Category Archives: Toán phổ thông

Đáp án đề thi Toán không chuyên trường Phổ thông Năng Khiếu năm 2021

Bài 1. (1,5 điểm) Cho biểu thức: $$P=\dfrac{a^2+b\sqrt{ab}}{a+\sqrt{ab}}+\dfrac{a\sqrt{a}-3a\sqrt{b}+2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\ \ (a>b>0)$$

a) Thu gọn biểu thức $P$.

b) Chứng minh $P>0$.

Bài 2. (2 điểm)

a) Giải phương trình: $(x^2 +2x -3)\left( \sqrt{3-2x} – \sqrt{x+1}\right) =0$

b) Cho $(d): y=(m+1)x+mn$ và $(d_1): y=3x+1$. Tìm $m$, $n$ biết $(d)$ đi qua $A(0;2)$, đồng thời $(d)$ song song với $(d_1)$.

Bài 3. (1,5 điểm) Cho $(P)$, $(d)$ lần lượt là đồ thị hàm số $y=x^2$ và $y= 2x+m$.

a) Tìm $m$ sao cho $(P)$ cắt $(d)$ tại hai điểm phân biệt $A(x_1;y_1)$, $B(x_2;y_2)$.

b) Tìm $m$ sao cho $(x_1-x_2)^2 + (y_1-y_2)^2 =5$.

Bài 4. (2 điểm)

a) Công ty viễn thông gói cước được tính như sau:

  • Gói I: $1800$ đồng/phút cho $60$ phút đầu tiên; $1500$ đồng/phút cho $60$ phút tiếp theo và $1000$ đồng/phút cho thời gian còn lại.
  • Gói II: $2000$ đồng/phút cho $30$ phút đầu tiên; $1800$ đồng/ phút cho $30$ phút tiếp theo; $1200$ đồng/phút cho $30$ phút tiếp theo nữa và $800$ đồng/phút cho thời gian còn lại.

Sau khi cân nhắc thì bác An chọn gói II vì sẽ tiết kiện được $95000$ đồng so với gói I. Hỏi trung bình bác An gọi bao nhiêu phút một tháng?

b) Cho $\triangle ABC$ có $AB=3$, $AC=4$, $BC=5$. $BD$ là tia phân giác của $\angle ABC$. Tính $BD$?

Bài 5. (3 điểm) Cho $\triangle ABC$ nhọn $(AB<AC)$ nội tiếp đường tròn $(T)$ có tâm $O$, bán kính $R$, $BC=R\sqrt{3}$. Tiếp tuyến tại $B$, $C$ của $(T)$ cắt nhau tại $P$. Cát tuyến $PA$ cắt $(T)$ tại $D$ (khác $A$). Đường thẳng $OP$ cắt $BC$ tại $H$.

a) Chứng minh $\triangle PBC$ đều. Tính $PA\cdot PD$ theo $R$.

b) $AH$ cắt $(T)$ tại $E$ (khác $A$). Chứng minh $HA \cdot HE = HO \cdot HP$ và $PD = PE$.

c) Trên $AB$ lấy điểm $I$ thỏa $AI =AC$, trên $AC$ lấy điểm $J$ thỏa $AJ = AB$. Đường thẳng vuông góc với $AB$ tại $I$ và đường thẳng vuông góc với $AC$ tại $J$ cắt nhau ở $K$. Chứng minh $IJ=BC$ và $AK \bot BC$. Tính $PK$ theo $R$.

 

— HẾT —


LỜI GIẢI

Bài 1.

a) Ta có $a>b>0$ nên

$P = \dfrac{{{a^2} + b\sqrt {ab} }}{{a + \sqrt {ab} }} + \dfrac{{a\sqrt a – 3a\sqrt b + 2b\sqrt a }}{{\sqrt a – \sqrt b }}$

$= \dfrac{{{{\left( {\sqrt a } \right)}^3} + {{\left( {\sqrt b } \right)}^3}}}{{\sqrt a + \sqrt b }} + \dfrac{{\left( {\sqrt a – \sqrt b } \right)\left( {a – 2\sqrt {ab} } \right)}}{{\sqrt a – \sqrt b }}$

$= a – \sqrt {ab} + b + a – 2\sqrt {ab} = 2a – 3\sqrt {ab} + b.$

(1đ)

b) Ta có $a>b>0$ nên $\sqrt{a}>\sqrt{b}$, do đó

$P=2a-3\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-\sqrt{b}\right)>0. $

(0,5đ)

Bài 2.

a) $(x^{2}+2x-3)(\sqrt{3-2x}-\sqrt{x+1})=0 \quad (*)$

Điều kiện: $\left\{ \begin{array}{l} 3-2x\geq 0 \\ x+1\geq 0 \end{array} \right. \Leftrightarrow -1\leq x\leq \dfrac{3}{2}$

(0,25đ)

$(*) \Leftrightarrow (x -1)(x+3)(\sqrt{3-2x}-\sqrt{x+1})=0$

$\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x – 1=0}\\ {x+3=0}\\ {3-2x=x+1} \end{array}} \right.$

(0,25đ)

$\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x =1 \ \ \ (n)}\\ {x=-3 \ (l)}\\ {x=\dfrac{2}{3}\ \ \ (l)} \end{array}} \right.$

(0,25đ)

Vậy $S=\left\{ 1; \dfrac{2}{3}\right\}$

(0,25đ)

b) $(d) // (d_{1})\Leftrightarrow \left\{ \begin{array}{l} m+1=3 \\ m.n\neq 1 \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l} m=2 \\ n\neq \dfrac{1}{2} \end{array} \right. $

(0,5đ)

Vì $A(0;2)\in (d): y=3x+2n\Leftrightarrow 2=3.0+2n\Leftrightarrow n=1$ (n)

(0,5 đ)

Vậy $m=2$, $n=1$

Bài 3.

a) Phương trình hoành độ giao điểm của $ (P) $ và $ (d) $

$ x^2=2x+m \Leftrightarrow x^2-2x-m=0 \quad (1)$

(0,25đ)

$ (P) $ cắt $ (d) $ tại 2 điểm phân biệt $ A, B \Leftrightarrow $ $ (1) $ có $2$ nghiệm phân biệt

$ \Leftrightarrow $ $ \Delta’>0 $ $ \Leftrightarrow $ $ 1+m>0 $

$ \Leftrightarrow m>-1 $ $(*)$

(0,25đ)

Vậy $m>-1$ thì $(P)$ cắt $(d)$ tại hai điểm phân biệt.

b) Với điều kiện $(*)$ theo Viet ta có: $ S=x_1+x_2=2 $, $ P=x_1\cdot x_2=-m $

(0,25đ)

Ta có: $A(x_1;y_1)\in (d) \Leftrightarrow y_1 = 2x_1+m$; $B(x_2;y_2)\in (d) \Leftrightarrow y_2=2x_2+m$

Ta có:

$ (x_1-x_2)^2+(y_1-y_2)^2=5$

$ \Leftrightarrow (x_1-x_2)^2+(2x_1-2x_2)^2=5$

(0,25đ)

$ \Leftrightarrow (x_1-x_2)^2+4(x_1-x_2)^2=5$

$ \Leftrightarrow (x_1-x_2)^2=1\Leftrightarrow (x_1+x_2)^2-4x_1x_2=1$

$ \Leftrightarrow 4+4m=1 \Leftrightarrow m=\dfrac{-3}{4}$ (thỏa $(*)$)

(0,5đ)

Vậy $m=-\dfrac{3}{4}$

Bài 4.

a) Giả sử thời gian gọi trung bình mỗi tháng của bác An là $t$ (phút, $t>0$).

Gọi $A(x)$, $B(x)$ lần lượt là cước phí khi gọi $x$ phút tương ứng với gói cước I và gói cước II, theo đề bài ta có $A(t)-B(t)=95000$ (đồng).

Ta có bảng sau:

Vậy trung bình mỗi tháng bác An gọi $475$ phút.

(1đ)

b) Ta có: $3^2 + 4^2 = 5^2$ nên $AB^2 + AC^2 = BC^2$

Theo định lý Pythagore đảo, tam giác $ABC$ vuông tại $A$.

(0,25đ)

Theo tính chất đường phân giác: $\dfrac{DC}{BC} = \dfrac{DA}{BA}$.

Suy ra $\dfrac{DC}{BC} = \dfrac{DA}{BA} = \dfrac{DC + DA}{BC + BA} = \dfrac{AC}{BA + BC} = \dfrac{1}{2} \Rightarrow AD = \dfrac{1}{2} BA = \dfrac{3}{2}$.

(0,5đ)

Tam giác $ABD$ vuông tại $A$ nên: $BD^2 = AD^2 + AB^2 = \dfrac{45}{4} \Rightarrow BD =\dfrac{3\sqrt{5}}{2}$.

(0,25đ)

Bài 5.

a)

  • Ta có: $OB = OC$, $PB = PC$ suy ra $PO$ là đường trung trực của $BC$

nên $OP \bot BC$ và $H$ là trung điểm $BC$.

$\sin \angle HOC = \dfrac{HC}{OC}= \dfrac{\sqrt{3}}{2} \Rightarrow \angle HOC = 60^\circ \Rightarrow \angle HCP = \angle HOC =60^\circ $

$\triangle PBC$ có $PB = PC$ và $\angle BCP =60^\circ $ suy ra $\triangle PBC$ đều

(0,5đ)

  •  Xét $\triangle PBD$ và $\triangle PAB$ có $\angle BPD$ chung, $\angle PBD = \angle PAB$

$\Rightarrow \triangle PBD \backsim \triangle PAB$ (g.g)

$\Rightarrow \dfrac{PB}{PA}= \dfrac{PD}{PB}\Rightarrow PA\cdot PD = PB^2 = 3R^2$

(0,5đ)

b)

  • Xét $\triangle HAB $ và $\triangle HCE$ có $\angle AHB = \angle CHE$, $\angle HAB = \angle HCE$

$\Rightarrow \triangle HAB \backsim \triangle HCE$ (g.g) $\Rightarrow HA \cdot HE = HB \cdot HC = HB^2 = HO \cdot HP$

(0,5đ)

  •  Xét $\triangle HOA $ và $\triangle HEP$ có $\angle OHA = \angle EHP$, $\dfrac{HO}{HE} = \dfrac{HA}{HP}$

$\Rightarrow \triangle HOA \backsim \triangle HEP$ (c.g.c) $\Rightarrow \angle HOA = \angle HEP$, suy ra $AOEP$ là tứ giác nội tiếp.

Suy ra $\angle HPE = \angle HPD$ (chắn hai cung $OE$ và $OA$ bằng nhau)  $(1)$

Lại có $PA \cdot PD = PB^2 = PH \cdot PO \Rightarrow \dfrac{PD}{PO} = \dfrac{PH}{PA}$

$ \Rightarrow \triangle PDH \backsim \triangle POA$ (c.g.c) suy ra $OHDA$ nội tiếp.

Mà $\angle PAO = \angle ODA =\angle AHO = \angle PHE$ nên $\angle PHD = \angle PHE$  $(2)$

Từ $(1)$ và $(2)$ suy ra $\triangle HDP = \triangle HEP$ (g.c.g), suy ra $PD=PE$.

(0,5đ)

c)

  •  Xét $\triangle ABC$ và $\triangle AJI$ có $AB=AJ$, $\angle IAC$ chung, $AC=AI$

nên $\triangle ABC = \triangle AJI \Rightarrow IJ = BC$

(0,25đ)

  •  Gọi $Q = BC \cap AK$

Ta có: $\angle AIK = \angle AJK =90^\circ $ nên $AIKJ$ nội tiếp đường tròn đường kính $AK$

$ \Rightarrow \angle AKI = \angle AJI$

Mà $\angle AJI = \angle ABC$ (do $\triangle ABC = \triangle AJI$) nên $\angle AKI = \angle ABC$.

Tứ giác $BQKI$ có $\angle AKI = \angle ABC$ nên $BQKI$ là tứ giác nội tiếp.

$\Rightarrow \angle BIK + \angle BQK = 180^\circ \Rightarrow \angle BQK = 180^\circ – \angle BIK = 180^\circ – 90^\circ =90^\circ $

Suy ra $AK \bot BC$.

(0,25đ)

  •  Vì $\triangle ABC = \triangle AIJ$ nên bán kính đường tròn ngoại tiếp của hai tam giác này bằng nhau.

Mà $AK$ là đường kính của đường tròn ngoại tiếp $\triangle AIJ$ nên $AK=2R$.

$\triangle OCP$ vuông tại $C$:

$\Rightarrow OP^2 = OC^2 + CP^2 = R^2 + \left( R\sqrt{3} \right) ^2 = 4R^2$

$\Rightarrow OP=2R \Rightarrow OP=AK$.

Ta có: $AK \bot BC$, $OP \bot BC$ nên $AK // OP$.

Tứ giác $AOPK$ có $AK // OP$ và $AK=OP$ nên $AOPK$ là hình bình hành, suy ra $PK=AO=R$.

Vậy $PK=R$.

(0,5đ)

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Nguyễn Ngọc Duy, thầy Nguyễn Tấn Phát, cô Bùi Thị Minh Phương, Châu Cẩm Triều, Lê Quốc Anh, Nguyễn Công Thành

 

Đề thi học kì 2 môn toán lớp 10 trường Bùi Thị Xuân năm 2020-2021

PHẦN ĐẠI SỐ (6 điểm)

Bài 1. Giải các bất phương trình sau:

a) $|2x+8| <x^2$

b) $1-2x-\sqrt{3x^2-4x+1} \ge 0$

Giải

a) $|2x+8| <x^2 \Leftrightarrow \left\{ \begin{array}{l} x^2 -2x -8>0\\ x^2 + 2x +8 >0 \end{array}\right. $ $\left[ \begin{array}{l} x<-2\\ x>4 \end{array}\right. $

b) $1-2x – \sqrt{3x^2 -4x +1} \ge 0 \Leftrightarrow \sqrt{3x^2 -4x +1} \le 1-2x$

$\Leftrightarrow \left\{ \begin{array}{l} 3x^2 -4x +1\ge 0\\ 1-2x \ge 0\\ x^2 +1\ge 0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x\le \dfrac{1}{3}\\ x\ge 1 \end{array} \right. \\ x\le \dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow x\le \dfrac{1}{3}$

Bài 2. Biết $\cos x = -\dfrac{3}{5}$ và $\dfrac{\pi}{2}<x<\pi$. Tính $\sin x$, $\sin 2x$, $\cos \left( x+\dfrac{2\pi}{3}\right) $.

Giải

Ta có: $\sin ^2 x = 1- \cos ^2 x = \dfrac{16}{25} \Rightarrow \sin x = \dfrac{4}{5}$ ($\dfrac{\pi}{2}<x<\pi$)

Ta có: $\sin 2x = 2\sin x \cos x = -\dfrac{24}{25}$

Ta có: $\cos \left( x+ \dfrac{2\pi}{3}\right) = \cos x \cdot \cos \dfrac{2\pi}{3} – \sin x \cdot \sin \dfrac{2\pi}{3} = \dfrac{3-4\sqrt{3}}{10}$

Bài 3. Cho $A$, $B$, $C$ là ba góc của tam giác. Chứng minh rằng

$$\tan \dfrac{A}{2} \cdot \tan \dfrac{B}{2} + \tan \dfrac{B}{2} \cdot \tan \dfrac{C}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2} =1$$

Giải

$VT = \tan \dfrac{A}{2} \cdot \tan \dfrac{B}{2} + \tan \dfrac{B}{2} \cdot \tan \dfrac{C}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=\tan \dfrac{B}{2} \cdot \left( \tan \dfrac{A}{2} + \tan \dfrac{C}{2}\right) + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=\tan \dfrac{B}{2} \cdot \tan \dfrac{A+C}{2} \cdot \left( 1-\tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}\right) + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}$

$=1-\tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2} + \tan \dfrac{C}{2} \cdot \tan \dfrac{A}{2}=1=VP$ (với $\tan \dfrac{A+C}{2} = \cot \dfrac{B}{2}$ )

Bài 4. Chứng minh biểu thức không phụ thuộc vào $x$:

$$A=\tan (\pi +x) \cdot \tan \left( \dfrac{\pi}{2} -x\right) – \cos ^2 x + \cos \left( x+ \dfrac{\pi}{6}\right) \cdot \cos \left( x-\dfrac{\pi}{6}\right) $$

Giải

$A=\tan (\pi +x) \cdot \tan \left( \dfrac{\pi}{2} -x\right) – \cos ^2 x + \cos \left( x+ \dfrac{\pi}{6}\right) \cdot \cos \left( x-\dfrac{\pi}{6}\right) $

$= \tan x \cdot \cot x – \cos ^2 x + \dfrac{1}{2} \left( \cos 2x + \cos \dfrac{pi}{3}\right) $

$= 1- \cos ^2 x + \cos ^2 x – \dfrac{1}{2} + \dfrac{1}{4} = \dfrac{3}{4}$

Bài 5. Chứng minh rằng

$$\left( \dfrac{\sin 2x – 2\sin x}{\sin 2x + 2\sin x}\right) \cdot \left( \dfrac{\sin ^4 x – \cos ^4 x + \cos ^2 x}{2\left( \cos x-1\right) }\right)= \sin ^2 \dfrac{x}{2}$$

Giải

$VT = \left( \dfrac{\sin 2x – 2\sin x}{\sin 2x + 2\sin x}\right) \cdot \left( \dfrac{\sin ^4 x – \cos ^4 x + \cos ^2 x}{2\left( \cos x-1\right) }\right)$

$=\dfrac{2\sin x \left( \cos x -1\right) }{2\sin x \left( \cos x +1\right) }\cdot \dfrac{\left( \sin ^2 x + \cos ^2 x\right) \left( \sin ^2 x – \cos ^2 x\right) + \cos ^2 x}{2\left( \cos x -1\right) }$

$=\dfrac{\sin ^2 x}{2\left( \cos x +1\right) }=\dfrac{\left( 1-\cos x\right) \left( 1+ \cos x\right) }{2\left( \cos x +1\right) }= \dfrac{1-\cos x}{2} = \sin ^2 \dfrac{x}{2} = VP$

PHẦN HÌNH HỌC (4 điểm)

Bài 6. Trong mặt phẳng với hệ tọa độ $Oxy$, cho tam giác $ABC$ có đỉnh $C(-5;-6)$ và đường cao $AH: x+2y +1=0$, đường trung tuyến $BM: 8x-y+4=0$. Tìm tọa độ các đỉnh $B$, $A$.

Giải

Ta có: $BC \bot AH \Rightarrow BC: 2x -y +c =0$

$C\in BC \Rightarrow c=4 \Rightarrow BC: 2x-y+4=0$

Ta có: $\left\{ \begin{array}{l} B\in BC\\ B\in BM \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 2x_B – y_B =-4\\ 8x_B – y_B =-4 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} x_B = 0\\ y_B =4 \end{array}\right. $ $\Rightarrow B(0;4)$

Ta có: $M\in BM \Rightarrow M(a;8a+4)$

$M$ là trung điểm $AC\Rightarrow A(2a+5; 16a+14)$

Ta có: $A\in AH \Rightarrow 2a+5 + 2(16a+14) + 2=0 \Leftrightarrow a=-1\Rightarrow A(3;-2)$

Bài 7. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường tròn $(C): x^2 + y^2 +2x -2y +1=0$. Viết phương trình tiếp tuyến $\Delta $ của đường tròn $(C)$ biết rằng đường thẳng $\Delta$ vuông góc với đường thẳng $d: 2x+y+2=0$.

Giải

$(C): x^2 + y^2 + 2x -2y +1 =0 \Rightarrow $ Tâm $I(-1;1)$, bán kính $R=1$

Ta có: $\Delta \bot d \Rightarrow d: x-2y +c =0$

Ta có: $d_{(I,\Delta)}=1 \Leftrightarrow \dfrac{|c-3|}{\sqrt{5}} =1 \Leftrightarrow |c-3| =\sqrt{5} \Leftrightarrow \left[ \begin{array}{l} c=\sqrt{5}+3\\ c=-\sqrt{5}+3 \end{array}\right. $

Với $c=\sqrt{5}+3 \Rightarrow \Delta: x-2y + \sqrt{5}+3 =0$

Với $c=-\sqrt{5}+3 \Rightarrow \Delta: x-2y -\sqrt{5}+3=0$

Bài 8. Trong mặt phẳng với hệ tọa độ $Oxy$, cho đường thẳng $d: 2x-y-5=0$ và hai điểm $A(1;2)$, $B(4;1)$. Viết phương trình đường tròn $(T)$ có tâm thuộc đường thẳng $d$ và đi qua $A$, $B$.

Giải

Gọi $I$ là tâm đường tròn $\Rightarrow I\in d \Rightarrow I(a;2a-5)$

Ta có: $AI^2 = BI^2 \Rightarrow (a-1)^2 + (2a-7)^2 = (a-4)^2 + (2a-6)^2 \Rightarrow a=1$

Suy ra $I(1;-3)$ nên $R=5$

Vậy $(T): (x-1)^2 + (y+3)^2 =25$

Bài 9. Trong mặt phẳng với hệ tọa độ $Oxy$, cho elip $(E): \dfrac{x^2}{25} + y^2 =1$. Tìm tọa độ tiêu điểm, tính tâm sai và độ dài các trục của $(E)$.

Giải

$(E): \dfrac{x^2}{25}+y^2 =1 \Rightarrow a=5$ và $b=1$

Khi đó: $c=\sqrt{a^2 -b^2} =2\sqrt{6}$

Tọa độ tiêu điểm: $F_1(-2\sqrt{6}; 0)$; $F_2(2\sqrt{6}; 0)$

Tâm sai: $e=\dfrac{c}{a} = \dfrac{2\sqrt{6}}{5}$

Độ dài trục lớn: $2a=10$

Độ dài trục bé: $2b=2$

— HẾT —

Đề thi học kì 2 môn toán lớp 11 trường PTNK năm 2020-2021

Bài 1: (1 điểm) Tính các giới hạn sau:

a) $\lim\limits_{x\rightarrow {+\infty}} \dfrac{4x+\sqrt{x^2-x}}{x+3}$.

b) $\lim\limits_{x\rightarrow 1} \dfrac{x-\sqrt{x^2+x-1}}{3x-x^2-2}$

Giải

a) $\lim\limits_{x\rightarrow {+\infty}} \dfrac{4x+\sqrt{x^2-x}}{x+3}$

$= \lim\limits_{x\rightarrow {+\infty}} \dfrac{x\left( 4+\sqrt{1-\dfrac{1}{x}}\right) }{x\left( 1+\dfrac{3}{x}\right) }$

$=\lim\limits_{x\rightarrow {+\infty}} \dfrac{ 4+\sqrt{1-\dfrac{1}{x}} }{ 1+\dfrac{3}{x} } =5$

b) $\lim\limits_{x\rightarrow 1} \dfrac{x-\sqrt{x^2+x-1}}{3x-x^2-2}$

$=\lim\limits_{x\rightarrow 1} \dfrac{\left( x-\sqrt{x^2+x-1}\right) \left( x+\sqrt{x^2+x-1}\right)}{\left( 1-x\right) \left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)}$

$=\lim\limits_{x\rightarrow 1} \dfrac{1-x}{\left( 1-x\right) \left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)}$

$=\lim\limits_{x\rightarrow 1} \dfrac{1}{\left( x-2\right) \left( x+\sqrt{x^2+x-1}\right)} =-\dfrac{1}{2}$

Bài 2: (1,5 điểm) Tính đạo hàm của các hàm số sau:

a) $y= \dfrac{x^2-x+5}{x+1} + \sqrt{2x-x^2}$

b) $y=\tan (1+x^2) + \cos ^5 (1-2x)$.

Giải

a) $y’=\left( \dfrac{x^2-x+5}{x+1} + \sqrt{2x-x^2}\right) ‘$

$= \dfrac{(x^2 -x +5)'(x+1)-(x^2 -x+5)(x+1)’}{(x+1)^2} + \dfrac{(2x-x^2)’}{2\sqrt{2x-x^2}}$

$=\dfrac{(2x-1)(x+1)-(x^2-x+5)}{(x+1)^2} + \dfrac{1-x}{\sqrt{2x-x^2}}$

$=\dfrac{x^2+2x-6}{(x+1)^2} + \dfrac{1-x}{\sqrt{2x-x^2}}$.

b) $y’=\left( \tan (1+x^2) + \cos ^5 (1-2x)\right) ‘$

$=(1+x^2)’ \left( 1+\tan ^2 (1+x^2)\right) + 5(1-2x)’ \cdot \cos ^4 (1-2x)$

$= 2x + 2x\tan ^2 (1+x^2) -10\cos ^4 (1-2x)$.

Bài 3: (1 điểm) Chứng minh phương trình $2(m^2 -2)x^5 – 4m^2x^4 + 2(m^2 -x^2) + 4x +1 =0$ có ít nhất hai nghiệm trái dấu với mọi số thực $m$.

Giải

Đặt $f(x) = 2(m^2 -2)x^5 -4m^2x^4 + 2(m^2 -x^2) + 4x +1$

Ta có: $f(-1) = -4m^2 -5 <0$, $f(0) = 2m^2 +1 >0$ $\Rightarrow f(-1)\cdot f(0) <0$

Suy ra phương trình $f(x) =0$ có ít nhất 1 nghiệm âm trong khoảng $(-1;0)$

Lại có: $f(1) = -1<0\Rightarrow f(0)\cdot f(1)<0$

Suy ra phương trình $f(x)=0$ có ít nhất 1 nghiệm dương trong khoảng $(0;1)$

Vậy phương trình có ít nhất hai nghiệm trái dấu với mọi $m$.

Bài 4: (1 điểm) Tìm $a$ để hàm số $y=f(x)=\left\{ \begin{array}{l} \dfrac{\sqrt{2x^2+1}+ x-5}{x^2-4}; \, x\ne \pm 2\\ ax^2 + \dfrac{19}{12}; \, x=\pm 2 \end{array}\right. $ liên tục tại $x_0=2$.

Giải

Ta có: $f(2) = 4a+\dfrac{19}{12}$

Lại có: $\lim\limits_{x\rightarrow 2} \dfrac{\sqrt{2x^2+1}+ x-5}{x^2-4} = \lim\limits_{x\rightarrow 2} \dfrac{2x^2+1- (x-5)^2}{(x-2)(x+2)(\sqrt{2x^2+1}-x+5)}$

$=\lim\limits_{x\rightarrow 2} \dfrac{x+12}{(x+2)(\sqrt{2x^2+1}-x+5)} = \dfrac{7}{12}$

Hàm số liên tục tại $x_0 =2 \Leftrightarrow 4a + \dfrac{19}{12} = \dfrac{7}{12} \Leftrightarrow a=-\dfrac{1}{4}$

Bài 5: (1,5 điểm) Cho $(C)$ là đồ thị của hàm số $y=3x^4 -3x^2 +2$.

a) Viết phương trình tiếp tuyến của $(C)$ tại điểm có hoành độ bằng $-1$.

b) Viết phương trình tiếp tuyến của $(C)$ biết tiếp tuyến có hệ số góc $k=6$.

Giải

a) Ta có: $f'(x) = 12x^3 -6x \Rightarrow f'(-1) = -6$, $f(-1) = 2$

Phương trình tiếp tuyến của $(C)$ tại $x_0=-1$: $y=-6(x+1) +2 = -6x -4$

b) Gọi phương trình tiếp tuyến cần tìm là $y=f'(x_0) (x-x_0) + f(x_0)$

Ta có: $f'(x_0) =6 \Leftrightarrow 12x_0^3 -6x_0 =6 \Leftrightarrow x_0=1 \Rightarrow f(x_0) = 2$

Vậy phương trình tiếp tuyến cần tìm là: $y=6(x-1) + 2 = 6x-4$

Bài 6: (4 điểm) Cho hình chóp $S.ABC$ có $SA \bot (ABC)$. Tam giác $ABC$ cân tại $B$, $BA = BC =a$; $\angle ABC =120^\circ $, $SA=a\sqrt{3}$. $D$ là điểm đối xứng với $B$ qua trung điểm $I$ của $AC$.

a) Tính góc tạo bởi $SC$ và mặt phẳng $(ABC)$.

b) Chứng minh $BD \bot (SAC)$. Tính góc tạo bởi hai mặt phẳng $(SBD)$ và $(ABC)$.

c) Tính khoảng cách từ $D$ đến $(SBC)$.

d) Gọi $M$, $N$ lần lượt là trung điểm $BA$, $BC$. Tính khoảng cách giữa hai đường thẳng $MN$ và $SC$.

Giải

a) Hình chiếu của $C$ lên $(ABC)$ là $C$

Hình chiếu của $S$ lên $(ABC)$ là $A$

$\Rightarrow \widehat{\left( SC, (ABC)\right) } = \widehat{(SC, AC)} = \angle SCA$

Tứ giác $ABCD$ có $I$ là trung điểm $AC$, $BD$ và $AB=BC$

Suy ra tứ giác $ABCD$ là hình thoi

Suy ra $\triangle BIC$ vuông tại $I$ và $\angle IBC = \dfrac{\angle ABC}{2} =60^\circ $

Suy ra $IC = BC \cdot \sin \angle IBC =\dfrac{a\sqrt{3}}{2} \Rightarrow AC =a\sqrt{3}$

Ta có: $\tan \angle SCA = \dfrac{SA}{AC} = 1 \Rightarrow \angle SCA =45^\circ $.

b)

  • Ta có: $BD \bot AC$, $BD \bot SA\Rightarrow BD \bot (SAC)$
  • Ta có: $BD\bot (SAC) \Rightarrow BD \bot SI$

Ta có: $\left\{ \begin{array}{l} (SBD) \cap (ABC) = BD\\ AI\bot BD, SI \bot BD \end{array}\right.$

$\Rightarrow \widehat{((SBD), (ABC))} = \widehat{(SI, AI)}= \angle SIA$

Ta có: $\tan \angle SIA = \dfrac{SA}{AI} = 2 \Rightarrow \angle SIA \approx 63^\circ $

c) Gọi $H$ là hình chiếu của $A$ trên $BC$, $K$ là hình chiếu của $A$ trên $SH$.

Ta có: $BC \bot AH$, $BC \bot SA \Rightarrow BC \bot (SAH)$

Ta có: $AK \bot SH$, $AK \bot BC\Rightarrow AK \bot (SBC)$

Do $AD // (SBC) \Rightarrow d_{(D, (SBC))} = d_{(A, (SBC))}=AK$

$\triangle AHC$ vuông tại $H$ có $\angle ACH =30^\circ \Rightarrow AH = AC \cdot \sin 30^\circ =\dfrac{a\sqrt{3}}{2}$

$\triangle SAH$ vuông tại $A$ có $AK$ là đường cao

$\Rightarrow \dfrac{1}{AK^2} = \dfrac{1}{SA^2} + \dfrac{1}{AH^2}\Rightarrow AK=\dfrac{a\sqrt{15}}{5}$

d) Gọi $J$ là giao điểm của $MN$ và $BD$ suy ra $J$ là trung điểm của $BI$

Ta có: $JI \bot AC$, $JI \bot SA \Rightarrow JI \bot (SAC)$

Ta có: $MN //AC \Rightarrow MN //(SAC) \Rightarrow d_{(MN,SC)} = d_{(MN, (SAC))} = JI = \dfrac{BD}{4} = \dfrac{a}{4}$.

 

 

— HẾT —

Đề thi học kì 2 môn toán lớp 10 trường PTNK năm 2020-2021

Bài 1: (2 điểm) Giải bất phương trình:

a) $\dfrac{-x-4}{x^2-7x+12} >0$

b) $\sqrt{x^2+4} \ge x+2$

Giải

a) $\dfrac{-x-4}{x^2-7x+12} >0 \Leftrightarrow \dfrac{x+4}{(x-3)(x-4)} <0 \Leftrightarrow x \in \left( – \infty ; -4 \right) \cup \left( 3;4 \right) $

Vậy $S=\left( – \infty ; -4 \right) \cup \left( 3;4 \right) $

b) $\sqrt{x^2+4} \ge x+2 \Leftrightarrow \left[ \begin{array}{l} x \le -2 \\ \left\{ \begin{array}{l} x >-2 \\ x^2+4 \ge x^2 +4x+4 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x \le -2 \\ \left\{ \begin{array}{l} x >-2 \\ x \le 0 \end{array} \right. \end{array} \right. \Leftrightarrow x \le 0 $

Vậy $S= \left( – \infty ; 0 \right] $

Bài 2: (1 điểm)  Tìm $m$ để bất phương trình: $2mx^2 – 2(m-4)x+m-4 \ge 0$ vô nghiệm.

Giải
  • $m=0 \Rightarrow 8x -4 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}$ (loại)
  • $m \ne 0$

Đặt $f(x)= 2mx^2 – 2(m-4)x+m-4 $

Để $f(x) \ge 0$ vô nghiệm thì $f(x)\le 0$ với mọi $x \in \mathbb{R}$, khi và chỉ khi:

$\left\{ \begin{array}{l} m<0 \\ \Delta ‘= {\left( {m – 4} \right)^2} – 2m\left( {m – 4} \right) <0 \end{array} \right. \Leftrightarrow m<-4$

Bài 3: (1,5 điểm) Cho hệ bất phương trình: $\left\{ \begin{array}{l} \dfrac{x}{x-1}\le 0 \\ \left( m^2 +1 \right) x > 2mx + m^2 +1 \end{array} \right. \quad (I) $

a) Giải hệ bất phương trình $(I)$ khi $m=-1$.

b) Tìm $m$ để hệ bất phương trình có nghiệm.

Giải

a) Thay $m=-1$ vào $(I)$ ta được: $\left\{ \begin{array}{l} \dfrac{x}{x-1}\le 0\\ 2x>-2x + 2 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 0\le x<1\\ x>\dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow \dfrac{1}{2}<x<1$.

b) $(I) \Leftrightarrow \left\{ \begin{array}{l} 0\le x<1\\ (m-1)^2x>m^2+1 \ \ (1) \end{array}\right. $

  • TH1: $m=1$ thì hệ bất phương trình vô nghiệm.
  • TH2: $m\ne 1$, khi đó $(1)\Leftrightarrow x>\dfrac{m^2+1}{(m-1)^2}$

Hệ bất phương trình có nghiệm khi và chỉ khi $\dfrac{m^2+1}{(m-1)^2} <1\Leftrightarrow m<0$

Vậy $m<0$ thì hệ bất phương trình $(I)$ có nghiệm.

Bài 4: (1 điểm) Chứng minh rằng:

a) $\sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x \right) = 1 – \dfrac{1}{2}\cos\left( 2x – \dfrac{\pi}{3}\right) $

b) $ \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x \right) + \sin x \cdot \sin \left( \dfrac{\pi}{3}-x \right) = \dfrac{3}{4}$

Giải

a) $VT= \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x\right) = \dfrac{1}{2} – \dfrac{1}{2}\cos 2x + \dfrac{1}{2} – \dfrac{1}{2} \cos \left( \dfrac{2\pi}{3} -2x\right) $

$=1-\dfrac{1}{2} \left[ \cos 2x + \cos \left( \dfrac{2\pi}{3} -2x\right) \right] = 1-\dfrac{1}{2} \cdot 2 \cdot \cos \dfrac{\pi}{3} \cdot \cos \left(2x- \dfrac{\pi}{3}\right) $

$=1-\dfrac{1}{2}\cos \left( 2x-\dfrac{\pi}{3}\right)= VP $.

b) $VT = \sin ^2 x + \sin ^2 \left( \dfrac{\pi}{3}-x\right) + \sin x \cdot \sin \left( \dfrac{\pi}{3} -x\right) $

$= 1-\dfrac{1}{2} \cos \left( 2x-\dfrac{\pi}{3}\right) – \dfrac{1}{2} \left[ \cos \dfrac{\pi}{3} – \cos \left( 2x – \dfrac{\pi}{3}\right) \right] = \dfrac{3}{4}=VP$

Bài 5: (0,5 điểm) Cho hai số thực $a$, $b$ thỏa $2a + 3b=7$. Tìm giá trị lớn nhất của $M=(a+1)(b+1)$.

Giải
  • Cách 1: $2a + 3b =7 \Leftrightarrow a=\dfrac{7}{2} -\dfrac{3}{2}b$

Thay $a=\dfrac{7}{2} -\dfrac{3}{2}b$ vào $M$, ta được:

$M=\left( \dfrac{9}{2} – \dfrac{3}{2}b \right) (b+1) = -\dfrac{3}{2}b^2 + 3b + \dfrac{9}{2} = -\dfrac{3}{2}\left( b-1\right) ^2 +6\le 6$

Vậy giá trị nhỏ nhất của $M$ là $6$ khi và chỉ khi $b=1$ và $a=2$.

  • Cách 2: $6M = (2a+2)(3b+3) \le \dfrac{\left( 2a+2 + 3b +3\right) ^2}{4} =36 \Rightarrow M\le 6$

Vậy giá trị lớn nhất của $M$ là $6$ khi và chỉ khi $a=2$ và $b=1$.

Bài 6: (3 điểm) Trong mặt phẳng tọa độ $Oxy$ cho $2$ điểm $A(1;3)$, $B(2;1)$ và đường thẳng $(d): \left\{ \begin{array}{l} x=t \\ y=10+5t \end{array} \right. \quad (t \in \mathbb{R})$

a) Tìm tọa độ giao điểm của $AB$ với đường thẳng $(d)$. Viết phương trình đường thẳng $(d’)$ qua $A$ và song song với $(d)$.

b) Tìm $a \in \mathbb{R}$ sao cho khoảng cách từ $A$ đến đường thẳng $(\Delta )$ bằng $1$, biết

$( \Delta ): x+ (a-1)y-3a=0$

c) Viết phương trình đường tròn $(C)$ có tâm $A$ tiếp xúc với trục $Ox$. Tìm tọa độ giao điểm của đường tròn $(C)$ với trục $Oy$.

Giải

a)

  • Phương trình đường thẳng $AB: 2x + y -5=0$

Gọi $M(a; 10+5a)$ là giao điểm của $AB$ và $(d)$

Ta có: $M\in AB \Leftrightarrow 2a + 10 + 5a -5=0 \Leftrightarrow a=-\dfrac{5}{7}$

Vậy tọa độ giao điểm của $AB$ và $(d)$ là $M\left( -\dfrac{5}{7}; \dfrac{45}{7}\right) $

  • Đường thẳng $(d’)$ đi qua $A(1;3)$ và song song với $(d)$, khi đó:

$(d’): \left\{ \begin{array}{l}x=1+t’\\ y=3+5t’ \end{array}\right. $ $(t’\in \mathbb{R})$

b) Ta có: $d_{(A, (d’))} =1$

$ \Leftrightarrow \dfrac{|1 + (a-1)\cdot 3 -3a|}{\sqrt{1+(a-1)^2}} =1$

$\Leftrightarrow 1+ (a-1)^2 = 4 \Leftrightarrow \left[ \begin{array}{l} a=1+\sqrt{3}\\ a=1-\sqrt{3} \end{array}\right. $

c)

  • Ta có: $d_{(A, Ox)} = 3 = R$

Phương trình đường tròn $(C)$ tâm $A$, bán kính $R=3$ là:

$(C) : (x-1)^2 + (y-3)^2 =9$

  • Gọi $N(0,y)$ là giao điểm của $(C)$ và $Oy$.

Ta có: $N\in (C) \Leftrightarrow 1 + (y-3)^2 =9 \Leftrightarrow \left[ \begin{array}{l} y=3+2\sqrt{2}\\ y=3-2\sqrt{2} \end{array}\right. $

Vậy tọa độ giao điểm là $N_1(0; 3+2\sqrt{2})$ và $N_2(0; 3-2\sqrt{2})$.

Bài 7: (1 điểm) Trong mặt phẳng $Oxy$, cho Elip $(E): \dfrac{x^2}{25} + \dfrac{y^2}{9} =1$

a) Tính chu vi hình chữ nhật cơ sở của $(E)$.

b) Điểm $H(m;n)$ thuộc $(E)$ thỏa $F_1H=9F_2H^2$ với $F_1$, $F_2$ là hai tiêu điểm của $(E)$ và $x_{F_1} < 0$. Tìm $m$, $n$.

Giải

a) Ta có: $a=5$, $b=3$

Chu vi hình chữ nhật cơ sở là: $2(2a+2b) = 32$.

b) Ta có: $c^2 = a^2 – b^2 =16 \Rightarrow c=4 \Rightarrow e=\dfrac{4}{5}$

$F_1H = a+e\cdot m = 5+\dfrac{4}{5}m$, $F_2H = a-e\cdot m = 5-\dfrac{4}{5}m $

Ta có: $F_1H = 9F_2H^2 \Leftrightarrow 5+\dfrac{4}{5}m = 9\left( 5-\dfrac{4}{5}m\right) ^2$

$\Leftrightarrow \dfrac{144}{25}m^2 – \dfrac{364}{5}m + 220=0 \Leftrightarrow \left[ \begin{array}{l} m=5 \Rightarrow n=0\\ m=\dfrac{275}{36} \ (l) \end{array}\right. $

Vậy $H(5;0)$.

— HẾT —

Một số bài toán số học hay ôn thi vào 10 Chuyên Toán

Trong khi thì HSG TPHCM vừa qua có một điều đáng tiếc nhất là câu số học không có trong đề thi, làm nhiều thí sinh khá hụt hẫng nhưng cũng làm nhiều thí sinh vui mừng, vì số học luôn là câu hỏi hóc búa của mỗi kì thi. Có lẽ BTC cuộc thi muốn dành sự quan tâm cho các câu hỏi thực tế nên phần số học bị bỏ qua.

Khác với kì thi HSG, kì thi tuyển sinh vào 10 thì đề thi luôn có đủ cả các phần: đại số, số học, hình học và tổ hợp. Số học cũng như tổ hợp, luôn là phần khiến nhiều thí sinh gặp khó khăn, trong bài viết nhỏ này, tôi xin giới thiệu lại một số bài toán số học đã được cho trong các kì thi tuyển sinh của trường Phổ thông Năng khiếu, nơi tôi làm việc hơn 10 năm qua. Các bạn thí sinh chuẩn bị thi vào trường nên xem kĩ lời giải và cố gắng học thật tốt phần này, điều đó sẽ giúp rất nhiều cơ hội trúng tuyển vào lớp chuyên toán.

Số học THCS thì nội dung quay xung quanh các phép chia hết, phương trình nghiệm nguyên, số nguyên tố, số chính phương,…Việc đầu tiên là nắm chắc các tính chất của phép chia hết, tính chất cơ bản nhất của số nguyên tố hay số chính phương. Bài toán chia hết cũng xuất hiện nhiều lần trong đề thi, sau đây là một bài khá đơn giản nhưng hay:

Bài 1. (PTNK 2011 – Chuyên Toán) Cho các số nguyên $a, b, c$ sao cho $2a+b,2b+c, 2c+a$ đều là các số chính phương ().
a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho 3. Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27.
b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện (
) mà $(a-b)(b-c)(c-a)$ không chia hết cho 27?

Nhận xét. Đây là một bài toán chia hết, liên quan đến các số chính phương, để ý thấy chủ yếu là chia hết cho 3. Ta phải nghĩ đến một số chính phương chia 3 xảy ra những trường hợp nào, từ đó thiết lập các tính chất đã biết:

  • Một số chính phương khi chia cho 3 dư 0 hoặc 1.
  • $a^2 + b^2 $ chia hết cho 3 khi và chỉ khi $a, b$ đồng thời chia hết cho 3.
  • Việc chứng minh tích chia hết cho 27, thì nghĩ đến việc ta cần chứng minh $a, b, c$ có cùng số dư khi chia cho 3, đó là trường hợp đơn giản nhất. Sau đây là lời giải

a) Giả sử $2a + b = m^2, 2b+c = n^2, 2c + a = p^2$.
Cộng ba đẳng thức lại, ta được $3(a+b+c) = m^2 + n^2 + p^2$. Suy ra $m^2+n^2+p^2$ chia hết cho 3.
Ta thấy bình phương của một số nguyên khi chia cho 3 dư 1 hoặc 0. Do đó nếu 1 trong 3 số, chẳng hạn $m$ chia hết cho 3 thì $n^2+p^2$ chia hết cho 3 và như thế $n^2$ và $p^2$ cũng chia hết cho 3.
Hơn nữa $2a+b = 3a +(b-a)$ chia hết cho 3, suy ra $a-b$ chia hết cho 3. Tương tự thì $b-c, c-a$ chia hết cho 3. Suy ra $(a-b)(b-c)(c-a)$ chia hết cho 27.
b) Tồn tại. Chẳng hạn có thể lấy $a=2, b=0,c=1$.

Sau đây cũng là bài toán chia hết, nhưng ở mức độ khó hơn hẳn, đòi hỏi học sinh phải có suy luận tốt và nắm chắc được nhiều kiến thức.
Bài 2. (PTNK 2016 – CT) Cho $x, y$ là hai số nguyên dương mà $x^2 + y^2 + 10$ chia hết cho $xy$.

a) Chứng minh rằng $x, y$ là hai số lẻ và nguyên tố cùng nhau.
b) Chứng minh $k = \dfrac{x^2+y^2+10}{xy}$ chia hết cho 4 và $k \geq 12$.

Nhận xét. Bài toán này cũng giống bài toán trên, là liên quan đến các số chính phương $x^2, y^2$. Việc chứng minh chẵn lẻ liên quan đến số dư khi chia cho 4 của một số chính phương.

Câu a) chỉ là bài toán xét trường hợp khá dễ nhìn, khi phản chứng là giả sử $x, y$ không cùng là số lẻ, từ đó khi xét tính chẵn lẻ của $x^2 + y^2 + 10$ và $xy$ sẽ giải quyết được vấn đề. \ Việc chứng minh nguyên tố cùng nhau thì cách tiếp cận quen thuộc nhất là gọi ước chung lớn nhất và chứng minh nó bằng 1.
Câu b) khó hơn khi có hai ý, ý đầu có thể áp dụng tiếp câu a, nhưng ý sau việc chứng minh $k \geq 12$ có thể đánh lừa nhiều học sinh trong khi việc đơn giản chỉ là chứng minh $k$ chia hết cho 3 là giải quyết được bài toán, mà chứng minh $k$ chia hết cho $3$ cũng là việc xét số dư của tử và mẫu thức khi chia cho 3. Sau đây là lời giải chi tiết.

Lời giải.
a) Giả sử trong hai số $x, y$ có một số chẵn, vì vai trò $x, y$ như nhau nên có thể giả sử $x$ chẵn. Suy ra $x^2 + y^2 + 10$ chia hết cho 2, suy ra $y$ chẵn. Khi đó $x^2 + y^2 + 10$ chia hết cho 4, suy ra 10 chia hết cho 4 vô lý.
Vậy trong hai số đều là số lẻ.
Đặt $d= (x,y)$, $x= d.x’, y = d.y’$ ta có $x^2 + y^2 + 10 = d^2(x’^2 + y’^2) + 10$ chia hết cho $d^2x’y’$. Suy ra 10 chia hết cho $d^2$. Suy ra $d= 1$. Vậy $x, y$ nguyên tố cùng nhau.
b)  Đặt $x = 2m + 1, y = 2n + 1$, suy ra $k = \dfrac{4(m^2+m+n^2+n+3}{(2m+1)(2n+1)}$.
Ta có $4, (2m+1).(2n+1)$ nguyên tố cùng nhau. Suy ra $m^2 + n^2 +m+n+3$ chia hết cho $(2m+1)(2n+1)$. Từ đó ta có $k$ chia hết cho 4. Chứng minh $k \geq 12$ bằng hai cách.
Cách 1. Ta có $x^2 + y^2 + 10 = kxy$.
Nếu trong hai số $x, y$ có một số chia hết cho 3, giả sử $x$ chia hết cho 3. Ta có $y^2 + 10$ chia hết cho 3 vô lý vì $y^2 $ chia 3 dư 0 hoặc dư 1.
Vậy $x, y$ không chia hết cho 3, suy ra $x^2 + y^2 + 10$ chia hết cho 3 và $3, xy$ nguyên tố cùng nhau. Do đó $k$ chia hết cho 3.
Do đó $k$ chia hết cho 12, vậy $k\geq 12$.
Cách 2. Xét $k=4$ ta có $x^2 + y^2 + 10 = 4xy$ () $\Leftrightarrow (x-2y)^2 = 3y^2 – 10$.
Ta có $(x-2y)^2$ chia 3 dư 0 hoặc 1 mà $3y^2-10$ chia 3 dư 2, nên phương trình (
) không có nghiệm nguyên dương.
Xét $k=8$ ta có $x^2 + y^2 + 10 = 8xy (*)\Leftrightarrow (x-4y)^2 = 15y^2 -10$.
Ta có $(x-4y)^2$ chia 3 dư 0 hoặc 1 mà $15y^2-10$ chia 3 dư 2 nên (**) không có nghiệm nguyên dương.
Vậy $k \geq 12$.

Sau chia hết, các kiến thức về phương trình nghiệm nguyên cũng rất quan trọng, trong nhiều bài thi của PTNK kĩ năng giải phương trình nghiệm nguyên giúp mình được nhiều việc.\
Sau đây là bài toán số học, nhưng bản chất số học thì ít mà đại số thì nhiều, chỉ việc biến đổi đại số vài dòng là xong. Tuy vậy nhiều học sinh sau khi đọc đề lại phát hoảng, vì đề bài phát biểu nghe rất “kinh”, đánh lừa được các thí sinh yếu bóng vía. Bài toán sau chế tác từ bài thi của Bungari:
Bài 3. (PTNK 2012 – CT) Số nguyên dương $n$ được gọi là số điều hòa nếu như tổng các bình phương của các ước
của nó ( kể cả 1 và n ) đúng bằng $(n+3)^2$ .

a) Chứng minh rằng số 287 là số điều hòa.
b) Chứng minh rằng số $n = p^3$( $p$ nguyên tố ) không phải là số điều hòa.
c) Chứng minh rằng nếu số $n = pq$ ( $p,q$ là các số nguyên tố khác nhau) là số điều hòa thì $n
+ 2$ là số chính phương.

Nhận xét. Bài toán đưa ra định nghĩa số điều hòa, nghe có vẻ ghê gớm nhưng không có ý nghĩa mấy, hoặc không phù hợp với từ điều hòa hay dùng. Nhiều thí sinh đọc đề mà thuộc dạng yếu bóng vía sẽ bỏ qua, ngay cả bỏ qua câu a rất dễ. Tuy nhiên nếu đã hiểu định nghĩa, việc giải quyết các câu hỏi là điều khá dễ, cũng liên

Lời giải. 

a)  Số $n = 287$ có các ước dương là 1, 7, 41, 287. Ta có $1^2 + 7^2 + 41^2 +287^2 = (287+3)^2$ nên 287 là số điều hòa.
b) Các ước dương của $n = p^3$ là $1, p, p^2, p^3$. Giả sử $n$ là số điều hòa, ta có $(n+3)^2 = 1^2 + p^2 + p^4 + p^6 \Leftrightarrow p^4 + p^2 = 6p^3 + 8$. Suy ra $p|8$ mà $p$ nguyên tố nên $p = 2$. Thử lại thấy không thỏa, vậy $n = p^3$ không phải là số điều hòa với mọi số nguyên tố $p$.
c) Các ước dương của $n = pq$ là $1, p, q, pq$. Vì $n$ là số điều hòa nên ta có:
$1+p^2+q^2+p^2q^2 = (pq+3)^2 \Leftrightarrow p^2 + q^2 = 6pq + 8 \Leftrightarrow (p+q)^2 = 4(pq+2)$. Do 4 là số chính phương nên $pq+2$ cũng là số chính phương hay $n+2$ là số chính phương

Sau đây là một bài khá đẹp, ý tưởng từ phương pháp lùi vô hạn trong giải phương trình nghiệm nguyên, tuy vậy các phải có suy luận một chút khác biệt.
Bài 4.  (PTNK 2014 – CT)

a) Tìm các số nguyên $a, b, c$ sao cho $a+b+c = 0$ và $ab+bc+ac+3=0$.
b) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c = 0$ và $ab+bc+ac + 4m = 0$ thì cũng tồn tại các số nguyên $a’, b’, c’$ sao cho $a’+b’+c’ = 0$ và $a’b’+b’c’+a’c’ + m = 0$.
c)  Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c = 0$ và $ab+bc+ac + 2^k = 0$.

Lời giải
a)  Từ $a+b+c = 0, ab+bc+ca = – 3$ ta có $a^2 + b^2 + c^2 = 6$. Do $a, b, c$ vai trò như nhau nên ta có thể giả sử $|a| \geq |b| \geq |c|$. Khi đó $ 1 < |a| < 3$. Suy ra $|a| = 2$, suy ra $a = 2$ hoặc $a = – 2$.
Với $a = 2$ thì $b + c = -2, b^2 + c^2 = 2$ giải ra được $b = c =-1$.Ta có có bộ $(2;-1;-1)$ và các hoán vị. \ Với $a = -2 $ thì $b+c = 2, b^2 + c^2 = 2$, giải ra được $b = c = 1$, ta có bộ $(-2;1;1)$ và hoán vị.
b) Ta có $a + b + c = 0$ chẵn (1)và $ab+bc+ac = -4m$ chẵn.(2)
Nếu 3 số $a, b, c$ đều lẻ, không thỏa (1).
Nếu có 1 chẵn, 2 lẻ thì không thỏa (2).
Do đó 3 số $a, b,c$ đều chẵn. Khi đó đặt $a’ = \dfrac{a}{2}, b’ = \dfrac{b}{2}, c’ = \dfrac{c}{2}$ thì $a’,b’,c’$ thỏa đề bài.
c) Với $k = 0$ ta có $a+b+c = 0, ab+bc+ac = -1$ thì $a^2 + b^2 +c^2 = 2$ (3) . Không có bộ 3 số nguyên $a, b, c$ khác 0 thỏa (3).
Với $k = 1$ thì $a+b+c=0,ab+bc+ac = -2$ khi đó $a^2+b^2+c^2 = 4$ (4). Giả sử $|a|$ nhỏ nhất khi đó $ 1\leq a^2 < 2$ (không có $a$ thỏa). Không tồn tại $a, b, c$ nguyên khác 0 thỏa (4).
Với $k > 1$.
Nếu $k$ chẵn, đặt $k = 2n$ ta có $a+b+c = 0, ab+bc+ac + 4^n = 0$, theo câu b), tồn tại $a_1, b_1, c_1$ nguyên thỏa $a_1 + b_1 +c_1 = 0, a_1b_1+a_1c_1+b_1c_1 + 4^{n-1} = 0$.

Tương tự ta sẽ được $a_n, b_n,c_n$ nguyên thỏa $a_n+b_n+c_n = 0, a_nb_n+b_nc_n+a_nc_n = -1$ (vô nghiệm).
Nếu $k$ lẻ đặt $k = 2n+1$ ta có $a+b+c = 0, ab+bc+ac + 2.4^n = 0$, làm tương tự trên ta được $a_n+b_n+c_n = 0, a_nb_n+b_nc_n+a_nc_n = – 2$ (vô nghiệm).
Vậy không tồn tại các số $a, b, c$ khác 0 thỏa đề bài.

Ngoài ra việc sử dụng đồng dư cũng được khai thác qua các bài toán chia hết hoặc các bài toán phương trình nghiệm nguyên, nhiều khi được sử dụng một cách bất ngờ cũng gây khó khăn cho thí sinh và rất ít thí sinh làm trọn vẹn, sau đây là một ví dụ:
Bài 5. (PTNK 2018 – CT) Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.

a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Nhận xét. Đây là dạng toán khá quen thuộc với học sinh, chỉ là việc xét các trường hợp một cách khéo léo và cẩn thận để giải quyết bài toán.

a) Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.
$ \Rightarrow A_n \ \vdots \ 3. $
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.
$ \Rightarrow A_n \ \vdots\ 17. $
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$
b) $ A_n = 2018^n + 2032^n – 1964^n – 1984^n. $

  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
    Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
    Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
  • Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
  • Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
    Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
    Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
    Ta có
  • $A_n \equiv 2^n + (-2)^n – 2^n – 4^n \quad \text { (mod 9)}$

$\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do n chẵn).} $
$\equiv 2^n(1-2^n) \quad \text { (mod 9)}$

Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1 \ \vdots \ 9$.
Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad \text { (mod 9)} \Rightarrow k$ chẵn
Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $

Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Tóm lại bài toán số học thi vào lớp 10 Chuyên Toán luôn là bài toán khó, nhưng không phải không kiếm được điểm, chỉ cần thí sinh bình tĩnh vận dụng được kiến thức đã học có thể giải quyết được các ý a, ý b thì phức tạp hơn đòi hỏi phải phân tích và xử lí khéo léo cẩn thận hơn, âu cũng hợp lí cho đề thi chọn học sinh có năng khiếu toán.\
Sau đây có một số bài tập cho các em rèn luyện trước kì thi cam go này.

Bài tập rèn luyện

Bài 1. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)
a) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n$ chia hết cho 5.
b) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n $ chia hết cho 25.

Bài 2. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)
a) Tìm tất cả các số nguyên dương sao cho $2^n – 1$ chia hết 7.
b) Cho số nguyên tố $p \geq 5$. Đặt $A = 3^p – 2^p – 1$. Chứng minh $A$ chia hết cho $42p$.

Bài 3. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Bài 4. Tìm tất cả các số tự nhiên x, y thỏa: ${5^x} = {y^4} + 4y + 1$.

Bài 5. Chứng minh rằng phương trình ${y^2} + y = x + {x^2} + {x^3}$ không có nghiệm nguyên dương.

Đáp án và bình luận thi vào lớp 10 PTNK năm 2013: Đề chuyên toán

ĐỀ BÀI

BÀI 1. Cho phương trình $x^2-4mx+m^2-2m+1=0$ (1) với m là tham số .

a) Tìm m sao cho phương trình (1) có hai nghiệm phân biệt. Chứng minh rằng khi đó hai
nghiệm không thể trái dấu.
b)  Tìm $m$ để phương trình có hai nghiệm $x_1, x_2$ thỏa $|x_1 -x_2| =1$.

BÀI 2.  Giải hệ phương trình $\left\{ \begin{array}{l}
3{x^2} + 2y + 1 = 2z\left( {x + 2} \right)\\
3{y^2} + 2z + 1 = 2x\left( {y + 2} \right)\\
3{z^2} + 2x + 1 = 2y\left( {z + 2} \right)
\end{array} \right.$

BÀI 3. Cho $x, y$ là hai số không âm thỏa $x^3+y^3 < x- y$.

a) Chứng minh rằng $y \leq x \leq 1$.
b) Chứng minh rằng $x^3+y^3 \leq x^2 + y^2 \leq 1$.

BÀI 4.  Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.

a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?

BÀI 5.  Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.

a) Chứng minh rằng các tứ giác $IFMK$ và $IMAN$ nội tiếp .
b) Gọi $J$ là trung điểm cạnh $BC$.Chứng minh rằng ba điểm $A,K,J$ thẳng hàng.
c) Gọi $r$ là bán kính của dường tròn $(I)$ và $S$ là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

BÀI 6.  Trong một kỳ thi, 60 thí sinh phải giải 3 bài toán. Khi kết thúc kỳ thi , người ta nhận
thấy rằng: Với hai thí sinh bất kỳ luôn có ít nhất một bài toán mà cả hai thí sinh đó đều giải
được. Chứng minh rằng :

a) Nếu có một bài toán mà mọi thí sinh đều không giải được thì phải có một bài toán khác mà
mọi thí sinh đều giải được .
b) Có một bài toán mà có ít nhất 40 thí sinh giải được.

LỜI GIẢI

Nhìn vào đề này thấy độ phức tạp nhẹ nhàng, các câu dễ có thể một phát ăn ngay là bài 1, 3a, 4a, 4b ý đầu, 5a.

Tiếp theo là các câu khó hơn như 2,3b ý sau, 5b, 5c và khó nhằn nhất có lẽ là bài tổ hợp.

Bài hình trong đề này là một bài rất quen thuộc, do đó việc giải lại các bài toán đã học là một việc quan trọng. Chú ý những lỗi suy luận trong làm bài, các em tự làm và tự đánh giá điểm để xem được nhiêu điểm nhé, đáp án sẽ có sau vài ngày nữa.

Bài 1. (1,5 điểm) 

a) Phương trình có hai nghiệm phân biệt khi và chỉ khi $\Delta ‘ = 3m^2+2m-1> 0 \Leftrightarrow m > \dfrac{1}{3}$ hoặc $m < – 1$. Khi đó tích hai nghiệm của phương trình $x_1x_2 = (m-1)^2 \geq 0$ nên phương trình không thể có hai nghiệm trái dấu.

b) Điều kiện để phương trình có hai nghiệm $x_1, x_2$ không âm:

$\Delta’ = 3m^2+2m-1\geq 0; S = x_1+x_2 \geq 0; P=x_1x_2 = m^2-2m+1 \geq 0$

$\Leftrightarrow m \geq \dfrac{1}{3} $
Ta có $|\sqrt{x_1}-\sqrt{2}| = 1 $
$\Leftrightarrow x_1 + x_2 – \sqrt{x_1x_2} = 1 $
$\Leftrightarrow 4m – 2\sqrt{m^2-2m+1} = 1 $
$\Leftrightarrow m = \dfrac{1}{2} (n), m = \dfrac{-1}{2} (l)$.

Bình luận Nhiều bạn xét $P \geq 0$ suy ra phương trình có hai nghiệm cùng dấu, cái này là suy luận sai, vì còn trường hợp bằng 0, tốt nhất là dùng phản chứng.

Bài 2. (1 điểm) Cộng ba phương trình lại ta có:
$3(x^2+y^2+z^2) + 2(x+y+z)+3 = 2(xy+yz+zx) + 4(x+y+z)$

$\Leftrightarrow 3(x^2+y^2+z^2)-2(xy+yz+xz) – 2(x+y+z)+3 = 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2 + (x-1)^2+(y-1)^2+(z-1)^2 = 0$
$\Leftrightarrow \left\{\begin{array}{l}x=1\\y=1\\z=1
\end{array} \right.$
Thử lại thấy $(1, 1,1)$ là nghiệm của hệ.

Bình luận: Bài này hệ hoái vị vòng quanh, bất đẳng thức là một trong những cách hay dùng.

Bài 3. (1,5 điểm) 

a) Ta có $x – y \geq x^3 + y^3 \geq 0$, suy ra $x \geq y$.
Ta có $x \geq y + y^3 + x^3 \geq x^3$, suy ra $x(1-x)(1+x) \geq 0$. \Suy ra $0\leq x \leq 1$.
Do đó $0 \leq y \leq x \leq 1$.
b) Từ câu a ta có $0 \leq y \leq x \leq 1$, suy ra $x^3 \leq x^2, y^3 \leq y^2$. Suy ra $x^3+y^3 \leq x^2+y^2$.
Ta có $x – y \geq x^3+y^3 \geq x^3-y^3 \geq 0$.
Suy ra $x^2+y^2+xy \leq 1$, suy ra $x^2+y^2 \leq 1$.
Vậy $x^3+y^3\leq x^2+y^2 \leq 1$.

Bình luận: Đây là bất đẳng thức tương đối dễ, chỉ dùng các biến đổi đơn giản, tuy vậy để làm được ý cuối trong điều kiện phòng thi thì không đơn giản.

Bài 4. (1,5 điểm) 

a)Ta có $M = a^2 + 3a + 1 = a(a+1) + 2a + 1$. Mà $a(a+1)$ là tích hai số tự nhiên liến tiếp nên chia hết cho 2, suy ra $M = a(a+1) + 2a +1$ là số lẻ, do đó mọi ước của $M$ đều là số lẻ.
b) Giả sử $M = a^2 + 3a + 1$ chia hết cho 5. Mà $M = (a-1)^2 + 5a$ nên $(a-1)^2$ chia hết cho 5. Suy ra $a = 5k + 1$ ($k$ là số tự nhiên).
Thử lại thấy với $a = 5k + 1$ thì M chia hết cho 5.
Giả sử $M = (a-1)^2+ 5a = 5^n$.
Nếu $n \geq $ ta có $M$ chia hết cho 25.
Từ M chia hết cho 5, tương tự trên ta có $a = 5k + 1$.
Khi đó $M = 25k^2 + 25k + 5 = 5(5k^2+5k+1)$. Ta có $5k^2 + 5k + 1$ không chia hết cho 5 nên M không chia hết cho 25. (mâu thuẫn).
Nếu $n = 1$. Khi đó $k = 0, a= 1$ và $A=5$ thỏa đề bài.
Đáp số $a = 1$.

Bình luận: Bài này thực chất là bài phương trình nghiệm nguyên, cách hay sử dụng là đồng dư, và đưa ra điều kiện của $a$, ta cũng có thể thử vài giá trị để đoán được nghiệm, từ đó cho ra cách giải.

Bên cạnh đó, nắm chắc một chút các phương pháp chia hết như biến đổi thành tổng.

Bài 5.  (3 điểm) 

a) Do $MN|| BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^\circ$ nên tứ giác $IFMK$ nội tiếp. Tam giác $AEF$ đều nên $\angle KFI = 30^\circ$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^\circ$ nên tứ giác $IMAN$ nội tiếp.
b) Ta có $\angle IMN = \angle INM = 30^\circ$ nên tam giác $IMN$ cân tại $I$.
Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.
b) Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF\cdot AF = r^2 \sqrt{3}$.

Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.

Bình luận. Đây là một mô hình quen thuộc của đường tròn nội tiếp, hầu hết các bạn đã gặp bài toán này, do đó nắm chắc các bài toán là một lợi thế.

Bài 6. (1,5 điểm) 

a) Kí hiệu các bài toán là BT1, BT2, BT3.
Từ giả thiết suy ra rằng mọi thí sinh đều giải được ít nhất một bài toán.
Ta giả sử, mọi thí sinh đều không giải được BT1. Khi đó mọi thí sinh đều giải được BT2 hoặc BT3. Nếu có một thí sinh chỉ giải được 1 bài toán, giả sử đó là bài toán 2. Khi đó theo đề bài thì mọi thí sinh khác đều giải được bài toán 2. Vậy mọi thí sinh đều giải được bài toán 2. Còn nếu tất cả các thí sinh đều giải được 2 bài toán thì cũng thỏa.

b) Ta xét hai trường hợp:
TH1: Có một thí sinh nào đó giải đúng một bài toán, theo câu a thì mọi thí sinh đều giải được bài toán đó, ta có điều cần chứng minh.
TH2: Mọi thí sinh đều giải được ít nhất 2 bài toán. Gọi $a$ là số thi sinh giải được cả 3 bài toán, $b$ là số thí sinh giải được BT1 và BT2, $c$ là số thí sinh giải được BT2 và BT3, $d$ là số thí sinh giải được BT1 và BT3.
Ta có $a + b+ c+ d = 60$.
Nếu $b, c, d > 20$, suy ra $b+c+d > 60$ vô lý. Do đó có một trong ba số $b, c, d$ phải nhỏ hơn hoặc bằng 20. Giả sử là $b \leq 20$. Suy ra $a+c+d \geq 40$.

Hay số thí sinh giải được bài BT3 không ít hơn 40. Điều cần chứng minh.

Bình luận: Đây là bài tổ hợp vừa phải, câu a, chỉ cần đọc kĩ giả thiết là làm được.

Câu b, là biểu đồ venn có thể suy nghĩ đến khi cần phân ra các tập rời nhau.

Bên cạnh đó phản chứng là phương pháp được sử dụng.

Nhìn chung đề này có nhiều câu dễ và quen thuộc, với những câu đó phải làm trước và làm thật chắc, khi đó mới có nhiều thời gian làm các câu khó.

Bổ đề về số mũ đúng

BỔ ĐỀ VỀ SỐ MŨ ĐÚNG

(Thầy Nguyễn Ngọc Duy giáo viên trường PTNK TP Hồ Chí Minh)

Bổ đề số mũ đúng của một số nguyên là một hướng tiếp cận khá mới đối với các bài toán sơ cấp. Nó cung cấp một công cụ khá hữu hiệu để giải các phương trình Diophante hoặc các bài toán chia hết liên quan đến số mũ. Trong bài viết này tôi sẽ cố gắng mang đến một cái nhìn thật sơ cấp và tự nhiên đến vấn đề, trang bị thêm kiến thức và kĩ năng cho các các em học sinh để giải quyết các bài toán số học. Đặc biệt, ta sẽ dùng bổ đề số mũ đúng để giải quyết một số trường hợp đặc biệt của định lí lớn Fermat.

1. Kiến thức cần nhớ

Định nghĩa 1.1: Cho $\left( a,n \right)=1$. Kí hiệu cấp của a theo modulo n là $or{{d}_{n}}\left( a \right)$, là số nguyên dương d nhỏ nhất thỏa $a^d\equiv 1\, \left( \bmod n \right)$.

Tính chất 1.1: Nếu $x$ là số nguyên dương thỏa mãn $a^x \equiv 1\, \left( \bmod n \right)$ thì $or{{d}_{n}}\left( a \right)|x$.

Định nghĩa 1.2: Cho $p$ là số nguyên tố, $x$ là số nguyên bất kì, kí hiệu $v_p \left( x \right)=n$ nếu $x$ chia hết cho $p^n$ nhưng không chia hết cho $p^{n+1}$ .

Tính chất 1.2: Với $a,b$ là các số nguyên và $n$ là số nguyên dương thì:

  • $v_p \left( ab \right)=v_p \left( a \right)+v_p \left( b \right)$.
  • Nếu $p|a$ thì $v_p(a) >0.$
  • $v_p \left( a^n \right)=n v_p \left( a \right)$.
  • $v_p \left( a+b \right) \ge \min \left\{ v_p \left( a \right), v_p \left( b \right) \right\}$. Đẳng thức xảy ra chẳng hạn khi $v_p(a) \neq v_p(b).$
  • $v_p(\text{gcd}(a,b)) = \min(v_p(a), v_p(b))$ và $v_p(\text{lcm}(a,b)) = \max(v_p(a), v_p(b)).$

Định lý 1.1: Bổ đề số mũ đúng. Cho $p$ là số nguyên tố lẻ; $a,b$ không chia hết cho $p$

$i)$  Nếu $a-b$ chia hết cho p thì $v_p \left( a^n – b^n \right)=v_p \left( a-b \right)+v_p \left( n \right)$.

$ii)$  Nếu $a+b$ chia hết cho $p, n$ lẻ thì $v_p\left( a^n+b^n \right)=v_p\left( a+b \right)+v_p \left( n \right)$.

$iii)$  Nếu $a, b$ lẻ thì $v_2 \left( a^n – b^n \right)=v_2 \left( \dfrac{x^2 – y^2}{2} \right) + v_2 \left( n \right)$.

Chứng minh
  • Trước tiên, ta chứng minh: ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$ $(*)$. Ta có:

$${{a}^{p}}-{{b}^{p}}=\left( a-b \right)\left( {{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \right).$$

Do $a\equiv b\left( \bmod p \right)$ nên ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}\equiv p.{{a}^{p-1}}\equiv 0\left( \bmod p \right)$.

Suy ra : ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}$ chia hết cho $p$  $(1)$.

Ta chứng minh tiếp $${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \text{không chia hết cho } {{p}^{2}}. $$

Thật vậy, do $a\equiv b\left( \bmod p \right)$ nên $a=b+kp$ . Sử dụng khai triển nhị thức Newton ta có

$ {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+{{b}^{p-1}}$

$\equiv \left[ \left( p-1 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+\left[ \left( p-2 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+  \cdots+\left[ kp{{b}^{p-2}}+{{b}^{p-1}} \right]+{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

$\equiv \dfrac{p\left( p-1 \right)}{2}kp{{b}^{n-2}}+p.{{b}^{p-1}}$

$\equiv p{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

Theo giả thiết thì $b$ không chia hết cho $p$ nên $p{{b}^{p-1}}$ không chia hết cho ${{p}^{2}}$. Do đó ${{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}}$ cũng không chia hết cho ${{p}^{2}}$  $(2)$.

Từ $(1), (2)$ ta có: ${{v}_{p}}\left( {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}} \right)=1$.

Vậy ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$.

  • Tương tự, ta cũng có: nếu m không chia hết cho p thì ${{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)={{v}_{p}}\left( a-b \right)$ $(**)$.

Ta quay lại định lí. Đặt ${{v}_{p}}\left( n \right)=k\Rightarrow n={{p}^{k}}.m$, với $\left( m,p \right)=1$.

Áp dụng $(*)$ và $(**)$ ta có:

${{v}_{p}}\left( {{a}^{n}}-{{b}^{n}} \right)  ={{v}_{p}}\left( {{\left( {{a}^{{{p}^{k-1}}.m}} \right)}^{p}}-{{\left( {{b}^{{{p}^{k-1}}.m}} \right)}^{p}} \right) $

$={{v}_{p}}\left( {{a}^{{{p}^{k-1}}.m}}-{{b}^{{{p}^{k-1}}.m}} \right)+1=\ldots={{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)+k $

$={{v}_{p}}\left( a-b \right)+{{v}_{p}}\left( n \right).$

Vậy ta đã chứng minh xong phần $i)$ của định lí.

Vì $n$ lẻ nên thay $b$ bởi $-b$ trong i. ta được ${{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)={{v}_{p}}\left( {{a}^{n}}-{{\left( -b \right)}^{n}} \right)={{v}_{p}}\left( a+b \right)+{{v}_{p}}\left( n \right)$

Vậy ta đã chứng minh xong phần $ii)$ của định lí. Tương tự cách làm trong $i)$ ta cũng có kết quả $iii)$.

Như vậy ta đã chứng minh xong bổ đề số mũ đúng. Sau đây ta sẽ sử dụng bổ đề để giải quyết một bài toán thú vị.

2. Các bài toán áp dụng

Bài toán Fermat lớn: Cho $n$ là số tự nhiên lớn hơn $2.$ Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{c}^{n}}$ không có nghiệm nguyên dương.

Bài Toán Fermat lớn là bài toán cực kì thú vị. Nó tồn tại gần bốn thế kỉ, kích thích biết bao nhà toán học thế giới. Bài toán cuối cùng được chứng minh bởi nhà toán học Andrew Wiles vào năm 1993. Và người ta nói rằng sẽ không có phương pháp sơ cấp nào có thể chứng minh bài toán trên. Bài báo sẽ đề cập một trường hợp đặc biệt của bài toán: số $c$ là số nguyên tố. Và chúng ta sẽ giải quyết thông qua bổ đề số mũ đúng.

Bài toán 1: Cho số nguyên lẻ $n>2$, $p$ là số nguyên tố. Chứng minh rằng phương trình $a^n + b^n = p^n$ không có nghiệm nguyên dương.

Giải

Không mất tính tổng quát, giả sử phương trình có nghiệm $a\ge b$ .

$1.$ Nếu $a=1\Rightarrow b=1$, thế vào phương trình suy ra vô lí.

$2.$ Nếu $a=2\Rightarrow b=1;2$.

  • Trường hợp $\left( a,b \right)=\left( 2,2 \right)\Rightarrow p=2$ (vô lí).
  • Trường hợp $\left( a,b \right)=\left( 2,1 \right)\Rightarrow p=3$ , thế vào phương trình ta được ${{3}^{n}}-{{2}^{n}}=1$ , cũng suy ra vô lí.

Vậy bắt buộc $a\ge 3$, mà ${{p}^{n}}>{{a}^{n}}\Rightarrow p>3$ , nên p là số nguyên tố lẻ. Do n lẻ, ta có : $${{p}^{n}}={{a}^{n}}+{{b}^{n}}=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right) $$

Suy ra $p|a+b$ (do $a+b>1$ ). Áp dụng bổ đề số mũ đúng cho $p$, ta có

$${{v}_{p}}\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( n \right) $$

Mà ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Do ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}=\frac{1}{2}\left[ {{a}^{n-1}}+{{a}^{n-3}}{{\left( a-b \right)}^{2}}+\cdots+{{b}^{n-3}}{{\left( a-b \right)}^{2}}+{{b}^{n-1}} \right]\ge \dfrac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)$

Vì $a\ge 3$, $n\ge 3$ nên $\frac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)>n$ nên không thể $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Vậy phương trình vô nghiệm khi $p$ là số nguyên tố.

Bài tập 2: Cho số nguyên $n>2$ có ước lẻ khác 1, $p$ là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Gọi $k>1$ là ước lẻ của $n$, giả sử $n=km$ . Đặt $x={{a}^{m}};y={{b}^{m}}$. Phương trình trên trở thành

$${{x}^{k}}+{{y}^{k}}={{p}^{n}}.$$

Không mất tính tổng quát, giả sử $x\ge y$ . Tương tự bài toán $1$ ta sẽ loại được các trường hợp tầm thường $x=1;x=2$ . Nên ta xét bài toán với trường hợp $x,p\ge 3.$ Do $k$ lẻ, ta có ${{p}^{n}}={{a}^{k}}+{{b}^{k}}=\left( a+b \right)\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)$

Suy ra $p|b+a$. Áp dụng bổ đề số mũ đúng cho $p$ ta có

$${{v}_{p}}\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)={{v}_{p}}\left( {{a}^{k}}+{{b}^{k}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( k \right) $$

Mà ${{a}^{k-1}}-{{a}^{k-2}}b+ \cdots-a{{b}^{k-2}}+{{b}^{k-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right) | k$$

Lập luận tương tự bài toán $1$ ta cũng suy ra vô lí. Vậy phương trình vô nghiệm .

Bài tập 3: Cho số nguyên $n={{2}^{k}},k>1$ , p là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Tương tự Bài toán $1$, ta loại được các trường hợp tầm thường nên ta chỉ xét đối với trường hợp $a,b$ có ít nhất một số lớn hơn $2$, khi đó $p>3$. Phương trình trở thành dạng

$${{x}^{4}}+{{y}^{4}}={{p}^{{{2}^{k}}}}$$

trong đó $x, y$ có ít nhất một số lớn hơn $2$ và $\left( x,y \right)=1$.

Do $p$ lẻ nên $x, y$ khác tính chẵn lẻ. Không mất tính tổng quát, giả sử $x$ lẻ, $y$ chẵn. Ta có

$${{y}^{4}}={{p}^{{{2}^{k}}}}-{{x}^{4}}=\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}} \right)\left( {{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)$$

Do $\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}};{{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)=2$ nên

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}+{{x}^{2}}=2{{m}_{1}}^{2} \\ {{p}^{{{2}^{k-1}}}}-{{x}^{2}}=2{{n}_{1}}^{2} \end{array} \right. $$

Suy ra

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}={{m}_{1}}^{2}+{{n}_{1}}^{2} \\ {{x}^{2}}={{m}_{1}}^{2}-{{n}_{1}}^{2} \end{array} \right. $$

và ${{y}^{2}}=2{{m}_{1}}{{n}_{1}}.$

Ta thấy $\left( {{m}_{1}};{{n}_{1}} \right)=1$ vì nếu ngược lại thì ${{m}_{1}}$ và ${{m}_{2}}$ đều phải chia hết cho $p$ (vô lí) nên có các trường hợp sau

$1)$ Nếu $m_1 = m_2^2, n_1=2n_2^2$ và $(m_2,n_2)=1$ thì thế vào ta được

$${{p}^{{{2}^{k-1}}}}={{m}_{2}}^{4}+4{{n}_{2}}^{4}=\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)\left( {{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)$$

mà \[\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2},{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)=1\] nên \[{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2}=1\Leftrightarrow {{\left( {{m}_{2}}-{{n}_{2}} \right)}^{2}}+{{n}_{2}}^{2}=1\Leftrightarrow {{m}_{2}}={{n}_{2}}=1.\] Trường hợp này không thỏa.

$2)$ Nếu $m_1=2m_2^2,n_1=n_2^2$ và $(m_2,n_2)=1$ thì cũng tương tự.

Vậy phương trình không có nghiệm nguyên dương.

Như vậy sử dụng bổ đề số mũ đúng ta đã chứng minh được một trường hợp đặc biệt của Định lí lớn Fermat.

Sau đây, chúng ta sẽ sử dụng Bổ đề số mũ đúng để giải quyết một số bài toán khác.

Bài tập 4: Tìm bộ số nguyên dương $\left( a,b,p \right)$ trong đó $p$ là số nguyên tố thỏa $${{2}^{a}}+{{p}^{b}}={{15}^{a}}.$$

Giải

Ta có $\forall x,y\in \mathbb{Z};n\in \mathbb{N}$ thì ${{x}^{n}}-{{y}^{n}}\vdots x+y$ nên ${{p}^{b}}={{15}^{a}}-{{2}^{a}}\vdots 13\Rightarrow p=13.$

Áp dụng bổ đề

$$b={{v}_{13}}\left( {{13}^{b}} \right)={{v}_{13}}\left( {{15}^{a}}-{{2}^{a}} \right)={{v}_{13}}\left( 15-2 \right)+{{v}_{13}}\left( a \right)\Rightarrow {{v}_{13}}\left( a \right)=b-1\Rightarrow a \ \vdots \  {{13}^{b-1}}$$

Mà $a>0$ nên $a\ge {{13}^{b-1}}$, suy ra

${{13}^{b}}  ={{15}^{a}}-{{2}^{a}}=\left( 15-2 \right)\left( {{15}^{a-1}}+{{15}^{a-2}}.2+\cdots +{{15.2}^{a-2}}+{{2}^{a-1}} \right) $

$ \ge \left( 15-2 \right)\left( {{15}^{{{13}^{b-1}}-1}}+{{15}^{{{13}^{b-1}}-2}}.2+\cdots+{{15.2}^{{{13}^{b-1}}-2}}+{{2}^{{{13}^{b-1}}-1}} \right) $

$\Rightarrow b=1\Rightarrow a=1.$

Vậy nghiệm bài toán là $\left( a,b,p \right)=\left( 1,1,13 \right)$.

 

Bài tập 5: Chứng minh rằng không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ , sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

Giải

Giả sử tồn tại số nguyên dương $m$ sao cho $${{\left( a+1 \right)}^{n}}-{{a}^{n}}={{5}^{m}}.$$

Nhận xét: nếu$a$ hoặc $a+1$ chia hết cho $5$ thì số còn lại cũng cũng chia hết cho $5$ (vô lí). Nên cả hai số đều không chia hết cho $5.$ Ta xét các trường hợp:

$1.$  Nếu $a\equiv 1\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{2}^{n}}-1\left( \bmod 5 \right)$ . Suy ra $4|n$.

$2.$  Nếu $a\equiv 2\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{3}^{n}}-{{2}^{n}}\left( \bmod 5 \right)$. Suy ra $2|n$.

$3.$  Nếu $a\equiv 3\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{4}^{n}}-{{3}^{n}}\left( \bmod 5 \right)$. Suy ra $4|n$.

Do đó, $n$ luôn là số chẵn, đặt $n=2{{n}_{1}}$, $\left( {{n}_{1}}\in \mathbb{N},{{n}_{1}}\ge 2 \right)$. Ta có

$ {{5}^{m}} = {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}}=\left( {{\left( a+1 \right)}^{2}}-{{a}^{2}} \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+ \cdots + {{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$=\left( 2a+1 \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right). $

Suy ra $5| 2a+15$ , áp dụng bổ đề số mũ đúng ta được

${{v}_{5}}\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$= {{v}_{5}}\left( {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}} \right)-{{v}_{5}}\left( 2a+1 \right)={{v}_{5}}\left( {{n}_{1}} \right). $

Do ${{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+ \cdots +{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}}$ là lũy thừa của $5$ nên $${{n}_{1}}\vdots \left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right)$$ (vô lí vì về phải gồm ${{n}_{1}}$ số nguyên dương, ${{n}_{1}}>1$ và $a+1\ge 2$).

Vậy không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

 

Bài tập 6: Cho hai số nguyên $a,n\ge 2$ sao cho tồn tại số nguyên dương k thỏa $n|{{\left( a-1 \right)}^{k}}$ . Chứng minh rằng n là ước của $1+a+{{a}^{2}}+…+{{a}^{n-1}}$ .

Giải

Giả sử $p$ là ước nguyên tố bất kì của $n$ . Theo giả thiết $n|{{\left( a-1 \right)}^{k}}$ nên p cũng là ước của $a-1$ .

Do ${{a}^{n}}-1=\left( a-1 \right)\left( 1+a+{{a}^{2}}+\cdots +{{a}^{n-1}} \right)$ nên áp dụng bổ đề số mũ đúng ta có

$${{v}_{p}}\left( 1+a+{{a}^{2}}+\cdots+{{a}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}-1 \right)-{{v}_{p}}\left( a-1 \right)={{v}_{p}}\left( n \right).$$

Do mọi ước nguyên tố $p$ của n đều thỏa điều trên nên ta có $$n|1+a+{{a}^{2}}+\cdots+{{a}^{n-1}}.$$

Bài tập 7 (HSG Trung Quốc 2009): Tìm cặp số nguyên tố $\left( p,q \right)$ thỏa $pq|{{5}^{p}}+{{5}^{q}}$ (*).

Giải

Ta xét các trường hợp

$1.$   $p=q=5$ thỏa mãn bài toán.

$2.$   Nếu có một số bằng $5$, một số khác $5$. Không mất tính tổng quát, giả sử $p=5;q\ne 5$. Ta có :

$$5q|{{5}^{5}}+{{5}^{q}}\Leftrightarrow q|{{5}^{4}}+{{5}^{q-1}}\Leftrightarrow q|{{5}^{4}}+1=626$$ do ${{5}^{q-1}}\equiv 1\left( \bmod \,q \right)$ nên suy ra $q=2$ hoặc $q=313$.

$3.$  Nếu cả hai số $p,q\ne 5$ . Do ${{5}^{p}}\equiv 5\left( \bmod p \right),\,\,{{5}^{q}}\equiv 5\,\,\,\,\left( \bmod \,q \right)$ nên

$$\left( * \right)\Leftrightarrow \left\{ \begin{array}{l}  {{5}^{p-1}}+1\vdots q \\ {{5}^{q-1}}+1\vdots p \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {{5}^{2\left( p-1 \right)}}-1\vdots q \\ {{5}^{2\left( q-1 \right)}}-1\vdots p \end{array} \right.$$

Do ${{5}^{2\left( p-1 \right)}}-1$ chia hết cho $q$ nhưng ${{5}^{p-1}}-1$ không chia hết cho $q$ nên

$${{v}_{2}}\left( \text{ord}_{q}\left( 5 \right) \right)=1+{{v}_{2}}\left( p-1 \right) .$$

Do ${{5}^{q-1}}-1$ chia hết $q$ nên $q-1\vdots or{{d}_{q}}\left( 5 \right)$ nên

$${{v}_{2}}\left( q-1 \right)\ge 1+{{v}_{2}}\left( p-1 \right) .$$

Tương tự khi xét chia hết cho $p$ ta lại có ${{v}_{2}}\left( p-1 \right)\ge 1+{{v}_{2}}\left( q-1 \right)$ (vô lí).

Vậy các cặp số thỏa mãn là $\left( p,q \right)=\left( 2,5 \right);\left( 5,2 \right);\left( 5,5 \right);\left( 5,313 \right);\left( 313,5 \right).$

Bài tập 8 (HSG Brazil 2009): Cho hai số nguyên tố $p, q$ sao cho $q=2p+1$ . Chứng minh rằng tồn tại một số là bội của $q$ có tổng các chữ số của nó trong hệ cơ số $10$ nhỏ hơn $4.$

Giải

Do $p,q$ đều là số nguyên tố nên $q\ge 5$ .

Nếu $q=5$ thì ta chỉ cần chọn số $10$ thì thỏa yêu cầu bài toán.

Nếu $q>5$ , áp dụng Định lí Fermat nhỏ thì $q|{{10}^{q-1}}-1={{10}^{2p}}-1=\left( {{10}^{p}}-1 \right)\left( {{10}^{p}}+1 \right)$

Suy ra $q|{{10}^{p}}+1$ hoặc $q|{{10}^{p}}-1$.

$1.$  Nếu $q|{{10}^{p}}+1$ thì số $a={{10}^{p}}+1$ là số thỏa yêu cầu đề bài.

$2.$  Nếu $q|{{10}^{p}}-1$. Do $p$ là số nguyên tố và $q$ không là ước của $10-1$(do $q>5$ ) nên $p$ cũng chính là $or{{d}_{q}}\left( 10 \right)$. Do đó $10;{{10}^{2}};\ldots ;{{10}^{p}}$ sẽ có số dư khác nhau khi chia cho $q.$

Ta sẽ có các trường hợp

  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv p\left( \bmod \,q \right)$ thì ${{2.10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{2.10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv 2p\left( \bmod \,q \right)$ thì ${{10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu không tồn tại $1\le k\le p$ mà ${{10}^{k}}$ có số dư là $p$ hay $2p$ khi chia cho $q.$ Thì ta sẽ chia các số dư còn lại của $q$ thành $p$ bộ $$\left( 1;2p-1 \right),\left( 2;2p-2 \right),\ldots,\left( p-1;p+1 \right)$$ (tổng $2$ phần tử của một bộ bằng $2p$) . Do tập số dư khi chia cho $q$ của tập $\left\{ 10;{{10}^{2}};\ldots ;{{10}^{p}} \right\}$ có $p$ phần tử nên Theo nguyên lí Dirichlet sẽ có ít nhất hai số ${{10}^{k}}$ và ${{10}^{l}}$ thuộc cùng một bộ. Khi đó số $a={{10}^{k}}+{{10}^{l}}+1$ sẽ chia hết cho $q$ là số thỏa yêu cầu đề bài.

Bài tập 9 (IMO Shortlist 1997): Cho $b,m,n$ là các số nguyên dương thỏa$m>1;\,\,m\ne n$. Biết ${{b}^{m}}-1$và ${{b}^{n}}-1$ có cùng tập hợp các ước nguyên tố. Chứng minh $b+1$ là lũy thừa của $2.$

Giải

Theo đề, gọi $p$ là ước nguyên tố bất kì của ${{b}^{m}}-1$và ${{b}^{n}}-1$.

Ta có kết quả quen thuộc: $$\left( {{b}^{m}}-1,{{b}^{n}}-1 \right)={{b}^{\left( m,n \right)}}-1,$$ đặt $\alpha =\left( m,n \right)$ nên $p|{{b}^{\alpha }}-1$. Suy ra tồn tại $k,l\in \mathbb{N}*$ thỏa $m=\alpha k;\,\,n=\alpha l$.

Đặt $a={{b}^{\alpha }}$ , từ giả thiết suy ra mọi ước nguyên tố của ${{a}^{k}}-1$ và ${{a}^{l}}-1$ đều là ước của $a-1$ . Nói cách khác, tập hợp các ước nguyên tố của ${{a}^{k}}-1,{{a}^{l}}-1$ và $a-1$ là trùng nhau.

Do $m\ne n$ suy ra tồn tại một số $k$ hoặc $l$ lớn hơn 1. Giả sử số đó là k.

Ta chứng minh $a+1$ là lũy thừa của 2.

Thật vậy:

$1.$  Nếu $k$ là số chẵn, đặt $k={{2}^{\beta }}.k’$($k’$ là số lẻ).

Ta có: $${{a}^{k}}-1=\left( {{a}^{k’}}-1 \right)\left( {{a}^{k’}}+1 \right)\left( {{a}^{2k’}}+1 \right)…\left( {{a}^{{{2}^{\beta -1}}k’}}+1 \right).$$

Do đó mọi ước nguyên tố $q$ của ${{a}^{k’}}+1$ cũng là ước của $a-1$

Mà ${{a}^{k’}}+1\vdots a+1$, $\left( a+1;a-1 \right)=1$ hoặc $2.$ Suy ra $2\vdots q\Rightarrow q=2$ nên ${{a}^{k’}}+1$ là lũy thừa của $2.$ Suy ra $a+1$ cũng là lũy thừa của $2.$

$2.$  Nếu $k$ là số lẻ, ta có ${{a}^{k}}-1=\left( a-1 \right)\left( {{a}^{k-1}}+{{a}^{k-2}}+…+a+1 \right)$

Gọi $q$ là ước nguyên tố bất kì của ${{a}^{k-1}}+{{a}^{k-2}}+…+1$. Do ${{a}^{k-1}}+{{a}^{k-2}}+…+a+1$ là số lẻ nên, nên $q$ cũng lẻ và là ước của ${{a}^{k}}-1$ . Do đó q cũng là ước của $a-1$ .

Áp dụng bổ đề số mũ đúng của $q$ ta có

${{v}_{q}}\left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)={{v}_{q}}\left( {{a}^{k}}-1 \right)-{{v}_{q}}\left( a-1 \right)={{v}_{q}}\left( k \right)$

Suy ra $k\vdots \left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)$ (vô lí vì vế phải có k số nguyên dương, $a>1$ ).

Vậy $a+1={{b}^{\alpha }}+1$ là lũy thừa của $2$.

Vì ${{b}^{\alpha }}+1$ là lũy thừa của $2$ nên nếu $\alpha $ là số chẵn thì ${{b}^{\alpha }}+1={{\left( {{b}^{\alpha ‘}} \right)}^{2}}+1$ hoặc là số lẻ hoặc chia 4 dư 2 nên chỉ có một trường hợp thỏa là $b=1$ . Còn nếu $\alpha $ là số lẻ thì ${{b}^{\alpha }}+1=\left( b+1 \right)\left( {{b}^{\alpha -1}}+{{b}^{\alpha -2}}+…+b+1 \right)$ nên $b+1$ cũng là lũy thừa của $2$.

Bài tập 10 (IMO Shortlist 1999): Tìm các số nguyên dương $n,p$ trong đó p nguyên tố thỏa ${{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$.

Giải

Ta xét các trường hợp sau

$1.$  Nếu $p=2\Rightarrow n|2\Rightarrow n=1;2$ (thỏa).

$2.$  Nếu $p>2$ , suy ra $p$ lẻ nên ${{\left( p-1 \right)}^{n}}+1$ lẻ $\Rightarrow n$ lẻ

Gọi $q$ là ước nguyên tố nhỏ nhất của n $\Rightarrow q|{{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$ $\Rightarrow q|{{\left( p-1 \right)}^{2n}}-1$

Mà : $q|{{\left( p-1 \right)}^{q-1}}-1\Rightarrow q|{{\left( p-1 \right)}^{\left( 2n,q-1 \right)}}-1$

Do n lẻ và $q$ là ước nguyên tố nhỏ nhất của n nên $\left( 2n;q-1 \right)=2$ .

Suy ra $q|{{\left( p-1 \right)}^{2}}-1=\left( p-2 \right)p$ $\Rightarrow $ $q|p-2$ hoặc $q=p$. Ta lại có các trường hợp nhỏ

$(a)$  Nếu $q|p-2\Rightarrow 0\equiv {{\left( p-1 \right)}^{n}}+1\equiv 1+1\equiv 2\left( \bmod \,q \right)$ $\Rightarrow q=2$ (vô lí vì q lẻ)

$(b)$  Nếu $q=p$ . Áp dụng bổ đề số mũ đúng cơ số q ta có

$\left( p-1 \right){{v}_{p}}\left( n \right)={{v}_{p}}\left( {{n}^{p-1}} \right)\le {{v}_{p}}\left[ {{\left( p-1 \right)}^{n}}+1 \right]={{v}_{p}}\left( p-1+1 \right)+{{v}_{p}}\left( n \right)=1+{{v}_{p}}\left( n \right)$

Suy ra : $\left( p-2 \right){{v}_{p}}\left( n \right)\le 1\Rightarrow p=3$ và ${{v}_{p}}\left( n \right)=1.$

Đến đây, bài toán trở thành : Tìm n để ${{n}^{2}}|{{2}^{n}}+1$.

Nhận xét $n=1$ thỏa yêu cầu bài toán nên ta xét $n>1$. Suy ra $n$ là số lẻ, gọi $r$ là ước nguyên tố nhỏ nhất của $n$. Suy ra $r|{{2}^{n}}+1\,\,|{{2}^{2n}}-1$, mà $r|{{2}^{r-1}}-1$ nên suy ra $r|{{2}^{\left( 2n;r-1 \right)}}-1$.

Do $n$ là số lẻ và $r$ là ước nguyên tố nhỏ nhất của $n$ nên $\left( 2n;r-1 \right)=2$ nên $r=3$. Ta có đánh giá sau

$$2{{v}_{3}}\left( n \right)\le {{v}_{3}}\left( {{4}^{n}}-1 \right)={{v}_{3}}\left( 4-1 \right)+{{v}_{3}}\left( n \right)\Rightarrow {{v}_{3}}\left( n \right)\le 1\Rightarrow {{v}_{3}}\left( n \right)=1.$$ Suy ra $n=3.m$, $\left( m,n \right)=1$. Thế vào đề bài, ta được $${{m}^{2}}|{{8}^{m}}+1|{{8}^{2m}}-1.$$

Nếu $m>1$ , tương tự ta gọi $s$ là ước nguyên tố nhỏ nhất của $m.$ Suy ra $m$ là ước của ${{8}^{2}}-1=63$. Do đó $s=7$, điều này vô lí vì ${{8}^{m}}+1$ chia $7$ dư $2.$ Suy ra $m=1\Rightarrow n=3$.

Vậy $\left( n,p \right)=\left( 1,2 \right);\left( 2,2 \right);\left( 3;3 \right)$ .

Một số lưu ý chuẩn bị cho kì thi vào lớp 10: Toán chung

Năm nay TPHCM và PTNK thi vào lớp 10 ba môn chung: Toán, Văn, Anh. Cũng sắp tới ngày thi, giai đoạn này cần tập trung vào việc học tập, ôn luyện rèn luyện giải đề…để có một kì thi thành công, kết quả như ý. Nhân đây tôi cũng có một số điều muốn chia sẻ trong giai đoạn nước rút này.

Đại số

  • Ôn tập rút gọn các biểu thức, chú ý các hằng đẳng thức, chú ý sai dấu.
  • Phương trình: Xem lại các giải pt vô tỷ, điều kiện, phương pháp giải, phương trình tích. Hệ phương trình xe, kĩ phương pháp thế, cộng đại số, ẩn phụ.
  • Viete chú ý các xử lí biểu thức chứa biết đối xứng hay không đối xứng, điều kiện có nghiệm.

Hình học

  • Nắm chắc hệ thức lượng, tỉ số lượng giác, công thức diện tích, chú ý các bài tính toán độ dài.
  • Hình học chú ý các các tính chất tiếp tuyến, phương pháp chứng minh tiếp tuyến, tính chất 2 tiếp tuyến cắt nhau và các bài toán liên quan.
  • Phương pháp chứng minh tứ giác nội tiếp,  các loại góc, các tính chất quen thuộc.

Toán thực tế

  • Chú ý các bài toán về phần trăm, giá cả, năng suất.
  • Hỏi cái nào, đặt ẩn cái đó, tìm mối tương quan giữa các đại lượng để lập phương trình hay hệ phương trình.
  • Nắm chắc các kĩ thuật giải pt, hpt, chú ý điều kiện của  ẩn.
  • Chú ý các công thức tính chu vi, diện tích, thể tích các hình quen thuộc.

Chúc các em có mùa thi thành công!

Phương pháp ánh xạ trong các bài toán tổ hợp

Bài viết dựa vào bài giảng của NCS. Vương Trung Dũng (trường PTNK-ĐHQG) trong lớp chuyên đề 10 toán tại Star Education.

 

Ánh xạ là một khái niệm khó và quan trọng trong toán học, có vai trò trong hầu hết các lĩnh vực toán học. Trong bài giảng này ta xét ứng dụng của ánh xạ trong các bài toán tổ hợp.

Ánh xạ và một số tính chất

Định nghĩa. Cho hai tập hợp $X$ và $Y$ khác rỗng. Một ánh xạ $f$ từ tập $X$ đến tập $Y$ là một quy tắc đặt tương ứng mỗi phần tử $x$ của $X$ với một và chỉ một phần tử $y$ của $Y$, kí hiệu là $y = f(x)$.

Kí hiệu $f: X \longrightarrow Y$.

$f(x) = y$.

Các khái niệm: Cho ánh xạ $f: X \longrightarrow Y$.

  • $y = f(x)$ được gọi là ảnh của $x$.
  • $f(X) = \{f(x)|x \in X\}$ tập ảnh của $f$.
  • $y \in Y$ thì $f^-1(y) = \{x\in X|f(x) = y\}$ được gọi là tạo ảnh của $y$.

Đơn ánh, toàn ánh, song ánh

  1. Ánh xạ $f: X \longrightarrow Y$ được gọi là đơn ánh nếu với $a,b \in X$ mà $a \ne b$ thì $f(a) \ne f(b)$. Nói một cách khác ánh xạ $f$ là một đơn ánh nếu và chỉ nếu với $a, b \in X$ mà $f(a)=f(b)$ thì suy ra $a=b.$
  2. Ánh xạ $f:X \longrightarrow Y$ được gọi là toàn ánh nếu với mỗi phần tử $y \in Y$ đều tồn tại một phần tử $x \in X$ sao cho $f(x)=y$. Như vậy $f$ là toàn ánh nếu và chỉ nếu $f(X)=Y$.
  3. Ánh xạ $f: X \longrightarrow Y$ được gọi là song ánh giữa $X$ và $Y$ nếu và chỉ nếu nó vừa là đơn ánh và vừa là toàn ánh. Như vậy $f$ là song ánh nếu với mỗi $y \in Y$ tồn tại duy nhất một phần tử $x \in X$ sao cho $y=f(x).$

Ánh xạ và tập hợp

Cho $A = { 1, 2,\cdots, n }$. $X$ là tập khác rỗng. Nếu có một song ánh từ tập $X$ đến $A$ thì ta nói $X$ có $n$ phần tử và kí hiệu $|X| = n$.

Nếu không tồn tại song ánh thì ta nói $X$ có vô hạn phần tử.

  • Nếu tồn tại một song ánh từ $X$ vào tập các số tự nhiên, ta nói $X$ có lực lượng đếm được, ngược lại thì ta nó $X$ có lực lượng không đếm được.
  • Các tập số tự nhiên, số nguyên và hữu tỷ là các tập có lực lượng đếm được.

Định lý Cho $A$ và $B$ là hai tập hợp hữu hạn.

  • Nếu có một đơn ánh $f: X \longrightarrow Y$ thì $|X| \le |Y|.$
  • Nếu có một toàn ánh $f: X \longrightarrow Y$ thì $|X| \ge |Y|.$
  • Nếu có một song ánh $f: X \longrightarrow Y$ thì $|X| = |Y|.$

Ánh xạ và các bài toán đếm, đẳng thức tổ hợp.

Ví dụ 1. Cho tập $X_n = {1, 2, \cdots, n}$, gọi $P(X_n)$ là tập các tập con của $X_n$, và $S_n$ là tập các dãy nhị phân có độ dài $n$. Tìm một song ánh từ $P(X_n)$ vào $S_n$, suy ra số tập con của $X_n$.

Gợi ý

Định nghĩa một ánh xạ $f: P(X_n) \longrightarrow S_n$ như sau:
Với mỗi $S \in P(X_n)$ (tức là $S \subset X_n$) ta đặt $$ f(S)=y_1y_2 \dots y_n$$
trong đó
$$y_i=\begin{cases}
1, y_i \in S&\\
0, y_i \notin S.&
\end{cases}
$$
Ví dụ , nếu $X=\{1; 2; 3; 4; 5\}, S_1=\{4\}, S_2=\{2; 3; 5\}$ thì $f(S_1)=00010, f(S_2)=01101, f(\emptyset)=00000, f(X)=11111$ .
Dễ dàng kiểm tra đây là một song ánh từ $P(X)$ vào $Y$.
Do đó theo nguyên lý song ánh ta có $|P(X)|=|Y|=2^n$.

Ví dụ 2. Hãy tính trung bình cộng của tất cả các số N gồm 2014 chữ số thỏa mãn N chia hết cho 9 và các chữ số của N được lập từ $X={1,2,…,8}$

Gợi ý

Gọi M là tập các số thỏa yêu cầu đề bài.

Ta xây dựng một ánh xạ đi từ M đến M như sau: Với mỗi $N=\overline{a_1a_2…a_{2014}} \in M$ dặt $f(N)=\overline{b_1,b_2,…,b_{2014}}$ với $b_i=9-a_i$ với mọi $i=1,2,…,2014$. Vì $N+f(N)=99…9$ (2014 số 9) chia hết cho 9 và N chia hết cho 9 nên suy ra $f(N)$ cũng chia hết cho 9. Do đó $f$ là một ánh xạ đi từ M vào M. Hơn nữa dễ thấy $f$ là một song ánh. Từ đó suy ra $$ 2\sum_{N \in M}N=\sum_{N \in M}(N+f(N))=|M|.99…9 .$$ Vậy trung bình cộng của các số trong M là $99…9:2.$

Ví dụ 3. Cho tập S gồm tất cả các số nguyên dương trong đoạn $[1,2,…,2002]$. Gọi T là tập hợp tất cả các tập con khác rỗng của S. Với mỗi X thuộc T ký hiệu m(X) là trung bình cộng các phần tử thuộc X. Tính $$ m=\frac{\sum_{X \in T}m(X)}{|T|}. $$

Gợi ý

Xây dựng song ánh $f: T \longrightarrow T$ như sau: với mọi $X \in T $ đặt tương ứng $f(X)=\{2003-x: x \in X\}$.\\
Khi đó $m(X)+m(f(X))=2003$. Do đó $$2 \sum m(X)=\sum (m(X)+m( f(X)))=|T|.2003 \Rightarrow m=\dfrac{\sum m(X)}{|T|}=\dfrac{2003}{2}$$

Ví dụ 4.  Cho $X={1,2,…,n}$. Có bao nhiêu tập con $k$ phần tử của X sao cho trong mỗi tập con không chứa 2 số nguyên liên tiếp.

Gợi ý

Gọi A là tập tất cả các tập con $k $ phần tử của X mà trong mỗi tập không chứa 2 số nguyên liên tiếp và B là tập tất cả các tập con của tập $Y=\{1,2,…, n-(k-1) \}$. Ta xây dựng song ánh từ A đến B như sau: Lấy $S=\{s_1,s_2,…,s_k \} \in A$ (không mất tổng quát có thể giả sử $s_1<s_2<…<s_k$) đặt tương ứng với $f(S)=\{s_1, s_2-1, s_3-2,…, s_k-(k-1) \}$. Dễ chứng minh đây là một song ánh. Từ đó có $C^k_{n-k+1}$ tập thoả yêu cầu đề bài.

Bài tập rèn luyện 

Bài 1. Cho $X={ 1,2,..,n}$. Một tập con $S={s_1,s_2,…,s_k }$ của X ($s_1<s_2<…<s_k$) được gọi là \textit{m- tách được} $(m \in \mathbb{N})$ nếu $s_i-s_{i-1} \ge m; i=1,2,…,k$. Có bao nhiêu tập con m- tách được gồm $k$ phần tử của X, trong đó $0 \le k \le n-(m-1)(k-1)$.

Bài 2. Cho $X={1,2,…,n}$, với mỗi tập con khác rỗng $A_i={a_1,a_2,…,a_i }$ (không mất tổng quát giả sử $a_1>a_2>…>a_i$) ta định nghĩa \textit{tổng hỗn tạp} của $A_i$ là số $m(A_i)=a_1-a_2+a_3-… \pm a_i$. Tính $\sum \limits_{A_i \subset X} m(A_i)$.

Bài 3. Cho số nguyên dương $n$ và $d$ là một ước dương của $n$. Gọi S là tập tất cả những bộ $(x_1,x_2,…,x_n)$ nguyên dương thỏa $0 \le x_1 \le x_2 \le… \le x_n \le n$ và $d| x_1+x_2+…+x_n$. Chứng minh rằng có đúng một nửa các phần tử của S có tính chất $x_n=n$.

Bài 4. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 5. Cho các số tự nhiên $k, n, m$ thỏa điều kiện $1<k \le n, m>1$. Hỏi có bao nhiêu chỉnh hợp chập $k: (a_1,a_2,…,a_k)$ của $n$ số tự nhiên đầu tiên mà mỗi chỉnh hợp đều thỏa mãn ít nhất một trong hai điều kiện sau:

i) Tồn tại $i, j \in {1,2,…,k}$ sao cho $i < j$ và $a_i>a_j$.

ii) Tồn tại $i \in {1,2,…,k}$ sao cho $a_i-i$ không chia hết cho $m$.

Bài 6. Cho các số nguyên dương $n, k, p$ với $k \ge 2$ và $k(p+1) \le n.$ Cho $n$ điểm phân biệt cùng nằm trên một đường tròn. Tô tất cả $n$ điểm đó bởi hai màu xanh, đỏ (mỗi điểm được tô bởi một màu) sao cho có đúng $k$ điểm được tô bởi màu xanh và trên mỗi cung tròn mà hai đầu mút là hai điểm màu xanh liên tiếp (tính theo chiều quay kim đồng hồ) đều có ít nhất $p$ điểm được tô màu đỏ. Hỏi có tất cả bao nhiêu cách tô khác nhau?

Bài 7. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 8. Trong một hội nghị có $n$ nhà toán học. Biết rằng nếu hai nhà toán học nào đó quen nhau thì họ không quen chung thêm một người nào nữa, còn nếu hai nhà toán học này không quen nhau thì họ quen chung với đúng hai nhà toán học khác nữa. Chứng minh rằng $8n-7$ là số chính phương.

Bài 9. Trong một trại hè toán học có 40 học sinh. Biết rằng cứ 19 học sinh bất kỳ thì đều viết thư hỏi bài một học sinh khác (Nếu học sinh A viết thư hỏi bài học sinh B thì không nhất thiết học sinh B phải viết thư hỏi bài học sinh A và dĩ nhiên A cũng không viết thư hỏi chính mình). Chứng minh rằng trong trại hè này tồn tại một tập $T_0$ gồm 20 học sinh sao cho với mỗi $P \in T_0$ thì 19 người còn lại không đồng thời viết thư hỏi bài P.

Bài 10. Gọi M là số số nguyên dương trong hệ thập phân có $2n$ chữ số trong đó có $n$ chữ số 1 và $n$ chữ số 2. Gọi N là số số nguyên dương có $n$ chữ số trong hệ thập phân trong đó chỉ có các chữ số 1, 2, 3, 4 và số chữ số 1 bằng số chữ số 2. Chứng minh $|M|=|N|.$

(Hết phần 1)