p|qr(q+r)$, suy ra $p|p+q+r$.
    Tương tự ta có $q|p+q+r, r|p+q+r$. Suy ra $pqr|p+q+r$.
    Ta có $pqr > 4r$, suy ra $3pqr > 4(p+q+r) > 4pqr$. Vô lý.
  • 3 số bằng nhau, thì $a = 6$.

Bài tập

Bài 1. Cho $m,n$ và $d$ là các số nguyên dương. Chứng minh rằng nếu $mn^2 + 1$ và $m^2n+1$ cùng chia hết cho $d$ thì $m^3+1$ và $n^3+1$ cũng chia hết cho $d$.

Bài 2. Cho $n \geq 3$ là số tự nhiên sao cho $3n+1$ là số chính phương. Chứng minh rằng có thể tìm được các số nguyên dương $a,b, c$ sao cho $$x = \sqrt{1+\dfrac{3n+3}{a^2+b^2+c^2}} $$
là một số nguyên.

Bài 3. Tìm tất cả các số nguyên $n$ sao cho $n = q(q^2-q-1) = r(2r+1)$ với $p, r$ là các số nguyên tố.

Bài tập hình học ôn thi vào 10 – P1

Bài 1. Cho đường tròn tâm $O$ đường kính $AB$. Tiếp tuyến tại $A$ là $d$, tiếp tuyến tại $B$ là $d’$. $C$ là một điểm thuộc đường tròn, tiếp tuyến tại $C$ cắt $d$ và $d’$ lần lượt tại $D$ và $E$, $BC$ cắt $d$ tại $F$.
a) Chứng minh $D$ là trung điểm của $AF$.
b) Gọi $I$ là giao điểm của $BD$ và $CE$. $CI$ cắt $AB$ tại $G$. Chứng minh $CG^2 = GA.GB$.
c) Đường thẳng qua $A$ song song $EG$ cắt đường thẳng qua $B$ song song với $DG$ tại $H$. Chứng minh $D, H, E$ thẳng hàng.

Lời giải

a) Theo tích chất hai tiếp tuyến cắt nhau thì: $DA = DC$,

tam giác $DAC$ cân tại $D$ nên $\angle DCA = \angle DAC$, mà $\angle DAC + \angle DCF = \angle DAC + \angle DFC= 90^0$.

Do đó $\angle DCF = \angle DFC$, suy ra $DC = DF$. \Vậy $DF = DA$, hay $D$ là trung điểm của AF.

b) Ta có $AD||BE$ nên $\dfrac{ID}{IB} = \dfrac{AD}{BE}$, mà $AD = CD, BE = CE$, suy ra $\dfrac{ID}{IB} = \dfrac{CD}{CE}$. Từ đó ta có $CI || BE$, suy ra $IC \bot AB$.

Tam giác ACB vuông tại C, có CG là đường cao nên: $CG^2 = GA.GB$.

c) Ta có $\dfrac{GA}{GB} = \dfrac{CD}{CE} = \dfrac{AD}{BE}$, suy ra $\triangle ADG \backsim \triangle BEG$, do đó: $\angle AGD = \angle BGC$.
$GJ$ cắt $AD$ tại $J$. Ta có $\angle AGD =\angle BDE = \angle AGJ$.
Suy ra $GEJ$ cân tại $G$ và $A$ là trung điểm của $DJ$.
Gọi $H’$ là trung điểm của $DE$. Suy ra $AH’ || GE$.
Tương tự thì $H’B || GD$. Do đó $H’ \equiv H$.
Vậy $H, D, E$ thẳng hàng.

Bài 2. Cho tam giác $ABC (AB <AC)$ có 3 góc nhọn nội tiếp đường tròn tâm $O$. Vẽ 2 đường cao $AD$ và $CE$ của tam giác $ABC$ . Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $M$ . Từ $M$ kẻ tiếp tuyến thứ hai đến $(O)$ ($N$ là tiếp điểm ). Vẽ $CK$ vuông góc với $AN$ tại $K$. Chứng minh $DK$ đi qua trung điểm của đoạn thẳng $BE$.

Lời giải 

Gọi $Q$ là trung điểm đoạn $BC$.
Ta có $\angle AKD = \angle ACB = \angle ANB$, suy ra $DK || BN$, suy ra $\angle ATK = \angle ABN$.

Ta có 5 điểm $A, M, N, O, Q$ cùng thuộc đường tròn. Suy ra $\angle AQM = \dfrac{1}{2}\angle AON = \angle ACN$.

Suy ra $\angle ABN = 180^\circ- \angle ACN = 180^\circ – \angle AQM =\angle AQC$.

Suy ra $\angle ATK = \angle AQC$. Suy ra $ATDQ$ nội tiếp. Suy ra $AT \bot TQ$. Suy ra $T$ là trung điểm BE.

Bài 3. Cho đường tròn $(O)$ ngoại tiếp tam giác $ABC (AB < AC)$. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $M$ là trung điểm cạnh $BC$. Gọi $Q$ là điểm đối xứng của $I$ qua $M$, tia $OM$ cắt $(O)$ tại $D$ và $QD$ cắt $(O)$ tại $T$ ($T$ thuộc cung $BD$ không chứa $A$).
a) Chứng minh rằng $DI = DB = DC$.
b) Đường thẳng qua $I$ song song $QD$ cắt $DO$ tại $K$. Chứng minh $DK.DO = DB^2$.
c) Chứng minh $\angle ACT = \angle DOI$.

Lời giải

b) Vẽ đường kính $DE$. Ta có $DB^2 = DM\cdot  DE $

$IKQD$ là hình bình hành, suy ra $DK = 2DM$.

Mặt khác $DO = \dfrac{1}{2}DE$

Nên $BD^2 = DK\cdot DO$

c)Vì $DB = DI$ nên ta có $DI^2 = DK\cdot DO$, suy ra $\triangle DIK \backsim \triangle DOI$.

Suy ra $\angle DOI = \angle DIK$ ,

mà $\angle DIK = \angle ADT = \angle ACT$.

Bài tập luyện tập

Bài 1. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A vẽ đến (O) các tiếp tuyến AB và AC với B, C là các tiếp điểm. Trên tia đối của BA lấy điểm D, đường tròn ngoại tiếp ACD cắt (O) tai điểm thứ hai là E. DE cắt (O) tại F khác E. Gọi I là hình chiếu của B trên CD, H là giao điểm của OB và CD.
a) Chứng minh $CF||AC$.
b) Chứng minh tứ giác $IHEF$ nội tiếp.
c) Chứng minh $\angle IED = 2\angle ADC$.

Bài 2. Cho hình vuông ABCD cạnh a. E, F là các điểm thay đổi trên các cạnh CD và BC sao cho $\angle EAF = 45^0$. Gọi G, H lần lượt là giao điểm của AE, AF với BD.
a) Chứng minh rằng 5 điểm C,E, G, H, F cùng thuộc một đường tròn.
b) Chứng minh EF tiếp xúc với một đường tròn cố định.
c) Chứng minh $GH^2 = DG^2 + BH^2$.
d) Chứng minh chu vi tam giác CEF không đổi. Tìm giá trị lớn nhất diện tích của tam giác CEF.

Bài 3. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Gọi D là hình chiếu của A trên BC và E là điểm đối xứng của A qua O. Gọi F là điểm chính giữa cung BC không chứa A.
a) Chứng minh rằng AF là phân giác góc $\angle DAE$.
b) Chứng minh $AD.AE = AB.AC$ và $S_{ABC} = \dfrac{AB.AC.BC}{4R}$.
c) Vẽ đường kính FG, đường tròn ngoại tiếp tam giác OAG cắt AB và AC tại M, N. Chứng minh BM = CN.

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2020

Đề thi vào lớp 10 TPHCM năm 2020

Bài 1. Cho parabol $ (P): y=\dfrac{1}{4}x^2$ và đường thẳng $ (d): y=-\dfrac{1}{2}x+2 $

a) Vẽ $ (P) $ và $ (d) $ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $ (P) $ và $ (d) $ bằng phép tính.

Giải

a) Bảng giá trị của $(d)$:

Bảng giá trị của $(P)$:

Đồ thị:

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$:

$\dfrac{1}{4}x^2 = -\dfrac{1}{2}x +2 \Leftrightarrow \dfrac{1}{4}x^2 +\dfrac{1}{2}x-2=0\Leftrightarrow \left[ \begin{array}{l} x=2\Rightarrow y=1\\ x=-4\Rightarrow y=4 \end{array}\right. $

Vậy tọa độ giao điểm $\left( 2;\, 1\right) $, $\left( -4;\, 4\right) $

Bài 2. Cho phương trình: $ 2x^2-5x-3=0 $ có 2 nghiệm $ x_1; x_2 $.

Không giải phương trình, hãy tính giá trị của biểu thức: $ A=(x_1+2x_2)(x_2+2x_1) $.

Giải

Ta có: $\Delta = \left( -5\right) ^2-4\cdot 2\cdot (-3)=49>0\Rightarrow $ Phương trình có hai nghiệm phân biệt.

Áp dụng định lý Viete ta có: $\left\{ \begin{array}{l} S=x_1+x_2=\dfrac{5}{2}\\ P=x_1x_2=-\dfrac{3}{2} \end{array} \right. $

Ta có: $A=\left( x_1+2x_2\right) \left( x_2+2x_1\right)=2\left( x_1^2 +x_2^2\right) +5x_1x_2=2\left( S^2-2P\right) +5P=11 $

Vậy $A=11$

Bài 3. Quy tắc sau đây cho ta biết CAN, CHI của năm X nào đó.

Để xác định CAN, ta tìm số dư $ r $ trong phép chia $X$ cho $10$ và tra vào bảng $1$.

Để xác định CHI, ta tìm số dư $ s $ trong phép chia $X$ cho $12$ và tra vào bảng $2$.

Ví dụ: năm $2020$ có CAN là Canh, có CHI là Tí.

Bảng 1

Bảng 2

a) Em hãy sử dụng quy tắc trên để xác định CAN, CHI của năm $2005$?

b) Bạn Hằng nhớ rằng Nguyễn Huệ lên ngôi hoàng đế, hiệu là Quang Trung vào năm Mậu Thân nhưng không nhớ rõ đó là năm bao nhiêu mà chỉ nhớ là sự kiện trên xảy ra vào cuối thế kỉ $18$. Em hãy giúp Hằng xác định chính xác năm đó là năm bao nhiêu?

Giải

a) Năm $2005$ có CAN là Ất, có CHI là Dậu.

b) Vì năm hoàng đế Nguyễn Huệ lên ngôi là cuối thế kỉ $18$ nên năm đó có dạng $\overline{17ab}$ với $a,\ b\in \mathbb{N}$ và $0\le a,\ b\le 9$

Năm đó có CAN là Mậu nên ta có $\overline{17ab}$ chia $10$ dư $8$ suy ra chữ số tận cùng $b=8$

Năm đó có CHI là Thân nên ta có $\overline{17a8}$ chia hết cho $12$. Suy ra $\overline{17a8}$ chia hết cho $3$.

Khi đó: $1+7+a+8= 16+a\ \vdots \ 3 \Rightarrow a\in \left\{ 2;\ 5;\ 8\right\} $

Với $a=2\Rightarrow 1728$ chia $10$ dư $8$ và $1728$ chia $12$ dư $0$.

Với $a=5\Rightarrow 1758$ chia $10$ dư $8$ và $1758$ chia $12$ dư $6$ (loại).

Với $a=8\Rightarrow 1788$ chia $10$ dư $8$ và $1788$ chia $12$ dư $0$.

Vì sự kiện xảy ra vào cuối thế kỉ $18$ nên năm đó là năm $1788$.

Bài 4. Cước điện thoại $ y $ (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc vào lượng thời gian gọi $ x $ (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất $ y=ax+b. $ Hãy tìm $ a,b $ biết rằng nhà bạn Nam trong tháng $5$ đã gọi $100$ phút với số tiền là $40$ nghìn đồng và trong tháng $6$ đã gọi $40$ phút với số tiền $28$ nghìn đồng.

Giải

Với $x=100$ và $y=40$ ta có $40=100a+b$

Với $x=40$ và $y=28$ ta có $28=40a+b$

Ta có hệ phương trình: $\left\{ \begin{array}{l} 100a+b=40\\ 40a+b=28 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} a=\dfrac{1}{5}\\ b=20  \end{array}\right. $

Vậy $a=\dfrac{1}{5}$ và $b=20$

Bài 5. Theo quy định của cửa hàng xe máy, để hoàn thành chỉ tiêu trong $1$ tháng, mỗi nhân viên phải bán được trung bình một chiếc xe máy trong một ngày. Nhân viên nào hoàn thành chỉ tiêu trong một tháng thì nhận được lương cơ bản là $8 000 000$ đồng. Nếu trong tháng nhân viên nào bán vượt chỉ tiêu thì được hưởng thêm $8\%$ tiền lời của số xe máy bán vượt chỉ tiêu đó. Trong tháng $5$ (có $31$ ngày), anh Thành nhận được số tiền là $9 800 000$ đồng (bao gồm cả lương cơ bản và tiền thưởng thêm của tháng đó). Hỏi anh Thành đã bán được bao nhiêu chiếc xe máy trong tháng $5$, biết rằng mỗi xe máy bán ra thì cửa hàng thu lời được $2 500 000$ đồng.

Giải

Tháng $5$ có $31$ ngày nên số xe máy tiêu chuẩn phải bán được là $31$ xe.

Gọi $x$ ($x>0$) là số xe máy anh Thành đã bán vượt chỉ tiêu.

Số tiền anh Thành được thưởng thêm là: $8\% \cdot 2\, 500\, 000 \cdot x = 200\, 000x$

Ta có phương trình: $200\, 000x = 9\, 800\, 000 -8\, 000\, 000 \Rightarrow x=9$

Vậy anh Thành đã bán được $40$ xe máy trong tháng $5$.

Bài 6. Anh Minh vừa mới xây một cái hồ trữ nước cạnh nhà có hình dạng hộp chữ nhật có kích thước $2m \times 2 m \times 1 m$. Hiện hồ chưa có nước nên anh Minh phải ra sông lấy nước. Mỗi lần ra sông anh gánh được $1$ đôi nước đầy gồm $2$ thùng hình trụ bằng nhau có bán kính đáy $0,2 \ m$, chiều cao $0,4 \ m$.

a)Tính lượng nước ($m^3$) anh Minh đổ vào hồ sau mỗi lần gánh (ghi kết quả làm tròn đến $2$ chữ số thập phân). Biết trong quá trình gánh nước về thì lượng nước bị hao hụt khoảng $10\%$ và công thức tính thể tích hình trụ là $V = \pi R^2h$.

b) Hỏi anh Minh phải gánh ít nhất bao nhiêu lần để đầy hồ? Bỏ qua thể tích thành hồ.

Giải

a) Thể tích nước anh gánh được trong hai thùng là: $V = 2\cdot \pi R^2h =\dfrac{4\pi }{125}$ ($m^3$)

Lượng nước anh Minh đổ vào hồ sau mỗi lần gánh là: $90\% \cdot V=\dfrac{18\pi }{625}\approx 0,09$ ($m^3$)

b) Thể tích hồ trữ nước là: $V_{\text{hồ}}=2\cdot 2\cdot 1=4$ ($m^3$)

Ta có: $\dfrac{V_{\text{hồ}}}{V}\approx 44,21 $

Vậy anh Minh phải gánh ít nhất $45$ lần để đổ nước đầy hồ.

Bài 7. Sau buổi sinh hoạt ngoại khóa nhóm bạn của Thư rủ nhau đi ăn kem ở một quán gần trường. Do quán mới khai trương nên có khuyến mãi, bắt đầu từ ly thứ $5$ giá mỗi ly kem được giảm $1 500$ đồng so với giá ban đầu. Nhóm của Thư mua $9$ ly kem với số tiền là $154 500$ đồng. Hỏi giá của một ly kem ban đầu?

Giải

Gọi $x$ (đồng) là giá tiền của một ly kem khi chưa giảm (ĐK: $x \geq 1 500$ đồng)

$ \Rightarrow$ Giá tiền ly kem từ ly thứ 5 trở đi là: $x-1 500$ (đồng)

Theo bài ra ta có:  $4.x+5 (x- 1500)= 154 500 \Leftrightarrow x=18 000$ ( đồng)

Vậy giá tiền ly kem ban đầu là: $18000$ đồng.

Bài 8. Cho đường tròn tâm $O$; bán kính $R$ và điểm $A$ nằm ngoài đường tròn sao cho $OA>2R$. Từ $A$ kẻ $2$ tiếp tuyến $AD$; $AE$ đến đường tròn ($O$) ($D$; $E$ là hai tiếp điểm). Lấy điểm $M$ nằm trên cung nhỏ $DE$ sao cho $MD >ME$. Tiếp tuyến của đường tròn (O) tại $M$ cắt $AD$; $AE$ lần lượt tại $I$; $J$. Đường thẳng $DE$ cắt $OJ$ tại $F$ .

a) Chứng minh: $OJ$ là đường trung trực của đoạn thẳng $ME$ và $\angle OMF=\angle OEF$.

b) Chứng minh: tứ giác $ODIM$ nội tiếp và $5$ điểm $I;\ D; \ O;\ F;\ M$ cùng nằm trên một đường tròn.

c) Chứng minh: $\angle JOM=\angle IOA$ và $\sin \angle IOA=\dfrac{MF}{IO}$

Giải

a)

  • Ta có: $ \left\lbrace \begin{array}{l} OM=OE (=R)\\ MJ=EJ \end{array} \right. \Rightarrow OJ$ là đường trung trực của đoạn $ME$
  • Ta có: $OJ$ là tia phân giác của góc $\angle EOM \Rightarrow \angle EOJ =\angle MOJ$

Xét $\triangle EOF $ và $\triangle MOF$ ta có: $OF$ chung, $OM=OE$, $\angle EOF= \angle MOF$

$\Rightarrow \triangle EOF = \triangle MOF \Rightarrow \angle OMF =\angle OEF$.

b)

  • Tứ giác $ODIM$ có: $\angle ODI +\angle OMI =90^{\circ} +90^{\circ}= 180^{\circ}$

$\Rightarrow $ Tứ giác $ODIM$ là tứ giác nội tiếp $(1)$.

  • Ta có: $\angle ODE =\angle OED$ và $\angle OEF =\angle OMF$

$ \Rightarrow \angle ODF =\angle OMF \Rightarrow $ Tứ giác $ODMF$ là tứ giác nội tiếp $(2)$.

Từ $(1)$, $(2)$ ta có: $5$ điểm $I,D,O,F,M$ cùng thuộc một đường tròn.

c)

  • Tứ giác $IDFM$ nội tiếp nên ta có: $\angle IOF =\angle IDF = \dfrac{1}{2}$ sđ cung $IF$ $(3)$

Tứ giác $ADOE$ nội tiếp nên : $\angle ADE =\angle AOE$ $(4)$

Từ $$(3)$, $(4)$ ta có: $\angle IOF =\angle AOE$

Mà ta có: $ \angle IOF =\angle IOA+ \angle AOF$

$ \angle AOE=\angle AOF +\angle EOF$

Suy ra: $ \angle EOF =\angle IOA$

Mặt khác $\angle EOF =\angle JOM$ ( do $OJ$ là tia phân giác$ EOM$ )

Vậy $\angle JOM =\angle IOA$ $(5)$

  • Ta có: $\triangle JMF \backsim \triangle JOI$ (g.g) $\Rightarrow \dfrac{JM}{JO} =\dfrac{MF}{OI}$ $(6)$

Xét tam giác $OMJ$ vuông tại $M$ nên: $\sin \angle JOM =\dfrac{MJ}{OJ}$ (7)

Từ $(5), (6), (7)$ suy ra: $ \sin \angle IOA=\dfrac{MF}{IO}$

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2019

Đề thi vào lớp 10 TPHCM năm 2019

Bài 1. Cho parabol $(P): y= -\dfrac{1}{2} x^2 $ và đường thẳng $(d): y= x-4$.

a) Vẽ $(P)$ và $(d)$ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $(P)$ và $(d)$ bằng phép tính.

Giải

a) Bảng giá trị:

  • $y=x-4$

  • $y=-\dfrac{1}{2}x^2$

(Học sinh tự vẽ)

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$:

$-\dfrac{1}{2}x^2 = x-4 \Leftrightarrow x^2 +2x-8=0 \Leftrightarrow (x+4)(x-2)=0 \Leftrightarrow \left[ \begin{array}{l} x=-4 \Rightarrow y=-8 \\ x=2 \Rightarrow y=-2 \end{array} \right. $

Vậy tọa độ giao điểm của $(P)$ và $(d)$ là $(-4;-8)$ và $(2;-2)$.

Bài 2. Cho phương trình: $2x^2 -3x-1 =0$ có 2 nghiệm là $x_1$, $x_2$.

Không giải phương trình, hãy tính giá trị của biểu thức: $A=\dfrac{x_1-1}{x_2+1} + \dfrac{x_2-1}{x_1+1}$

Giải

Ta có: $\Delta = 9+8=17 >0$

$\Rightarrow $ Phương trình đã cho luôn có hai nghiệm phân biệt $x_1$, $x_2$.

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} x_1 + x_2 = \dfrac{3}{2} \\ x_1x_2 = – \dfrac{1}{2} \end{array} \right. $

$A= \dfrac{x_1-1}{x_2+1} + \dfrac{x_2 -1}{x_1 +1}$

$= \dfrac{x_1^2 -1 + x_2^2-1}{x_1x_2 +x_1+x_2+1} $

$= \dfrac{\left( x_1 + x_2 \right) ^2 – 2x_1x_2 -2}{-\dfrac{1}{2}+ \dfrac{3}{2}+ 1} $

$= \dfrac{\dfrac{9}{4}+1-2}{2} = \dfrac{5}{8} $

Bài 3. Quy tắc sau đây cho ta biết được ngày $n$, tháng $t$, năm $2019$ là ngày thứ mấy trong tuần. Đầu tiên, ta tính giá trị của biểu thức $T=n+ H$, ở đây $H$ được xác định bởi bảng sau:

Sau đó, lấy $T$ chia cho $7$ ta được số dư $r$ ($0 \le r \le 6$)

Nếu $r=0$ thì ngày đó là ngày thứ Bảy.

Nếu $r=1$ thì ngày đó là ngày Chủ Nhật.

Nếu $r=2$ thì ngày đó là ngày thứ Hai.

Nếu $r=6$ thì ngày đó là ngày thứ Sáu.

Ví dụ: Ngày $31/12/2019$ có $n=31$; $t=12$; $H=0 \Rightarrow T=31+0=31$; số $31$ chia cho $7$ có số dư là $3$, nên ngày đó là thứ Ba.

a) Em hãy sử dụng quy tắc trên để xác định các ngày $02/09/2019$ và $20/11/2019$ là thứ mấy?

b) Bạn Hằng tổ chức sinh nhật của mình trong tháng $10/2019$. Hỏi sinh nhật của bạn Hằng là ngày mấy? Biết rằng ngày sinh nhật của Hằng là một bội số của $3$ và là thứ Hai.

Giải

a)

  • Ngày $02/09/2019$ có $n=2$, $t=9$; $H= 0$ suy ra $T= 2+0= 2$; 2 chia $7$ dư $2$ nên đó là ngày thứ Hai.
  • Ngày $20/11/2019$ có $n=20$, $t= 11$, $H=-2$ suy ra $T= 20 -2 =18$; $18$ chia $7$ dư $4$ nên đó là ngày thứ Tư.

b) $t=10$; $H=2$ suy ra $T= n+2$

Vì sinh nhật Hằng là thứ Hai nên $T$ chia $7$ dư $2$, suy ra $n$ chia hết cho $7$

Suy ra $n \in \left\{ 7;14;21;28 \right\} $

Lại có $n$ chia hết cho $3$ nên $n=21$

Vậy sinh nhật của Hằng là $21/10/2019$.

Bài 4. Tại bề mặt đại dương, áp suất nước bằng áp suất khi quyển và là $1$ atm (atmosphere). Bên dưới mặt nước, áp suất nước tăng thêm $1$ atm cho mỗi $10$ mét sâu xuống. Biết rằng mối liên hệ giữa áp suất $y$ (atm) và độ sâu $x$ (m) dưới mặt nước là một hàm số bậc nhất có dạng $y=ax+b$

a) Xác định các hệ số $a$ và $b$

b) Một người thợ lặn đang ở độ sâu bao nhiêu nếu người ấy chịu một áp suất là $2,85$ atm?

Giải

a) Ta có: $y= 1+ \dfrac{x}{10}$

Vậy $a= \dfrac{1}{10}$ và $b=1$

b) Ta có: $2,85= 1+ \dfrac{x}{10} \Rightarrow x= 18,5$ (m)

Vậy người thợ lặn ở độ sâu $18,5$ mét.

Bài 5. Một nhóm gồm $31$ bạn học sinh tổ chức một chuyến đi du lịch (chi phí chuyển đi được chia đều cho mỗi bạn tham gia). Sau khi đã hợp đồng xong, vào giờ chót có $3$ ban bận việc đột xuất không đi được nên họ không đóng tiền. Cả nhóm thống nhất mỗi bạn còn lại sẽ đóng thêm $18 000$ đồng so với dự kiến ban đầu để bù lại cho $3$ bạn không tham gia. Hỏi tổng chi phí chuyến đi là bao nhiêu?

Giải

Tổng số tiền $28$ bạn còn lại đã đóng thêm:

$$ 18000 \cdot 28 = 504000 \text{ (đồng)}$$

Số tiền trên chính là tổng số tiền $3$ bạn phải đóng lúc đầu nếu vẫn đi du lịch, nên số tiền mỗi bạn phải đóng lúc đầu nếu đi đủ $31$ bạn là:

$$ 504000 : 3= 168000 \text{ (đồng)}$$

Tổng chi phí chuyến đi là:

$$ 168000 \cdot 31 = 5208000 \text{ (đồng)}$$

Bài 6. Cuối năm học, các bạn lớp $9A$ chia làm hai nhóm, mỗi nhóm chọn một khu vườn sinh thái ở Bắc bán cầu để tham quan. Khi mở hệ thống định vị GPS, họ phát hiện một sự trùng hợp khá thú vị là hai vị trí mà nhóm chọn đều nằm trên cùng một kinh tuyến và lần lượt ở các vĩ tuyến $47^\circ $ và $72^\circ $.

a) Tính khoảng cách (làm tròn đến hàng trăm) giữa hai vị trí đó, biết rằng kinh tuyến là một cung tròn nối liền hai cực của trái đất và có độ dài khoảng $20 000$ km.

b) Tính (làm tròn đến hàng trăm) độ dài bán kính và đường xích đao của trái đất. Từ kết quả của bán kính (đã làm tròn), hãy tính thể tích của trái đất, biết rằng trái đất có dạng hình cầu và thể tích của hình cầu được tính theo công thức $V= \dfrac{4}{3} \cdot 3,14 \cdot R^3$ với $R$ là bán kính hình cầu.

Giải

a) Ta có: $\angle AOB = 72^\circ – 47^\circ = 25^\circ $

Khoảng cách giữa hai vị trí tham quan: $20000 \cdot \dfrac{25}{180} \approx 2800$ (km)

b) Gọi $R$ là bán kính trái đất.

Độ dài đường xích đạo bằng $2$ lần độ dài đường kinh tuyến và bằng: $40000$ km

$\Rightarrow 2R \cdot 3,14 = 40000 \Rightarrow R \approx 6400$ (km)

Thể tích trái đất: $V = \dfrac{4}{3} \cdot 3,14 \cdot R^3 = 1097509546667 \; (km^3)$

Bài 7. Bạn Dũng trung bình tiêu thụ $15$ ca-lo cho mỗi phút bơi và $10$ ca-lo cho mỗi phút chạy bộ. Hôm nay, Dũng mất $1,5$ giờ cho cả hai hoạt động trên và tiêu thụ hết $1200$ ca-lo. Hỏi hôm nay bạn Dũng mất bao nhiêu thời gian cho mỗi hoạt động?

Giải

$1,5$ giờ $= 90$ phút

Gọi $x$, $y$ (phút) lần lượt là thời gian Dũng mất cho việc bơi và chạy bộ. ($x,y>0$)

Ta có hệ phương trình:

$\left\{ \begin{array}{l} x+ y =90 \\ 15x+ 10y= 1200 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x= 60 \\ y=30 \end{array} \right. $

Vậy Dũng đã bơi $60$ phút và chạy bộ $30$ phút.

Bài 8. Cho tam giác nhọn $ABC$ ($AB<AC$) nội tiếp đường tròn $(O)$. Hai đường cao $BD$ và $CE$ của tam giác $ABC$ cắt nhau tại $H$. Đường thẳng $AH$ cắt $BC$ và $(O)$ lần lượt tại $F$ và $K$ ($K\ne A$). Gọi $L$ là hình chiếu của $D$ lên $AB$.

a) Chứng minh rằng tứ giác $BEDC$ nội tiếp và $BD^2 = BL \cdot BA$

b) Gọi $J$ là giao điểm của $KD$ và $(O)$ ($J \ne K$). Chứng minh $\angle BJK = \angle BDE$

c) Gọi $I$ là giao điểm của $BJ$ và $ED$. Chứng minh tứ giác $ALIJ$ nội tiếp và $I$ là trung điểm của $ED$.

Giải

a) Tứ giác $BEDC$ có $\angle BEC= \angle BDC = 90^\circ$ nên tứ giác $BEDC$ nội tiếp đường tròn đường kính $BC$.

Tam giác $BDA$ vuông tại $D$ có $DL \bot BA$ nên ta có $BD^2=BL \cdot BA$

b) Có $ \angle BJK = \angle BCK =\angle BAK$ mà tứ giác $ADHE$ nội tiếp đường tròn đường kính $AH$ nên $\angle EAH= \angle BDE$ suy ra $\angle BJK =\angle BDE$.

c) Có $\angle BJK=\angle BDE$ suy ra $\Delta BDI \sim \Delta BJD (g-g)$ ta thu được $BD^2=BI \cdot BJ$

mà theo câu a) ta có $BD^2=BL \cdot BA$ nên $\Delta BIL \sim \Delta BAJ (c-g-c)$ suy ra $\angle BLI = \angle BJA$ do đó tứ giác $ALIJ$ nội tiếp.

Có $\angle LEI=\angle ACB=\angle AJB =\angle ELI$ suy ra tam giác $LEI$ cân tại $I$ nên $IL=IE$.

Tương tự $IL=ID$ suy ra $IE=ID (dpcm)$.

 

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2018

Đề thi vào lớp 10 TPHCM năm 2018

 

Bài 1.  Cho parabol $(P):y=x^2$ và đường thẳng $(d):y=3x-2$.

a) Vẽ $(P)$ và $(d)$ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $(P)$ và $(d)$ bằng phép tính.

Giải

a) Học sinh tự vẽ hình.

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:

$x^2=3x-2 \Leftrightarrow x^2 -3x+2 =0 \Leftrightarrow (x-1)(x-2)=0 \Leftrightarrow \left[ \begin{array}{l} x=1 \\ x=2 \end{array} \right. $

  • Với $x=1$, suy ra $y=1$
  • Với $x=2$, suy ra $y=4$

Vậy giao điểm của $(P)$ và $(d)$ là $(1;1)$ và $(2;4)$

Bài 2. Cho phương trình: $3x^2-x-1=0$ có hai nghiệm $x_1$, $x_2$.

Không giải phương trình, hãy tính giá trị của biểu thức $A=x_1^2+x_2^2$.

Giải

$3x^2-x-1=0$

Ta có: $\Delta = 1-4.3.(-1)=13>0$ nên phương trình trên luôn có hai nghiệm $x_1$, $x_2$.

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} S=x_1+x_2=-\dfrac{b}{a}=\dfrac{1}{3} \\ P=x_1.x_2= \dfrac{c}{a}= -\dfrac{1}{3} \end{array} \right. $

$A=x_1^2 + x_2^2 = \left( x_1 +x_2 \right) ^2 -2x_1x_2 = \left( \dfrac{1}{3} \right) ^2 -2. \dfrac{-1}{3} = \dfrac{7}{9}$

Bài 3. Mối quan hệ giữa thang đo nhiệt độ $F$ (Fahrenheit) và thang đo nhiệt độ $C$ (Celsius) được cho bởi công thức $T_F=1,8T_C +32$, trong đó $T_C$ là nhiệt độ tính theo độ $C$ và $T_F$ là nhiệt độ tính theo độ $F$.

Ví dụ: $T_C= 0^\circ C$ tương ứng với $T_F=32^\circ F$.

a) Hỏi $25^\circ C$ ứng với bao nhiêu độ $F$?

b) Các nhà khoa học đã tìm ra mối liên hệ giữa $A$ là số tiếng kêu của một con dế trong một phút và $T_F$ là nhiệt độ cơ thể của nó bởi công thức: $A=5,6.T_F-275$, trong đó nhiệt độ $T_F$ tính theo độ $F$. Hỏi nếu con dế kêu $106$ tiếng trong một phút thì nhiệt độ của nó khoảng bao nhiêu độ $C$? (làm tròn đến hàng đơn vị)

Giải

a) Với $T_C= 25^\circ C$ thì: $T_F=1,8.25+32=77 \left( ^\circ F \right) $

b) Nếu con dế kêu 106 tiếng trong một phút thì ta có:

$106=5,6.T_F-275 \Leftrightarrow T_F=\dfrac{1905}{28} \left( ^\circ F \right) $

Nhiệt độ con dế tính theo độ $C$:

$T_F = 1,8. T_C +32 \Leftrightarrow \dfrac{1905}{28}=1,8 .T_C +32 \Leftrightarrow T_C \approx 20,02 \left( ^\circ C \right) $

Bài 4. Kim tự tháp Kheops – Ai Cập có dạng hình chóp đều, đáy là hình vuông, các mặt bên là tam giác cân chung đỉnh (hình vẽ). Mỗi cạnh bên của kim tự tháp dài $214 \; m$, cạnh đáy của nó dài $230 \; m$.

a) Tính theo mét chiều cao $h$ của kim tự tháp (làm tròn đến chữ số thập phân thứ nhất).

b) Cho biết thể tích của hình chóp được tính theo công thức $V=\dfrac{1}{3}S.h$, trong đó $S$ là diện tích mặt đáy, $h$ là chiều cao của hình chóp. Tính theo $m^3$ thể tích của kim tự tháp này (làm tròn đến hàng nghìn).

Giải

a) Xét $\triangle BCD$ vuông tại $C$, ta có:

$BD^2 = BC^2 + CD^2$

$\Leftrightarrow BD^2 = 230^2 + 230^2 $

$\Leftrightarrow BD = 230\sqrt{2} \; (m)$ $

$\Rightarrow DO = \dfrac{BD}{2}= 115\sqrt{2} \; m$

$\triangle  SOD$ vuông tại $O$ có:

$SO^2 + OD^2 = SD^2 $

$\Leftrightarrow h^2 + \left( 115\sqrt{2} \right) ^2 = 214^2 $

$\Leftrightarrow h^2 = 19346 \Leftrightarrow h \approx 139,1 \; m$

Vậy $h \approx 139,1 \; m$

b) $S_{ABCD} = BC^2 = 230^2 \; \left( m^2 \right) $

Suy ra: $V_{ABCD} = \dfrac{1}{3}. S_{ABCD}.h= \dfrac{1}{3}. 230^2 .\sqrt{19346} \approx 2453000 \; \left( m^3 \right) $

Bài 5. Siêu thị $A$ thực hiện chương trình giảm giá cho khách hàng mua loại túi bột giặt $4kg$ như sau: Nếu mua $1$ túi thi được giảm $10 000$ đồng so với giá bán niêm yết. Nếu mua $2$ túi thì túi thứ nhất được giảm $10 000$ đồng và túi thứ hai được giảm $20 000$ đồng so với giá niêm yết. Nếu mua từ $3$ túi trở lên thì ngoài $2$ túi đầu được hưởng như chương trình giảm giá như trên, từ túi thứ ba trở đi, mỗi túi sẽ được giảm $20\%$ so với giá niêm yết.

a) Bà Tư mua $5$ túi bột giặt loại $4kg$ ở siêu thị $A$ thì phải trả số tiền là bao nhiêu, biết rằng loại túi bột giặt bà Tư mua có giá niêm yết là $150 000$ đồng/túi.

b) Siêu thị $B$ lại có hình thức giảm giá khác cho loại túi bột giặt nêu trên là: nếu mua từ $3$ túi trở lên thì sẽ giảm giá $15\%$ cho mỗi túi. Nếu bà Tư mua $5$ túi bột giặt thì bà Tư nên mua ở siêu thị nào để số tiền phải trả là ít hơn? Biết rằng giá niêm yết của hai siêu thị là như nhau.

Giải

a) Giá bà Tư phải trả cho túi thứ nhất:

$$ 150 000-10000=140000 \text{ (đồng)} $$

Giá bà Tư phải trả cho túi thứ hai:

$$ 150 000-20000=130000 \text{ (đồng)} $$

Giá bà Tư phải trả cho từ túi thứ 3 đến túi thứ 5:

$$3. 150 000. \left( 100\% -20\% \right) =360000 \text{ (đồng)} $$

Tổng số tiền bà Tư phải trả ở siêu thị $A$:

$$ 140000+130000+360000=630000 \text{ (đồng)}$$

b) Số tiền bà Tư phải trả khi mua 5 túi ở siêu thị $B$:

$$5.150000.\left( 100\% -15\% \right) = 637500 \text{ (đồng)}$$.

Vậy bà Tư nên mua ở siêu thị $A$.

Bài 6. Nhiệt độ sôi của nước không phải lúc nào cũng là $100^\circ C$ mà phụ thuộc vào độ cao của nơi đó so với mực nước biển. Chẳng hạn, Thành phố Hồ Chí Minh có độ cao xem như ngang mực nước biển ($x=0m$) thì nước sôi ở nhiệt độ là $y=100^\circ C$, nhưng ở thủ đô La Paz của Bolivia, Nam Mỹ có độ cao $x=3600m$ so với mực nước biển thì nhiệt độ sôi của nước là $y=87^\circ C$. Ở độ cao trong khoảng vài $km$, ngườu ta thấy mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất $y=ax+b$ có đồ thị như sau:

trong đó $x$ là đại lượng biểu thị cho độ cao so với mực nước biển, $y$ là đại lượng biểu thị cho nhiệt độ sôi của nước.

a) Xác định các hệ số $a$ và $b$.

b) Thành phố Đà Lạt có độ cao $1500m$ so với mực nước biển. Hỏi nhiệt độ sôi của nước ở thành phố này là bao nhiêu?

Giải

a) Ta có: $y=ax+b$ $(1)$.

Dựa vào đồ thị, ta có:

  • Với $x=0$ thì $y=100$, thay vào $(1)$, ta có:

$100=a.0+b \Leftrightarrow b=100$

Suy ra hàm số: $y=ax+100$ $(2)$

  • Với $x=3600$ thì $y=87$, thay vào $(2)$, ta có:

$87=a.3600+100 \Leftrightarrow a=\dfrac{-13}{3600}$

Vậy mối liên hệ là hàm số: $y=-\dfrac{13}{3600}x+100$, hay $a=-\dfrac{13}{3600}$ và $b=100$

b) Nhiệt độ sôi ở Đà Lạt ($x=1500$) là:

$y=-\dfrac{13}{3600}.1500+100 \approx 94,6 \; \left( ^\circ C \right) $

Bài 7. Năm học $2017-2018$, Trường THCS Tiến Thành có ba lớp $9$ gồm $9A$, $9B$, $9C$ trong đó lớp $9A$ có $35$ học sinh và lớp $9B$ có $40$ học sinh. Tổng kết cuối năm học, lớp $9A$ có $15$ học sinh đạt danh hiệu học sinh giỏi, lớp $9B$ có $12$ học sinh đạt danh hiệu học sinh giỏi, lớp $9C$ có $20\%$ đạt danh hiệu học sinh giỏi và toàn khối $9$ có $30\%$ đạt danh hiệu học sinh giỏi. Hỏi lớp $9C$ có bao nhiêu học sinh?

Giải

Gọi $x$ (học sinh) là số học inh của lớp $9C$. ($x\in \mathbb{N}^*$)

Tổng số học sinh giỏi của khối $9$ là: $15+12+x.20\% = 27 + \dfrac{x}{5}$ (học sinh)

Tổng số học sinh của khối $9$: $35+40+x=75+x$ (học sinh)

Ta có:  $\dfrac{27+\dfrac{x}{5}}{75+x}=30\% $

$\Leftrightarrow 27 + \dfrac{x}{5} = \dfrac{3}{10} \left( 75+x \right) $

$\Leftrightarrow 27 + \dfrac{x}{5}= \dfrac{45}{2}+ \dfrac{3}{10}x $

$\Leftrightarrow \dfrac{1}{10}x= \dfrac{9}{2} $

$\Leftrightarrow x=45$ (nhận)

Vậy lớp $9C$ có $45$ học sinh.

Bài 8. Cho tam giác $ABC$ có $BC=8cm$. Đường tròn tâm $O$ đường kính $BC$ cắt $AB$, $AC$ lần lượt tại $E$ và $D$. Hai đường thẳng $BD$ và $CE$ cắt nhau tại $H$.

a) Chứng minh: $AH$ vuông góc với $BC$.

b) Gọi $K$ là trung điểm của $AH$. Chứng minh tứ giác $OEKD$ nội tiếp.

c) Cho $\angle BAC = 60^\circ $. Tính độ dài đoạn $DE$ và tỉ số diện tích hai tam giác $AED$ và $ABC$.

Giải

a) $\triangle ABC$ có:  $\left. \begin{array}{l} CH\bot AB \\ BH \bot AC \end{array} \right\} \Rightarrow H$ là trực tâm của $\triangle ABC \Rightarrow  $AH \bot BC$.

b) $\triangle AEH$ và $\triangle ADH$ lần lượt vuông tại $E$ và $D$

Nên $4$ điểm $A, E, H, D$ cùng nằm trên đường tròn đường kính $AH$ hay đường tròn tâm $K$.

$\Rightarrow \angle BAC = \dfrac{1}{2} \angle EKD$.

Lại có $\angle ABD = \dfrac{1}{2} \angle DOE$ nên

$\angle BAC + \angle ABD = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow 180^\circ – ADB = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow 90^\circ = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow \angle EKD + \angle DOE = 180^\circ $

Vậy $KDOE$ nội tiếp.

c) $\angle A =60^\circ \Rightarrow \angle EKD = 120^\circ \Rightarrow \angle DOE = 60^\circ$

$\triangle DOE$ cân tại $O$ có $\angle DOE =60^\circ $ nên $\triangle DOE$ đều.

$\Rightarrow DE=DO=EO=4cm$

Lại có $\triangle ADE \backsim \triangle ABC$ $(g-g)$ nên

$\dfrac{S_{ADE}}{S_{ABC}}= \left( \dfrac{AD}{AB} \right) ^2 = \left( \cos \angle BAC \right) ^2 = \left( \cos 60^\circ \right) ^2 = \dfrac{1}{4}$

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2011

Đề thi vào lớp 10 TPHCM Năm 2011

Bài 1. Giải các phương trình và hệ phương trình sau:

a) $3 x^{2}-2 x-1=0$

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8\end{array}\right.$

c) $x^{4}+5 x^{2}-36=0$

d) $3 x^{2}-x\sqrt{3}+\sqrt{3}-3=0$.

Giải

a) Vì phương trình $3x^2-2x-1 =0$ có $a+b+c=0$ nên

$(a) \Leftrightarrow x=1$ hoặc $x=\dfrac{-1}{3}$.

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8 \end{array} \right. \Leftrightarrow \left\{\begin{array}{l}11 y=11 \\ 5 x-4 y=-8\end{array} \right.$

$\quad((1)-(2))$ $\Leftrightarrow\left\{\begin{array}{l}y=1 \\ 5 x=-4\end{array} \\ \Leftrightarrow\left\{\begin{array}{l}x=-\dfrac{4}{5} \\ y=1\end{array}\right.\right.$.

c)  Đặt $\mathrm{u}=\mathrm{x}^{2} \geq 0,$ phương trình thành $: \mathrm{u}^{2}+5 \mathrm{u}-36=0$

$(*)$ có $\Delta=169,$ nên

$(*) \Leftrightarrow u=\dfrac{-5+13}{2}=4$ hay $u=\dfrac{-5-13}{2}=-9\ ($loại$)$

Do đó, phương trình có nghiệm $ \mathrm{x}=\pm 2$.

Cách khác $:(\mathrm{c}) \Leftrightarrow\left(\mathrm{x}^{2}-4\right)\left(\mathrm{x}^{2}+9\right)=0 \Leftrightarrow \mathrm{x}^{2}=4 \Leftrightarrow \mathrm{x}=\pm 2$.

d) $(d)$ có $: \mathrm{a}+\mathrm{b}+\mathrm{c}=0$ nên

$(\mathrm{d}) \Leftrightarrow \mathrm{x}=1$ hay $x=\dfrac{\sqrt{3}-3}{3}$.

Bài 2.

a) Vẽ đồ thị $(P)$ của hàm số $y=-x^{2}$ và đường thẳng $(\mathrm{D}): y=-2 x-3$ trên cùng một hệ trục toạ độ.

b) Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.

Giải

a) Đồ thị tự vẽ.

Lưu ý: $(P)$ đi qua $\mathrm{O}(0 ; 0),(\pm 1 ;-1),(\pm 2 ;-4)$

$(D)$ đi qua $(-1 ;-1),(0 ;-3)$.

b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là

$-x^{2}=-2 x-3 \Leftrightarrow x^{2}-2 x-3=0 \Leftrightarrow x=-1$ hay $x=3($vì $a-b+c=0)$

$y(-1)=-1, y(3)=-9$.

Vậy toạ độ giao điểm của $(P)$ và $(D)$ là $(-1 ;-1),(3 ;-9)$.

Bài 3. Thu gọn các biểu thức sau:

$$A=\sqrt{\dfrac{3 \sqrt{3}-4}{2 \sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2 \sqrt{3}}} $$

$$B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16)  $$

Giải

Ta có: $A=\sqrt{\dfrac{(3 \sqrt{3}-4)(2 \sqrt{3}-1)}{11}}-\sqrt{\dfrac{(\sqrt{3}+4)(5+2 \sqrt{3})}{13}} $

$=\sqrt{\dfrac{22-11 \sqrt{3}}{11}} -\sqrt{\dfrac{26+13 \sqrt{3}}{13}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}} $

$=\dfrac{1}{\sqrt{2}}(\sqrt{4-2 \sqrt{3}}-\sqrt{4+2 \sqrt{3}})=\dfrac{1}{\sqrt{2}}\left(\sqrt{(\sqrt{3}-1)^{2}}-\sqrt{(\sqrt{3}+1)^{2}}\right) $

$=\dfrac{1}{\sqrt{2}}[\sqrt{3}-1-(\sqrt{3}+1)]=-\sqrt{2}$

 

Ta có: $B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16) $

$=\dfrac{x \sqrt{x}-2 x+28}{(\sqrt{x}+1)(\sqrt{x}-4)}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} $

$=\dfrac{x \sqrt{x}-2 x+28-(\sqrt{x}-4)^{2}-(\sqrt{x}+8)(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{x \sqrt{x}-2 x+28-x+8 \sqrt{x}-16-x-9 \sqrt{x}-8}{(\sqrt{x}+1)(\sqrt{x}-4)}=\dfrac{x \sqrt{x}-4 x-\sqrt{x}+4}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{(\sqrt{x}+1)(\sqrt{x}-1)(\sqrt{x}-4)}{(\sqrt{x}+1)(\sqrt{x}-4)}=\sqrt{x}-1$

Bài 4. Cho phương trình $x^{2}-2 m x-4 m-5=0$ ($x$ là ẩn số)

a) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi $m$.

b) Gọi $x_1, x_2$ là các nghiệm của phương trình. Tìm $m$ để biểu thức $A=x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}$ đạt giá trị nhỏ nhất.

Giải

a) Phương trình $(1)$ có $\Delta^{\prime}=\mathrm{m}^{2}+4 \mathrm{~m}+5=(\mathrm{m}+2)^{2}+1>0$ với mọi $m$ nên phương trình $(1)$ có $2$ nghiệm phân biệt với mọi $m$.

b) Do đó, theo Viet, với mọi $\mathrm{m},$ ta có: $\mathrm{S}=-\dfrac{b}{a}=2 m ; \mathrm{P}=\dfrac{c}{a}=-4 m-5$

$\begin{array}{l} \Rightarrow \mathrm{A}=\left(x_{1}+x_{2}\right)^{2}-3 x_{1} x_{2}=4 m^{2}+3(4 m+5)=(2 m+3)^{2}+6 \geq 6, \text { với mọi } \mathrm{m} . \\ \text { Và } \mathrm{A}=6 \text { khi } \mathrm{m}=\dfrac{-3}{2} \end{array} $

Vậy $A$ đạt giá trị nhỏ nhất là 6 khi $\mathrm{m}=\dfrac{-3}{2}$

Bài 5. Cho đường tròn $(O)$ có tâm $O$, đường kính $BC$. Lấy một điểm $A$ trên đường tròn $(O)$ sao cho $\mathrm{AB}>\mathrm{AC}$. Từ $A$, vẽ $\mathrm{AH}$ vuông góc với $\mathrm{BC}$ ($H$ thuộc $\mathrm{BC}$ ). Từ $\mathrm{H},$ vẽ $\mathrm{HE}$ vuông góc với $\mathrm{AB}$ và $\mathrm{HF}$ vuông góc với $\mathrm{AC}$ (E thuộc $\mathrm{AB}, \mathrm{F}$ thuộc $\mathrm{AC}$ ).

a) Chứng minh rằng $AEHF$ là hình chữ nhật và OA vuông góc với EF.

b) Đường thắng $EF$ cắt đường tròn $(O)$ tại $\mathrm{P}$ và $\mathrm{Q}$ ($E$ nằm giữa $\mathrm{P}$ và $\mathrm{F}$ ). Chứng minh $\mathrm{AP}^{2}=\mathrm{AE} . \mathrm{AB}$. Suy ra $APH$ là tam giác cân.

c) Gọi $D$ là giao điểm của $\mathrm{PQ}$ và $\mathrm{BC} ; \mathrm{K}$ là giao điểm cùa $AD$ và đường tròn $(O)$ ($K$ khác $A$). Chứng minh $AEFK$ là một tứ giác nội tiếp.

d) Gọi $I$ là giao điểm của $\mathrm{KF}$ và $\mathrm{BC}$. Chứng minh $\mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.

Giải

a) Tứ giác $AEHF$ là hình chữ nhật vì có $3$ góc vuông.

$\angle HAF = \angle EFA$ ($AEHF$ là hình chữ nhật),

$\angle OAC=\angle OCA$ ($\triangle OAC$ cân)

Do đó: $\angle OAC+\angle AFE=90^{\circ}$

$\Rightarrow$ $OA$ vuông góc với $EF$.

b) $OA$ vuông góc $\mathrm{PQ} \Rightarrow$ cung $\mathrm{PA}=$ cung $\mathrm{AQ}$

Do đó: $\triangle \mathrm{APE}\backsim \triangle \mathrm{ABP}$

$\Rightarrow \dfrac{A P}{A B}=\dfrac{A E}{A P} \Rightarrow \mathrm{AP}^{2}=\mathrm{AE} \cdot \mathrm{AB}$.

Ta có : $\mathrm{AH}^{2}=$ AE.AB (hệ thức lượng $\Delta \mathrm{HAB}$ vuông tại $\mathrm{H}$, có $\mathrm{HE}$ là chiều cao) $\Rightarrow \mathrm{AP}=\mathrm{AH} \Rightarrow \triangle \mathrm{APH}$ cân tại $\mathrm{A}$

c) $\mathrm{DE.DF}=\mathrm{DC.DB}, \mathrm{DC.DB}=\mathrm{DK.DA} \Rightarrow \mathrm{DE.DF}=\mathrm{DK.DA}$.

Do đó $\Delta \mathrm{DFK}\backsim \Delta \mathrm{DAE} \Rightarrow$ $\angle \mathrm{DKF}= \angle \mathrm{DEA} \Rightarrow$ tứ giác $AEFK$ nội tiếp.

d) $\angle ICF = \angle AEF = \angle DKF$ vậy ta có: $IC\cdot ID=IF\cdot IK$ ( $\triangle \mathrm{ICF}$ đồng dạng $\triangle \mathrm{IKD})$ và $\mathrm{IH}^{2}=IF.IK$ (từ $\triangle \mathrm{IHF}$ đồng dạng $\left.\triangle \mathrm{IKH}\right) \Rightarrow \mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.