Phép cộng trừ số tự nhiên

1.Tính chất của phép cộng và phép nhân

a) Giao hoán

$$a+b = b+a$$

$$a\cdot b = b\cdot a$$

b) Kết hợp

$$a+(b+c) = (a+b)+c$$

$$a\cdot (b\cdot c) = (a\cdot b) \cdot c$$

c) Tính chất phân phối của phép nhân và phép cộng

$$a \cdot (b+c) = a\cdot b + a \cdot c$$

d) Tính chất cộng với 0 và nhân với 1.

$$a + 0 = a$$

$$a \cdot 1 = a$$

2.Phép trừ 

Nếu có số tự nhiên $\mathrm{x}$ thoả mãn $\mathrm{b}+\mathrm{x}=\mathrm{a}$, ta có phép trừ $\mathrm{a}-\mathrm{b}=\mathrm{x}$ và gọi $\mathrm{x}$ là hiệu của phép trừ số $a$ cho số $\mathrm{b}$, $a$ là số bị trừ, $\mathrm{b}$ là số trừ.

Ta cũng có $$ a\cdot (b-c) = a \cdot b – a\cdot c$$

3.Phép chia 

Tương tự với $\mathrm{a}, \mathrm{b}$ là các số tự nhiên, $\mathrm{b} \neq 0$, nếu có số tự nhiên $\mathrm{x}$ thoả $\operatorname{mãn} \mathrm{bx}=\mathrm{a}$, ta có phép chia $\mathrm{a}: \mathrm{b}=\mathrm{x}$ và gọi a là số bị chia, $\mathrm{b}$ là số chia, $\mathrm{x}$ là thương của phép chia số a cho số $\mathrm{b}$.

4.Các ví dụ

Ví dụ 1. Có thể thực hiện phép tính sau như thế nào cho hợp lí?
$$
T=11 \cdot(1+3+7+9)+89 \cdot(1+3+7+9)
$$
Có thể tính nhanh tích của một số với 9 hoăc 99 như sau:
$$
\begin{aligned}
&67.9=67 \cdot(10-1)=670-67=603 \
&346.99=346 \cdot(100-1)=34600-346=34254 .
\end{aligned}
$$
Tính: 1234.9; $1234.99 .$

Giải

Ví dụ 2. Nhóm bạn Lan dự định thực hiện một kế hoạch nhỏ với số tiền cẩn có là 200000 đồng. Hiện tại các bạn đang có 80000 đổng. Các bạn thực hiện gây quỹ thêm bằng cách thu lượm và bán giấy vụn, mỗi tháng được 20000 đổng.
a) Số tiền các bạn còn thiếu là bao nhiêu?
b) Số tiền còn thiếu cần phải thực hiện gây quỹ trong mấy tháng?

Giải

Ví dụ 3. Mẹ có 30 cái bánh muốn chia đều cho 3 anh em, mỗi người có số bánh bằng nhau, hỏi mẹ có chia được không và mỗi người được bao nhiêu cái bánh.

Giải

 

5.Bài tập rèn luyện

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 15)Tính một cách hợp lí:
a) $2021+2022+2023+2024+2025+2026+2027+2028+2029$;
b) $30.40 .50 .60$
Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 15)Bình được mẹ mua cho 9 quyển vở, 5 cái bút bi và 2 cục tẩy. Giá mỗi quyển vở là 4900 đồng; giá mỗi cái bút bi là 2900 đồng; giá mỗi cục tẩy là 5000 đồng. Mẹ Bình đã mua hết bao nhiêu tiền?

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 15) Một chiếc đồng hồ đánh chuông theo giờ. Đúng 8 giờ, nó đánh 8 tiếng “boong”; đúng 9 giờ, nó đánh 9 tiếng “boong”, $\ldots$ Từ lúc đúng 8 giờ đến lúc đúng 12 giờ trưa cùng ngày, nó đánh bao nhiêu tiếng “boong”?

Bài 4. Nhà bạn Si có nuôi 20 con thỏ, ba Si làm được 4 cái chuồng để nuôi thỏ, và nhốt các con thỏ này vào chuồng sao cho mỗi chuồng có số thỏ bằng nhau, hỏi ba Si có làm được không và mỗi chuồng nhốt được bao nhiêu thỏ?

Bài 5*. Trong một đợt ôn tập có 15 ngày trước kì thi, ngày thứ nhất bạn Bảo Nguyên làm được 5 bài toán, ngày thứ hai làm được 6 bài toán, cứ tiếp tục như vậy đến ngày thứ 15.

a) Hỏi ngày thứ 15 bạn Bảo Nguyên làm được bao nhiêu bài?

b) Tổng số bài toán bạn Bảo Nguyên làm là bao nhiêu?

Tài liệu tham khảo.

CTST, Toán 6, NXB GD, Trần Nam Dũng (CB)

Tập hợp số tự nhiên

1.Tập hợp $N, N^*$.

Các số $0 ; 1 ; 2 ; 3 ; \ldots$ là các số tự nhiên. Người ta kí hiệu tập hợp các số tự nhiên là $\mathbb{N}$.
$$
\mathbb{N}=\{0 ; 1 ; 2 ; 3 ; 4 ; 5 ; \ldots\}
$$
Tập hợp các số tự nhiên khác 0 được kí hiệu là $N^*$.

$$N^* = \{1, 2, 3, \cdots, \}$$

2.Thứ tự trong tập số tự nhiên

Trong hai số tự nhiên a và b khác nhau, có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b ta viết $\mathrm{a}<\mathrm{b}$ (a nhỏ hơn b). Ta cũng nói số b lớn hơn số a và viết $\mathrm{b}>\mathrm{a}$.

Khi biểu diễn trên tia số nằm ngang có chiều mũi tên đi từ trái sang phải, nếu $\mathrm{a}<\mathrm{b}$ thì điểm a nằm bên trái điểm b.
Ta viết $\mathrm{a} \leq \mathrm{b}$ đề chi $\mathrm{a}<\mathrm{b}$ hoặc $\mathrm{a}=\mathrm{b}, \mathrm{b} \geq \mathrm{a}$ để chỉ $\mathrm{b}>$ a hoặc $\mathrm{b}=\mathrm{a}$.
Mỗi số tự nhiên có một số liền sau cách nó một đơn vị.

Nếu b liền sau a thì a cũng được gọi là liền trước b.

Ví dụ 1.

a) Số liền sau số 4 là số 5, số liền trước số 4 là số 3.

b) Giữa hai số 2021 và 2022 thì không có số tự nhiên nào, tức là không có số tự nhiên nào vừa lớn hơn 2021 vừa nhỏ hơn 2022.

Chú ý.

a) Nếu $a < b$ và $b < c$ thì $a < c$.

b) Nếu $a < b$ thì $a \leq b -1$.

3.Cách ghi số tự nhiên

  • Kí hiệu $\overline{a b}$ chỉ số tự nhiên có hai chữ số, chữ số hàng chục là a $(a \neq 0)$, chữ số hàng đơn vị là b. Ta có:
    $$
    \overline{a b}=a \times 10+b
    $$
    Kí hiệu abc chi số tự nhiên có ba chữ số, chữ số hàng trăm là a $(a \neq 0)$, chữ số hàng chục là b, chữ số hàng đơn vị là c. Ta có:
    $$
    \overline{\mathrm{abc}}=\mathrm{a} \times 100+\mathrm{b} \times 10+\mathrm{c}
    $$

4.Hệ số La Mã

5. Bài tập sách giáo khoa

Bài 1. (SGK CTST Toán 6 Tập 1 – Trang 12) Chọn kí hiệu thuộc $(\in)$ hoặc không thuộc $(\notin)$ thay cho mỗi dấu $?$.
a) 15 ? $\mathbb{N}$;
b) 10,5 ? $\mathbb{N}^{*}$;
c) $\frac{7}{9}$ ? $\mathbb{N}$;
d) 100 ? $\mathbb{N}$.

Giải

Bài 2. (SGK CTST Toán 6 Tập 1 – Trang 12) Trong các khẳng định sau, khẳng định nào là đúng, khẳng định nào là sai?
a) $1999>2003$;
b) 100000 là số tự nhiên lớn nhất;
c) $5 \leq 5$;
d) Số 1 là số tự nhiên nhỏ nhất.

Giải

Bài 3. (SGK CTST Toán 6 Tập 1 – Trang 12)  Biểu diễn các số $1983 ; 2756 ; 2023$ theo mẫu $1983=1 \times 1000+9 \times 100+8 \times 10+3$.

Giải

Bài 4. Tìm các số tự nhiên sau:

a) Số liền trước số 5

b) Số liền sau số 6

c) Số liền sau số 2018.

d) Lớn hơn 2000 và nhỏ hơn 2005.

Giải

Bài 5. Tìm số tự nhiên có hai chữ số mà tổng các chữ số bằng 17.

Giải

Bài 6. Tìm số tự nhiên có ba chữ số mà tổng các chữ số bằng 2.

Giải

6. Bài tập rèn luyện

Bài 1. Tìm các số tự nhiên sau:

a) Số liền sau 2001

b) Số liền sau 221

c) Lớn hơn 14 và nhỏ hơn 20.

Bài 2. Tìm các số tự nhiên có hai chữ số sao cho khi viết theo thứ tự ngược lại thì lớn hơn số ban đầu 72 đơn vị.

Bài 3. Tìm số tự nhiên biết rằng tổng của nó và số liền sau bằng 2021.

Tài liệu tham khảo.

Bộ sách Chân Trời Sáng Tạo, Toán lớp 6, NXBGD, Trần Nam Dũng (Chủ biên)

Rút gọn căn thức – Các biểu thức số

Trong bài này ta tổng hợp các kĩ năng thực hiện các phép tính toán, khai căn, phân tích thành tích, trục căn thức ở mẫu để làm các bài toán phức tạp hơn.

Chú ý khi làm bài. Trong các bài này ta có thể rút gọn các phân thức riêng lẻ trước nếu được bằng cách phân tích thành tích, tiếp theo thì trục căn thức và rút gọn các biểu thức trong ngoặc, không nên qui đồng vì tính toán sẽ rất phức tạp.

Ví dụ 1. Rút gọn

a) $\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}$.
b) $\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}$.
c) $\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}$.
d) $\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}$.

Giải

a)  $\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\\
&=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\\
&=6+3\\
&=9
\end{aligned}$
b) $\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\\
&=\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{-\left(1-\sqrt{3}\right)}\\
&=-\sqrt{2}-\sqrt{2}\\
&=-2\sqrt{2}
\end{aligned}$
c) $\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\\
&=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\\
&=\sqrt{5}+\dfrac{\sqrt{5}}{2}\\
&=\dfrac{3\sqrt{5}}{2}
\end{aligned}$
d) $\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}\\
&=\dfrac{3\sqrt{2}\left(1-\sqrt{2}\right)}{-\left(1-\sqrt{2}\right)}+\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{-\left(3-\sqrt{2}\right)}\\
&=-3\sqrt{2}-2\sqrt{2}\\
&=-5\sqrt{2}
\end{aligned}$

Ví dụ 2. Rút gọn

a) $\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}$.
b) $\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}$.
c) $\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}$.
d) $\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}$.

Giải

a)$\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}$.
Ta có:
$\begin{aligned}
&\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}\\
&=\dfrac{6}{5-1}\left(\sqrt{5}+1\right)+\dfrac{7}{1-3}\left(1+\sqrt{3}\right)-\dfrac{2}{3-5}\left(\sqrt{3}+\sqrt{5}\right)\\
&=\dfrac{3}{2}\left(\sqrt{5}+1\right)-\dfrac{7}{2}\left(1+\sqrt{3}\right)+\sqrt{3}+\sqrt{5}\\
&=\dfrac{3\sqrt{5}}{2}+\dfrac{3}{2}-\dfrac{7}{2}-\dfrac{7\sqrt{3}}{2}+\sqrt{3}+\sqrt{5}\\
&=\dfrac{5\sqrt{5}}{2}-\dfrac{5\sqrt{3}}{2}-2\\
&=\dfrac{5}{2}\left(\sqrt{5}-\sqrt{3}\right)-2
\end{aligned}$
b) $\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}$.
Ta có:
$\begin{aligned}
&\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}\\
&=\dfrac{\sqrt{6}\left(\sqrt{2}-\sqrt{6}\right)}{2\left(\sqrt{2}-\sqrt{6}\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}+\dfrac{4}{1-7}\left(1+\sqrt{7}\right)\\
&=\dfrac{\sqrt{6}}{2}-\left(\sqrt{3}+1\right)-\dfrac{2}{3}\left(1+\sqrt{7}\right)\\
&=-\dfrac{2}{3}\sqrt{7}+\dfrac{\sqrt{6}}{2}-\sqrt{3}-\dfrac{5}{3}
\end{aligned}$
c) $\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}\\
&=\dfrac{1}{2-3}\left(\sqrt{2}+\sqrt{3}\right)-\dfrac{1}{3-5}\left(\sqrt{3}+\sqrt{5}\right)+\dfrac{1}{7-5}\left(\sqrt{7}+\sqrt{5}\right)\\
&=-\left(\sqrt{2}+\sqrt{3}\right)+\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)+\dfrac{1}{2}\left(\sqrt{7}+\sqrt{5}\right)\\
&=-\sqrt{2}-\sqrt{3}+\dfrac{1}{2}\sqrt{3}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\sqrt{7}+\dfrac{1}{2}\sqrt{5}\\
&=\dfrac{1}{2}\sqrt{7}+\sqrt{5}-\dfrac{1}{2}\sqrt{3}-\sqrt{2}
\end{aligned}$
d) $\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}$.\\
Ta có:
$\begin{aligned}
&\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\\
&=\left[\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{-\left(\sqrt{3}-1\right)}\right].\left(\sqrt{7}-\sqrt{5}\right)\\
&=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\\
&=-(7-5)\\
&=-2
\end{aligned}$

Ví dụ 3. Rút gọn

a) $\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})$.
b) $\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})$.
c) $\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}$.
d) $\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}$.

Giải

a) $\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})$.
Ta có:
$\begin{aligned}
&\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})\\
&=\left[\dfrac{12}{5-1}\left(\sqrt{5}-1\right)-\dfrac{4}{5-4}\left(\sqrt{5}-2\right)+\dfrac{20}{9-5}\left(3-\sqrt{5}\right)\right]\left(10+3\sqrt{5}\right)\\
&=\left[3\left(\sqrt{5}-1\right)-4\left(\sqrt{5}-2\right)+5\left(3-\sqrt{5}\right)\right]\left(10+3\sqrt{5}\right)\\
&=\left[3\sqrt{5}-3-4\sqrt{5}+8+15-5\sqrt{5}\right]\left(10+3\sqrt{5}\right)\\
&=\left(-6\sqrt{5}+20\right)\left(10+3\sqrt{5}\right)\\
&=2\left(10-3\sqrt{5}\right)\left(10+3\sqrt{5}\right)\\
&=2(100-45)\\
&=110
\end{aligned}$
b) $\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})$.
Ta có:
$\begin{aligned}
&\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})\\
&=\left[\dfrac{24}{7-1}\left(\sqrt{7}-1\right)+\dfrac{4}{9-7}\left(3-\sqrt{7}\right)-\dfrac{3}{7-4}\left(\sqrt{7}-2\right)\right]\left(4-\sqrt{7}\right)\\
&=\left[4\left(\sqrt{7}-1\right)+2\left(3-\sqrt{7}\right)-\left(\sqrt{7}-2\right)\right]\left(4-\sqrt{7}\right)\\
&=\left(4\sqrt{7}-4+6-2\sqrt{7}-\sqrt{7}+2\right)\left(4-\sqrt{7}\right)\\
&=\left(\sqrt{7}+4\right)\left(4-\sqrt{7}\right)\\
&=16-7
&=9
\end{aligned}$
c) $\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}$.
Ta có:
$\begin{aligned}
&\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}\\
&=\left[\dfrac{8}{3-1}\left(\sqrt{3}+1\right)-\dfrac{4}{3-1}\left(\sqrt{3}-1\right)+\dfrac{4}{5-3}\left(\sqrt{5}-\sqrt{3}\right)\right]:\left(3+\sqrt{5}\right)\\
&=\left[4\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)+2\left(\sqrt{5}-\sqrt{3}\right)\right]:\left(3+\sqrt{5}\right)\\
&=\left(4\sqrt{3}+4-2\sqrt{3}+2+2\sqrt{5}-2\sqrt{3}\right):\left(3+\sqrt{5}\right)\\
&=\left(6+2\sqrt{5}\right):\left(3+\sqrt{5}\right)\\
&=2
\end{aligned}$
d) $\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}$.\\
Ta có:
$\begin{aligned}
&\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}\\
&=\left[\dfrac{7}{2-1}\left(\sqrt{2}+1\right)+\dfrac{56}{2-16}\left(\sqrt{2}+4\right)+\dfrac{3}{3-2}\left(\sqrt{3}-\sqrt{2}\right)\right]:\left(3-\sqrt{3}\right)\\
&=\left[7\left(\sqrt{2}+1\right)-4\left(\sqrt{2}+4\right)+3\left(\sqrt{3}-\sqrt{2}\right)\right]:\left(3-\sqrt{3}\right)\\
&=\left(7\sqrt{2}+7-4\sqrt{2}-16+3\sqrt{3}-3\sqrt{2}\right):\left(3-\sqrt{3}\right)\\
&=\left(-9+3\sqrt{3}\right):\left(3-\sqrt{3}\right)\\
&=-3
\end{aligned}$

Bài tập rèn luyện

Bài 1. Rút gọn

a) $\dfrac{\sqrt{160}-\sqrt{80}}{\sqrt{8}-\sqrt{2}}-\dfrac{\sqrt{40}-\sqrt{15}}{2\sqrt{2}-\sqrt{3}}$.
b) $\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)$.
c) $\left(\dfrac{\sqrt{216}}{3}-\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\right)\dfrac{1}{\sqrt{6}}$.
d) $\left(\dfrac{\sqrt{343}}{21}-\dfrac{28+4\sqrt{7}}{\sqrt{63}+3}\right)\dfrac{\sqrt{7}}{7}$.

Bài 2. Rút gọn

a) $\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}$.
b) $\dfrac{3}{\sqrt{5}-\sqrt{2}}-\dfrac{2}{2-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}$.
c) $\dfrac{-4}{\sqrt{7}-\sqrt{5}}+\dfrac{1}{\sqrt{3}-1}+\dfrac{4-2\sqrt{5}}{\sqrt{5}-2}$.
d) $\dfrac{5}{3-\sqrt{7}}-\dfrac{2}{\sqrt{2}+\sqrt{3}}+\dfrac{-1}{\sqrt{2}-1}$.

Bài 3. Rút gọn

a) $\dfrac{(\sqrt{3}-\sqrt{5})^2+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}$.
b) $(\sqrt{5}+2)\dfrac{(\sqrt{5}+2)^2-8\sqrt{5}}{\sqrt{5}-2}$.
c) $\dfrac{(\sqrt{2}+1)^2-4\sqrt{2}}{\sqrt{2}-1}\cdot(\sqrt{2}+1)$.
d) $\dfrac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{(\sqrt{3}+\sqrt{2})^2}\cdot(\sqrt{3}-\sqrt{2})$.

Căn bậc hai – Tính chất cơ bản phần 2

Bài 1. Khai triển các biểu thức sau

a) $(\sqrt{x}-1)^2+(\sqrt{x}+1)^2$.
b) $(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$.
c) $(2\sqrt{x}-3)^2+3(\sqrt{x}-1)(\sqrt{x}+2)$.
d) $(3-\sqrt{x})(3+\sqrt{x})+(\sqrt{x}-2)^2$.

Giải

a) $(\sqrt{x}-1)^2+(\sqrt{x}+1)^2$

$= {{(\sqrt{x}-1)}^2}+{{(\sqrt{x}+1)}^2}$

$=x-2\sqrt{x}+1+x+2\sqrt{x}+1=2x+2$.
b) $(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$
$=(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$

$=x-\sqrt{x}-6-2x+3\sqrt{x}+5$

$=-x+2\sqrt{x}-1=-{{\left(\sqrt{x}-1\right)}^2}$.
c) $(2\sqrt{x}-3)^2+3(\sqrt{x}-1)(\sqrt{x}+2)$
$={{(2\sqrt{x}-3)}^2}+3(\sqrt{x}-1)(\sqrt{x}+2)$

$=4x-12\sqrt{x}+9+3\left(x+\sqrt{x}-2\right)$

$=7x-9\sqrt{x}+3$.
d) $(3-\sqrt{x})(3+\sqrt{x})+(\sqrt{x}-2)^2$

$=(3-\sqrt{x})(3+\sqrt{x})+{{(\sqrt{x}-2)}^2}$

$=9-x+x-4\sqrt{x}+4$

$=13-4\sqrt{x}$.

Bài 2. Rút gọn các biểu thức sau:
a) $A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$. $(x \geq 0)$
b) $B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{a b})(\sqrt{a}-1)$. ($a, b \geq 0$)

Giải

a) $A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$
$A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$
$A=x+3\sqrt{x}+10-\left(x+4\sqrt{x}+3\right)-3x-4\sqrt{x}-5$
$A=x+3\sqrt{x}+10-x-4\sqrt{x}-3-3x-4\sqrt{x}-5$
$A=-3x-5\sqrt{x}+2$

b) $B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{a b})(\sqrt{a}-1)$
$B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{ab})(\sqrt{a}-1)$
$B=2a+2\sqrt{a}+\sqrt{ab}+\sqrt{b}-\left(2\sqrt{a}-2-a \sqrt{b}+\sqrt{ab}\right)$

$B=2a+2\sqrt{a}+\sqrt{ab}+\sqrt{b}-2\sqrt{a}+2+a \sqrt{b}-\sqrt{ab}$
$B=2a+\sqrt{b}+2+a \sqrt{b}$

Bài 3. Phân tích các đa thức sau thành nhân tử:

a) $A=x-\sqrt{x}-2$.
b) $B=x-y+3\sqrt{x}-3\sqrt{y}$.
c) $C=\sqrt{a b}+2\sqrt{a}-\sqrt{b}-2$.
d) $D=x\sqrt{x}+x-2\sqrt{x}$.

Giải

a)  $A=x-\sqrt{x}-2={{\left(\sqrt{x}\right)}^2}-1 \left(\sqrt{x}+1\right)$

$=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)$

$=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)$.
b) $B=x-y+3\sqrt{x}-3\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}-\sqrt{y}\right)$

$=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+3\right)$.

c)$C=\sqrt{ab}+2\sqrt{a}-\sqrt{b}-2=\sqrt{a}.\sqrt{b}+2\sqrt{a}-\sqrt{b}-2$

$=\sqrt{b}\left(\sqrt{a}-1\right)+2\left(\sqrt{a}-1\right)$

$=\left(\sqrt{a}-1\right)\left(\sqrt{b}+2\right)$.
d)
$D=x\sqrt{x}+x-2\sqrt{x}$
$=x\sqrt{x}-\sqrt{x}+x-\sqrt{x}$
$=\sqrt{x}(x-1)+\sqrt{x}\left(\sqrt{x}-1\right)$
$=\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)$
$=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)$

Bài 4. Rút gọn các biểu thức sau:
a) $\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}$.
b) $\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}$.
c) $\dfrac{x\sqrt{x}+8}{\sqrt{x}+2}-x-4$.
d) $\dfrac{x-4\sqrt{x}-5}{\sqrt{x}+1}$.

Giải

a)Ta có $\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{{{\left(\sqrt{x}-1\right)}^2}}{\left(\sqrt{x}-1\right)}=\sqrt{x}-1$.
b) Ta có $\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}=\dfrac{{{\left(\sqrt{x}-2\right)}^2}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}$.
c) Ta có $\dfrac{x\sqrt{x}+8}{\sqrt{x}+2}-x-4=\dfrac{x\sqrt{x}+8-x\sqrt{x}-2\sqrt{x}-4\sqrt{x}-8}{\sqrt{x}+2}=\dfrac{-6\sqrt{x}}{\sqrt{x}+2}$.
d) Ta có $\dfrac{x-4\sqrt{x}-5}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\sqrt{x}-5$.

Bài tập rèn luyện

Bài 1. Khai triển

a) $(\sqrt{a}+2)^2 – (\sqrt(a)-1)^2$.

b) $\sqrt{b}(\sqrt{b}+1)^2 – 2b(\sqrt{b}+3)$.

c) $(\sqrt{x}-1)(\sqrt{y}+4)- 2(2\sqrt{x}+1)(2-\sqrt{y})$.

d) $(\sqrt{x}-1)^3 – 3(\sqrt{x}+2)(\sqrt{x}-1) – 2x(\sqrt{x}-1)$.

Bài 2. Cho $x = \sqrt{3} – \sqrt{2}$.
a) Tính giá trị của biểu thức $A = x^2 -4x+1$.
b) Tính giá trị của biểu thức $B = x^4 -x^2+1$.
Bài 3. Rút gọn các biểu thức sau:
a) $\dfrac{{a\sqrt a – 1}}{{\sqrt a – 1}} – \sqrt a $
b) $\dfrac{{x\sqrt x + 8}}{{\sqrt x + 2}} – 2\sqrt x $
Bài 4. Rút gọn các biểu thức sau:

a)  $\dfrac{{a – 1}}{{\sqrt a + 1}} + \dfrac{{4 – a}}{{\sqrt a + 2}}$.
b) $\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{x-5\sqrt{x}+4}{\sqrt{x}-1}$.

 

Căn bậc hai – Tính chất cơ bản

Định lý 1. Với mọi $A$ ta có hằng đẳng thức $\sqrt{A^2} = |A|$

Tính chất 1. Cho $A, B$ là các số không âm. Khi đó ta có các đẳng thức sau:

a) $\sqrt{AB} = \sqrt{A} \sqrt{B}$.
b) $\sqrt{\dfrac{A}{B}} = \dfrac{\sqrt{A}}{\sqrt{B}}$ ($B > 0$)
c) $\sqrt{A^2B}= |A|\sqrt{B}$

Các ví dụ.

Ví dụ 1. Viết về dạng $A\sqrt{B}$ các biểu thức sau:
a) $3 \sqrt{8}- 4\sqrt{18} + 5\sqrt{32} – \sqrt{50}$
b) $\sqrt{125} – 2\sqrt{20} -3\sqrt{80} + 4\sqrt{45}$
c) $5\sqrt{48} – 4\sqrt{27} – 2\sqrt{75} + \sqrt{108}$

Giải

Ví dụ 2. Khai căn các biểu thức sau:
a)  $\sqrt{(\sqrt{2}-1)^2}$
b) $\sqrt{(\sqrt{3}-2)^2}$
c) $\sqrt{(\sqrt{9}-2\sqrt{2})^2}$

Ví dụ 3. Thực hiện các phép toán sau, đưa về dạng $A + B\sqrt{C}$
a)  $(1+\sqrt{2})^2$
b) $(3-\sqrt{2})^2 + (4+\sqrt{8})^2$.
c) $(1+\sqrt{3})(4-\sqrt{3})^2$.
d) $(2-\sqrt{3})^3(1+\sqrt{27})$

Ví dụ 4. Cho $x =1+ \sqrt{2}$.
a)  Tính $x^2 – 2x + 3$.
b) Tính $x^3 – 3x$.
c) Tính $(x^3-2x^2-x+2)^{2021}$.

Bài tập rèn luyện.

Bài 1. Rút gọn các biểu thức sau:
a)$2\sqrt{24} – 2\sqrt{54} + 3\sqrt{6}- \sqrt{150}$
b) $2\sqrt{28} + 2\sqrt{63} – 3\sqrt{175}+ \sqrt{112}$
c) $10\sqrt{28} + 2\sqrt{275} – 3\sqrt{343} – \dfrac{3}{2}\sqrt{396}$
d)$\dfrac{3}{2} \sqrt{6} + 2 \sqrt{\dfrac{2}{3}} -4\sqrt{\dfrac{3}{2}}$

Bài 2.  So sánh
a) $1+\sqrt{3}$ và $2\sqrt{2}$
b) $\sqrt{2016}+\sqrt{2018}$ và $2\sqrt{2017}$
c) $\sqrt{2015}-\sqrt{2014}$ và $\sqrt{2014} -\sqrt{2013}$
d) $\sqrt{1009}+\sqrt{1008}$ và $\sqrt{2017}$

Bài 3.  Thực hiện phép tính và rút gọn:
a) $(3-\sqrt{2})(7 +3\sqrt{8}) – 15\sqrt{2}$.
b) $(3-\sqrt{5})^2(3+\sqrt{5}) + (1+\sqrt{5})(1-\sqrt{5})$.
c) $(3-\sqrt{2})^3 + (5-\sqrt{2})(6+2\sqrt{2})$.
d) $(4+\sqrt{27})(2-\sqrt{3}) + (1+\sqrt{3})^3$.

Bài 4.  Cho $a = \sqrt{5} – 1$.
a)Tính $a^2 + 4a$.
b) Chứng minh $a^2 + 2a – 4 = 0$.
c) Tính giá trị của biểu thức $(a^3+2a^2-4a+2)^{10}$.
d) Chứng minh $1 < a < 2$.

Bài 5. Cho $x = \sqrt{3}+\sqrt{5}$.
a) Tính $x^3$.
b) Chứng minh $x^4-16x^2 + 4 = 0$.

Bài 6. Tìm $x$ biết $\sqrt{x}$ là số tự nhiên và $A = \dfrac{\sqrt{x}-4}{\sqrt{x}+1}$ là số nguyên.

Bài 7. Cho $x$ là số dương. Chứng minh rằng $$x-\sqrt{x}+1$$ là số dương.

Bài 8. Cho $a > 0$ và $4{a^2} + a\sqrt 2 – \sqrt 2 = 0$. \
Chứng minh rằng : $\dfrac{{a + 1}}{{\sqrt {{a^4} + a + 1} – {a^2}}} = \sqrt 2 $

Đáp án đề thi Toán không chuyên trường Phổ thông Năng Khiếu năm 2021

Bài 1. (1,5 điểm) Cho biểu thức: $$P=\dfrac{a^2+b\sqrt{ab}}{a+\sqrt{ab}}+\dfrac{a\sqrt{a}-3a\sqrt{b}+2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\ \ (a>b>0)$$

a) Thu gọn biểu thức $P$.

b) Chứng minh $P>0$.

Bài 2. (2 điểm)

a) Giải phương trình: $(x^2 +2x -3)\left( \sqrt{3-2x} – \sqrt{x+1}\right) =0$

b) Cho $(d): y=(m+1)x+mn$ và $(d_1): y=3x+1$. Tìm $m$, $n$ biết $(d)$ đi qua $A(0;2)$, đồng thời $(d)$ song song với $(d_1)$.

Bài 3. (1,5 điểm) Cho $(P)$, $(d)$ lần lượt là đồ thị hàm số $y=x^2$ và $y= 2x+m$.

a) Tìm $m$ sao cho $(P)$ cắt $(d)$ tại hai điểm phân biệt $A(x_1;y_1)$, $B(x_2;y_2)$.

b) Tìm $m$ sao cho $(x_1-x_2)^2 + (y_1-y_2)^2 =5$.

Bài 4. (2 điểm)

a) Công ty viễn thông gói cước được tính như sau:

  • Gói I: $1800$ đồng/phút cho $60$ phút đầu tiên; $1500$ đồng/phút cho $60$ phút tiếp theo và $1000$ đồng/phút cho thời gian còn lại.
  • Gói II: $2000$ đồng/phút cho $30$ phút đầu tiên; $1800$ đồng/ phút cho $30$ phút tiếp theo; $1200$ đồng/phút cho $30$ phút tiếp theo nữa và $800$ đồng/phút cho thời gian còn lại.

Sau khi cân nhắc thì bác An chọn gói II vì sẽ tiết kiện được $95000$ đồng so với gói I. Hỏi trung bình bác An gọi bao nhiêu phút một tháng?

b) Cho $\triangle ABC$ có $AB=3$, $AC=4$, $BC=5$. $BD$ là tia phân giác của $\angle ABC$. Tính $BD$?

Bài 5. (3 điểm) Cho $\triangle ABC$ nhọn $(AB<AC)$ nội tiếp đường tròn $(T)$ có tâm $O$, bán kính $R$, $BC=R\sqrt{3}$. Tiếp tuyến tại $B$, $C$ của $(T)$ cắt nhau tại $P$. Cát tuyến $PA$ cắt $(T)$ tại $D$ (khác $A$). Đường thẳng $OP$ cắt $BC$ tại $H$.

a) Chứng minh $\triangle PBC$ đều. Tính $PA\cdot PD$ theo $R$.

b) $AH$ cắt $(T)$ tại $E$ (khác $A$). Chứng minh $HA \cdot HE = HO \cdot HP$ và $PD = PE$.

c) Trên $AB$ lấy điểm $I$ thỏa $AI =AC$, trên $AC$ lấy điểm $J$ thỏa $AJ = AB$. Đường thẳng vuông góc với $AB$ tại $I$ và đường thẳng vuông góc với $AC$ tại $J$ cắt nhau ở $K$. Chứng minh $IJ=BC$ và $AK \bot BC$. Tính $PK$ theo $R$.

 

— HẾT —


LỜI GIẢI

Bài 1.

a) Ta có $a>b>0$ nên

$P = \dfrac{{{a^2} + b\sqrt {ab} }}{{a + \sqrt {ab} }} + \dfrac{{a\sqrt a – 3a\sqrt b + 2b\sqrt a }}{{\sqrt a – \sqrt b }}$

$= \dfrac{{{{\left( {\sqrt a } \right)}^3} + {{\left( {\sqrt b } \right)}^3}}}{{\sqrt a + \sqrt b }} + \dfrac{{\left( {\sqrt a – \sqrt b } \right)\left( {a – 2\sqrt {ab} } \right)}}{{\sqrt a – \sqrt b }}$

$= a – \sqrt {ab} + b + a – 2\sqrt {ab} = 2a – 3\sqrt {ab} + b.$

(1đ)

b) Ta có $a>b>0$ nên $\sqrt{a}>\sqrt{b}$, do đó

$P=2a-3\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)\left(2\sqrt{a}-\sqrt{b}\right)>0. $

(0,5đ)

Bài 2.

a) $(x^{2}+2x-3)(\sqrt{3-2x}-\sqrt{x+1})=0 \quad (*)$

Điều kiện: $\left\{ \begin{array}{l} 3-2x\geq 0 \\ x+1\geq 0 \end{array} \right. \Leftrightarrow -1\leq x\leq \dfrac{3}{2}$

(0,25đ)

$(*) \Leftrightarrow (x -1)(x+3)(\sqrt{3-2x}-\sqrt{x+1})=0$

$\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x – 1=0}\\ {x+3=0}\\ {3-2x=x+1} \end{array}} \right.$

(0,25đ)

$\Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x =1 \ \ \ (n)}\\ {x=-3 \ (l)}\\ {x=\dfrac{2}{3}\ \ \ (l)} \end{array}} \right.$

(0,25đ)

Vậy $S=\left\{ 1; \dfrac{2}{3}\right\}$

(0,25đ)

b) $(d) // (d_{1})\Leftrightarrow \left\{ \begin{array}{l} m+1=3 \\ m.n\neq 1 \end{array} \right. $ $\Leftrightarrow \left\{ \begin{array}{l} m=2 \\ n\neq \dfrac{1}{2} \end{array} \right. $

(0,5đ)

Vì $A(0;2)\in (d): y=3x+2n\Leftrightarrow 2=3.0+2n\Leftrightarrow n=1$ (n)

(0,5 đ)

Vậy $m=2$, $n=1$

Bài 3.

a) Phương trình hoành độ giao điểm của $ (P) $ và $ (d) $

$ x^2=2x+m \Leftrightarrow x^2-2x-m=0 \quad (1)$

(0,25đ)

$ (P) $ cắt $ (d) $ tại 2 điểm phân biệt $ A, B \Leftrightarrow $ $ (1) $ có $2$ nghiệm phân biệt

$ \Leftrightarrow $ $ \Delta’>0 $ $ \Leftrightarrow $ $ 1+m>0 $

$ \Leftrightarrow m>-1 $ $(*)$

(0,25đ)

Vậy $m>-1$ thì $(P)$ cắt $(d)$ tại hai điểm phân biệt.

b) Với điều kiện $(*)$ theo Viet ta có: $ S=x_1+x_2=2 $, $ P=x_1\cdot x_2=-m $

(0,25đ)

Ta có: $A(x_1;y_1)\in (d) \Leftrightarrow y_1 = 2x_1+m$; $B(x_2;y_2)\in (d) \Leftrightarrow y_2=2x_2+m$

Ta có:

$ (x_1-x_2)^2+(y_1-y_2)^2=5$

$ \Leftrightarrow (x_1-x_2)^2+(2x_1-2x_2)^2=5$

(0,25đ)

$ \Leftrightarrow (x_1-x_2)^2+4(x_1-x_2)^2=5$

$ \Leftrightarrow (x_1-x_2)^2=1\Leftrightarrow (x_1+x_2)^2-4x_1x_2=1$

$ \Leftrightarrow 4+4m=1 \Leftrightarrow m=\dfrac{-3}{4}$ (thỏa $(*)$)

(0,5đ)

Vậy $m=-\dfrac{3}{4}$

Bài 4.

a) Giả sử thời gian gọi trung bình mỗi tháng của bác An là $t$ (phút, $t>0$).

Gọi $A(x)$, $B(x)$ lần lượt là cước phí khi gọi $x$ phút tương ứng với gói cước I và gói cước II, theo đề bài ta có $A(t)-B(t)=95000$ (đồng).

Ta có bảng sau:

Vậy trung bình mỗi tháng bác An gọi $475$ phút.

(1đ)

b) Ta có: $3^2 + 4^2 = 5^2$ nên $AB^2 + AC^2 = BC^2$

Theo định lý Pythagore đảo, tam giác $ABC$ vuông tại $A$.

(0,25đ)

Theo tính chất đường phân giác: $\dfrac{DC}{BC} = \dfrac{DA}{BA}$.

Suy ra $\dfrac{DC}{BC} = \dfrac{DA}{BA} = \dfrac{DC + DA}{BC + BA} = \dfrac{AC}{BA + BC} = \dfrac{1}{2} \Rightarrow AD = \dfrac{1}{2} BA = \dfrac{3}{2}$.

(0,5đ)

Tam giác $ABD$ vuông tại $A$ nên: $BD^2 = AD^2 + AB^2 = \dfrac{45}{4} \Rightarrow BD =\dfrac{3\sqrt{5}}{2}$.

(0,25đ)

Bài 5.

a)

  • Ta có: $OB = OC$, $PB = PC$ suy ra $PO$ là đường trung trực của $BC$

nên $OP \bot BC$ và $H$ là trung điểm $BC$.

$\sin \angle HOC = \dfrac{HC}{OC}= \dfrac{\sqrt{3}}{2} \Rightarrow \angle HOC = 60^\circ \Rightarrow \angle HCP = \angle HOC =60^\circ $

$\triangle PBC$ có $PB = PC$ và $\angle BCP =60^\circ $ suy ra $\triangle PBC$ đều

(0,5đ)

  •  Xét $\triangle PBD$ và $\triangle PAB$ có $\angle BPD$ chung, $\angle PBD = \angle PAB$

$\Rightarrow \triangle PBD \backsim \triangle PAB$ (g.g)

$\Rightarrow \dfrac{PB}{PA}= \dfrac{PD}{PB}\Rightarrow PA\cdot PD = PB^2 = 3R^2$

(0,5đ)

b)

  • Xét $\triangle HAB $ và $\triangle HCE$ có $\angle AHB = \angle CHE$, $\angle HAB = \angle HCE$

$\Rightarrow \triangle HAB \backsim \triangle HCE$ (g.g) $\Rightarrow HA \cdot HE = HB \cdot HC = HB^2 = HO \cdot HP$

(0,5đ)

  •  Xét $\triangle HOA $ và $\triangle HEP$ có $\angle OHA = \angle EHP$, $\dfrac{HO}{HE} = \dfrac{HA}{HP}$

$\Rightarrow \triangle HOA \backsim \triangle HEP$ (c.g.c) $\Rightarrow \angle HOA = \angle HEP$, suy ra $AOEP$ là tứ giác nội tiếp.

Suy ra $\angle HPE = \angle HPD$ (chắn hai cung $OE$ và $OA$ bằng nhau)  $(1)$

Lại có $PA \cdot PD = PB^2 = PH \cdot PO \Rightarrow \dfrac{PD}{PO} = \dfrac{PH}{PA}$

$ \Rightarrow \triangle PDH \backsim \triangle POA$ (c.g.c) suy ra $OHDA$ nội tiếp.

Mà $\angle PAO = \angle ODA =\angle AHO = \angle PHE$ nên $\angle PHD = \angle PHE$  $(2)$

Từ $(1)$ và $(2)$ suy ra $\triangle HDP = \triangle HEP$ (g.c.g), suy ra $PD=PE$.

(0,5đ)

c)

  •  Xét $\triangle ABC$ và $\triangle AJI$ có $AB=AJ$, $\angle IAC$ chung, $AC=AI$

nên $\triangle ABC = \triangle AJI \Rightarrow IJ = BC$

(0,25đ)

  •  Gọi $Q = BC \cap AK$

Ta có: $\angle AIK = \angle AJK =90^\circ $ nên $AIKJ$ nội tiếp đường tròn đường kính $AK$

$ \Rightarrow \angle AKI = \angle AJI$

Mà $\angle AJI = \angle ABC$ (do $\triangle ABC = \triangle AJI$) nên $\angle AKI = \angle ABC$.

Tứ giác $BQKI$ có $\angle AKI = \angle ABC$ nên $BQKI$ là tứ giác nội tiếp.

$\Rightarrow \angle BIK + \angle BQK = 180^\circ \Rightarrow \angle BQK = 180^\circ – \angle BIK = 180^\circ – 90^\circ =90^\circ $

Suy ra $AK \bot BC$.

(0,25đ)

  •  Vì $\triangle ABC = \triangle AIJ$ nên bán kính đường tròn ngoại tiếp của hai tam giác này bằng nhau.

Mà $AK$ là đường kính của đường tròn ngoại tiếp $\triangle AIJ$ nên $AK=2R$.

$\triangle OCP$ vuông tại $C$:

$\Rightarrow OP^2 = OC^2 + CP^2 = R^2 + \left( R\sqrt{3} \right) ^2 = 4R^2$

$\Rightarrow OP=2R \Rightarrow OP=AK$.

Ta có: $AK \bot BC$, $OP \bot BC$ nên $AK // OP$.

Tứ giác $AOPK$ có $AK // OP$ và $AK=OP$ nên $AOPK$ là hình bình hành, suy ra $PK=AO=R$.

Vậy $PK=R$.

(0,5đ)

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Nguyễn Ngọc Duy, thầy Nguyễn Tấn Phát, cô Bùi Thị Minh Phương, Châu Cẩm Triều, Lê Quốc Anh, Nguyễn Công Thành

 

Đáp án đề thi chuyên Toán thi vào trường Phổ thông Năng khiếu năm 2021

ĐỀ BÀI

Bài 1. (1.5 điểm) Cho hệ phương trình: $\left\{ \begin{array}{l}
\sqrt{x-2}+\sqrt{y-1}=2 \\
x+y=m
\end{array} \right. $

a) Giải hệ với $m=7$
b) Tìm $m$ sao cho hệ có nghiệm $(x,y)$

Bài 2. (1.5 điểm) Cho $M=\dfrac{1}{a}+ \dfrac{1}{b} + \dfrac{1}{c}$, $N=\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}$, $K=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}$

a) Chứng minh nếu $MK=\dfrac{a^2+b^2+c^2}{abc}$ thì $N=0$
b) Cho $M=K=4$, $N=1$. Tính tích $abc$.

Bài 3. (1.5 điểm) Cho dãy $n$ số thực $x_1; x_2; \ldots ; x_n$ ($n \ge 5$) thỏa: $x_1 \le x_2 \le \ldots \le x_n$ và $x_1 + x_2 + \ldots x_n =1$

a) Chứng minh nếu $x_n \ge \dfrac{1}{3}$ thì $x_1 + x_2 \le x_n$
b) Chứng minh nếu $x_n \le \dfrac{2}{3}$ thì tìm được số nguyên dương $k <n$ sao cho

$$\dfrac{1}{3}\le x_1 + x_2 + \ldots + x_k \le \dfrac{2}{3}$$

Bài 4. (1.5 điểm)

a) Tìm tất cả các số tự nhiên $n$ sao cho $(2n+1)^3 + 1 $ chia hết cho $2^{2021}$
b) Tìm tất cả số tự nhiên $n$ và số nguyên tố $p$ sao cho $\dfrac{2n+2}{p}$ và $\dfrac{4n^2+2n+1}{p}$ là các số nguyên. Chứng minh với $n$ và $p$ tìm được, các số nguyên trên không thể đồng thời là số chính phương.

Bài 5. (3 điểm)  Cho tam giác $ABC$ vuông tại $A$. Các điểm $E$, $F$ lần lượt thay đổi trên các cạnh $AB$, $AC$ sao cho $EF\parallel BC$. Gọi $D$ là giao điểm của $BF$ và $CE$, $H$ là hình chiếu của $D$ lên $EF$. Đường tròn $(I)$ đường kính $EF$ cắt $BF$, $CE$ tại $M$, $N$. ($M$ khác $F$, $N$ khác $E$)

a) Chứng minh $AD$ và đường tròn ngoại tiếp $\triangle HMN$ cùng đi qua tâm $I$ của đường tròn tâm $I$.
b) Gọi $K$, $L$ lần lượt là hình chiếu vuông góc của $E$, $F$ lên $BC$ và $P$, $Q$ tương ứng là giao điểm của $EM$, $FN$ với $BC$. Chứng minh tứ giác $AEPL$, $AFQK$ nội tiếp và $\dfrac{BP \cdot BL}{CQ \cdot CK}$ không đổi khi $E$, $F$ thay đổi.
c) Chứng minh nếu $EL$ và $FK$ cắt nhau trên đường tròn $(I)$ thì $EM$ và $FN$ cắt nhau trên đường thẳng $BC$.

Bài 6. (1 điểm) Cho $N$ tập hợp ($N \ge 6$), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái $a$, $b$, $c$, $\ldots$, $x$, $y$, $z$.

a) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 1 chữ cái, và không có chữ cái nào có mặt trong tất cả $N$ tập hợp này.  Chứng minh không có chữ cái nào có mặt trong 6 tập hợp từ $N$ tập đã cho.
b) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 2 chữ cái, và không có hai chữ cái nào cùng xuất hiện trong $N$ tập hợp này.  Hỏi trong số $N$ tập hợp đã cho, có nhiều nhất bao nhiêu tập hợp có chung đúng 2 chữ cái?

HẾT

Bình luận chung Đề bài nhìn chung vừa dài và khó, có nhiều ý, đầy đủ các phần đại số, số học, hình học và tổ hợp. Có 3 bài đại số, 1 bài số học, 1 bài hình và 1 bài tổ hợp. Đại số chiếm $50\%$ tổng số bài.

  •  Các bài học sinh chuyên toán có thể lấy điểm được ở bài 1, 2 và bài 5a.
    Các câu mức phân loại là 3a, 4a, 5b. Nếu làm chắc các câu trên nhiều khả năng sẽ đậu.
  • Những câu khó là 3b, 4b 5c, 6b, các kĩ thuật khó đối với học sinh cấp 2, đặc biệt là 3b và 4b.
  •  Đề năm nay nhìn chung khó, các bạn làm được từ 5 điểm trở lên có hy vọng đậu vào chuyên toán, còn điểm cao tầm 9, 10 tôi nghĩ là rất khó đạt, phải thực sự có năng khiếu và làm bài chắc tay mới đạt được.

Bài 1.

a) (0.75 điểm) $\left\{ \begin{array}{l}
\sqrt{x-2}+\sqrt{y-1}=2 \\
x+y=m
\end{array} \right. \quad (1) $

ĐKXĐ: $x \ge 2$, $y\ge 1$

Đặt $u = \sqrt{x-2}, v = \sqrt{y-1}$ ta có $u, v \geq 0$ và $u+v = 2, u^2+v^2=4$.

Giải ra được $u = 2, v=0$ hoặc $u = 0, v=2$. Từ đó có nghiệm $(x;y)$ là $(2;5), (6;1)$.

b) (0.75 điểm)

Đặt $u=\sqrt{x-2}$, $v= \sqrt{y-1}$ ($u, v \ge 0)$

Hệ phương trình trở thành: $\left\{ \begin{array}{l}
u+v=2 \\
u^2 + v^2 =m-3
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
u+v=2 \\
2u^2 – 4u +7-m=0 \quad (2)
\end{array} \right. $

Để hệ $(1)$ có nghiệm khi và chỉ khi $(2)$ phải có 2 nghiệm không âm, nhỏ hơn hoặc bằng 2, khi và chỉ khi:

$\left\{ \begin{array}{l}
\Delta ‘ \ge 0 \\
S \geq 0 \\
\left( x_1 -2 \right) \left( x_2 -2 \right) \geq 0 \\
S \le 4
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
m \ge 5 \\
m \le 7
\end{array} \right. $

Vậy $5 \le m \le 7$ thì hệ đã cho có nghiệm $(x,y)$

 

Bài 2.

a) $MK=\dfrac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0 .$

$M K =\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$

$+\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}$
$=\dfrac{1}{b+c}+\dfrac{b}{a(c+a)}+\dfrac{c}{a(a+b)}$

$+\dfrac{a}{b(b+c)}+\dfrac{1}{c+a}+\dfrac{c}{b(a+b)}+$

$+\dfrac{a}{c(b+c)}+\dfrac{b}{c(c+a)}+\dfrac{1}{a+b}$
$=N+\dfrac{b}{c+a}(\dfrac{1}{a}+\dfrac{1}{c})$

$+\dfrac{c}{a+b}(\dfrac{1}{a}+\dfrac{1}{b})+\dfrac{a}{b+c}(\dfrac{1}{b}+\dfrac{1}{c})$
$= N+\dfrac{b}{ac}+\dfrac{c}{ab}+\dfrac{a}{bc}= N+\dfrac{a^2+b^2+c^2}{abc}$

Mà $M K=\dfrac{a^{2}+b^{2}+c^{2}}{a b c} $

$\Rightarrow N+\dfrac{a^2+b^2+c^2}{abc}=\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$

$\Rightarrow N=0$

b) Ta có $M=K=4 ; N=1$

Theo câu a) ta được:

$MK=N+\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$
$\Rightarrow 16=1+\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$
$\Rightarrow a^{2}+b^{2}+c^{2}=15abc$
$\Rightarrow(a+b+c)^{2}-2(a b+b c+c a)=15 a b c (*)$

Ta có:

$K+3=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1=(a+b+c)N \Rightarrow 7=a+b+c$

$M=4 \Rightarrow a b+b c+c a=4 a b c$.

Thay vào $ (*) $
$\Rightarrow 7^{2}-2.4 a b c=15 a b c$
$\Rightarrow a b c=\dfrac{49}{23} .$

 

Bài 3. 

a) Có nhận xét: nếu $x_1 + x_2 +\cdots x_k > 0$ thì có ít nhất $i \in \overline{1,k}$ để $x_i > 0$ suy ra $x_{k+1}>0$.

(0.75 điểm) Giả sử rằng $ x_1+x_2>x_n\geq \dfrac{1}{3}>0 $, khi đó $x_i > 0$ với mọi $2 \leq i \leq n$.

Do $n \geq 5$ nên $x_1+\cdots x_{n-1} \geq x_1 +x_2+x_3+x_4 \leq 2(x_1+x_2) >\dfrac{2}{3} \Rightarrow x_n < \dfrac{1}{3}$ (Vô lý).

b)

  • Nếu $x_n \geq \dfrac{1}{3}$, khi đó $\dfrac{2}{3}\geq x_n \geq \dfrac{1}{3}$, Từ $x_1+x_2+\cdots x_n=1$, suy ra $$\dfrac{1}{3} \leq x_1+x_2 +\cdots +x_{n-1} = 1-x_n \geq \dfrac{2}{3}$$
  • Nếu $x_n < \dfrac{1}{3}$. Suy ra $x_i < \dfrac{1}{3}$ với mọi $i$.

    Giả sử không tồn tại $k$ thỏa đề bài, tức là không có $k$ để $$\dfrac{1}{3}\le x_1 + x_2 + \ldots + x_k \le \dfrac{2}{3} (*)$$

Ta chứng minh tồn tại $l\leq n-2$ sao cho $x_1+\cdots x_l < \dfrac{1}{3}$ và $x_1+\cdots x_{l+1} > \dfrac{2}{3}$. (**)

Thật vậy nếu không tồn tại $l$ thì $x_1 < \dfrac{1}{3}$, suy ra $x_1+x_2 < \dfrac{1}{3}$, vì ngược lại thì do (**) nên $\dfrac{1}{3} \leq x_1+x_2 \leq \dfrac{2}{3}$.(mâu thuẫn do (*)

Lý luận tương tự thì $x_1+x_2+\cdots x_{n-1} <\dfrac{1}{3}$(Mâu thuẫn).

Do đó nếu tồn tại $l$ thỏa $(**)$ thì suy ra $x_{l+1} > \dfrac{1}{3} > x_n$ (vô lý).

Vậy điều giả sử sai. Do đó tồn tại $k$ thỏa đề bài.

 

Bài 4. 

a) (0.5 điểm) ${{\left(2n+1\right)}^3+1}\; \vdots\; {{2}^{2021}}$
$\Leftrightarrow {(2n+2)(4n^{2}+2n+1)}\;\vdots\;{{2}^{2021}}$
$\Leftrightarrow {2(n+1)(4n^{2}+2n+1)}\;\vdots\;{{2}^{2021}}$
$\Leftrightarrow {(n+1)(4n^{2}+2n+1)}\; \vdots\; {{2}^{2020}}$
$\Leftrightarrow n+1\; \vdots \; 2^{2020} \quad\text{(do$ \; 4n^{2}+2n+1 \equiv 1 \; $ (mod$ \; 2$))}$
$\Leftrightarrow n=2^{2020}k-1\ (k\in \mathbb Z^+)$

b)  (1 điểm)Từ $p\mid 2n+2$ và $p\mid 4n^2+2n+1$ thì $p$ phải là số lẻ, dẫn đến $p\mid n+1$.

Do $4n+2+2n+1=4(n-1)(n+1)+2(n+1)+3$ nên $p\mid 3$, từ đó $p=3$. Kết hợp với điều kiện $p\mid n+1$ thì $n=3k-1$ với $k\in \mathbb Z^+$.
(0.5 điểm)
Ta chứng minh rằng $\dfrac{2n+2}{3}$ và $\dfrac{4n+2+2n+1}{3}$ không cùng là số chính phương.

Thật vậy, giả sử rằng ta có điều ngược lại, vì chúng đều là số nguyên dương nên:
$$\dfrac{2n+2}{3}\cdot \dfrac{4n^2+2n+1}{3}=s^2\ (s\in \mathbb Z^+)$$
Viết lại thành $(2n+1)^3=(3s-1)(3s+1)$.

Do $s$ là số chẵn nên $(3s-1,3s+1)=1$, dẫn đến việc tồn tại các số nguyên $a,b$ để $ab=2n+1$, $(a,b)=1$ và:
$$\begin{cases}
3s-1=a^3\\
3s+1=b^3
\end{cases}$$

Từ đây $2=(b-a)(b^2+ba+a^2)$.

Do $b>a$ nên $b-a\in{1,2}$.

Xét từng trường hợp và giải ra cụ thể, ta được $(a,b)=(-1,1)$.

Tuy nhiên điều này dẫn đến $s=0$, trái với việc $s>0$ từ điều đã giả sử.

Vậy giả sử ban đầu là sai hay hai số đã cho không thể cùng là số chính phương.
(0.5 điểm)

Bài 5.

a) (1 điểm) Qua $D$ vẽ đường thẳng song song $BC$ cắt $AB, AC$ tại $X, Y$.

Ta có $\dfrac{DY}{BC} = \dfrac{DF}{BF} = \dfrac{DE}{EC} = \dfrac{DX}{BC}$.

Suy ra $DX = DY$. Suy ra $D$ là trung điểm của $XY$.

Do đó $AD$ qua trung điểm $I$ của $EF$.

Ta có $DHFN, DHEM$ nội tiếp. Suy ra $\widehat{DHN} = \widehat {DFN} = \widehat {MAN}$ và
$\widehat {DHM} = \widehat {NEM} = \widehat {NAM}$.

Suy ra $\widehat {MHN} = 2 \widehat {MAN} = \widehat {MIN}$.

Suy ra tứ giác $MIHN$ nội tiếp. Ta có điều cần chứng minh.
b) (1 điểm) Ta có $\triangle BMP \backsim \triangle BLF$.
Suy ra $BM \cdot BF = BP \cdot BL$.

Mặt khác $\triangle BAF \backsim \triangle BEM$, suy ra $BE \cdot BA = BM \cdot BE$.

Do đó $BA \cdot BE = BP \cdot BL$.

Từ đó ta có tứ giác $AEPL$ nội tiếp.

Chứng minh tương tự thì tứ giác $AFQK$ nội tiếp.

Và $\dfrac{BP\cdot BL}{CQ\cdot CK} = \dfrac{BE\cdot BA}{CF \cdot CA} = \dfrac{AB^2}{AC^2}$.
c) (1 điểm) Giả sử $EL, FK$ cắt nhau tại $S$ thuộc $(I)$.

Khi đó $\angle ESF =90^\circ$ và $EFLK$ là hình vuông.

Vẽ $PU \bot AB, QV \bot AC$.

Ta có $\dfrac{BP}{BC} = \dfrac{BU}{BA} = \dfrac{BK}{BL}$
và $\dfrac{CQ}{BC} = \dfrac{CV}{CA} = \dfrac{CL}{CK}$

Đặt $x = EF = KL$

Ta cần chứng minh $\dfrac{BK}{BL} + \dfrac{CL}{CK} = 1$.

$ \Leftrightarrow BK \cdot CK + BL \cdot CL = BL \cdot CK$
$\Leftrightarrow BK(CL+x)+(BK+x)CL = (BK+x)(CL+x)\Leftrightarrow x^2= BK\cdot CL$.

Đúng vì tam giác $BEK$ và $CFL$ đồng dạng.

 

Bài 6. 

a) Giả sử có chữ cái $S$ sao cho $S$ có mặt trong 6 tập hợp từ $N$ tập đã cho, chẳng hạn 6 tập $A_1$, $A_2$, $\ldots$, $A_6$.

Vì hai tập hợp bất kỳ có chung đúng một chữ cái nên hai tập hợp bất kỳ trong 6 tập trên bao giờ cũng chỉ có chữ cái chung duy nhất là $S$.

Do đó, tổng số chữ cái có mặt trong 6 tập trên là: $1+6(5-1)=25$.

  • Nếu $N=6$ thì vô lý do $S$ không xuất hiện trong tất cả $N$ tập hợp. Do đó $N \ge 7$.
  •  Với $N \ge 7$, lấy tập $A_7$, có 2 khả năng:

    + $A_7$ chứa $S$: Vì $A_7$ và những tập $A_1$, $A_2$, $\ldots$,$A_6$ có chung đúng một chữ cái $\sigma$ nên $A_7$ còn chứa 4 phần tử không nằm trong bất kỳ tập nào thuộc $A_1$, $A_2$, $\ldots$, $A_6$.

    Suy ra tổng số chữ cái trong 7 tập trên là: $1+ 7(5-1)=29 >26$ (vô lý)
    + $A_7$ không chứa $S$.

    Khi đó $A_7$ sẽ có chung đúng 1 phần tử với mỗi tập $A_1$, $A_2$, $\ldots$, $A_6$ và 6 phần tử này phải khác nhau. (vì 6 tập $A_1$, $A_2$, $\ldots$, $A_6$ đã có chung $S$)

    Do đó $A_7$ có ít nhất 6 phần tử. (vô lý).
    Vậy không có chữ cái nào nằm trong 6 tập hợp từ $N$ tập hợp đã cho.

b)

Giả sử có nhiều nhất $k$ tập hợp có chung đúng 2 chữ cái, chẳng hạn $S$ và $T$.

Khi đó dễ thấy $k \ge N-1$ nên tồn tại một tập hợp khác chưa được kể tên trong $k$ tập hợp trên, đặt là tập hợp $X$, $X$ không chứa $\left\{ S, T \right\} $.

  •  Nếu $X$ không chứa cả $S$ lẫn $T$. $X$ giao mỗi tập trong $k$ tập kia ở 2 phần tử khác nhau nên $2k \le 5 \Rightarrow k \le 2$
  •  Nếu $X$ chỉ chứa $S$, không chứa $T$.
    Khi đó 4 phần tử còn lại giao với $k$ tập kia ở các phần tử khác nhau, mà $X$ có 5 phần tử nên $k \le 4$.
    Vậy có nhiều nhất 4 tập hợp có chung đúng 2 chữ cái.

    Để chỉ ra một ví dụ về khả năng có $4$ tập hợp, xét $N=6$. Để thuận tiện, thay các chữ cái bằng các con số từ $1$ đến $26$. Khi đó chọn bộ $N$ tập hợp như sau:
    $$\begin{cases}
    A_1=\{1,2,3,4,5\}\\\\
    A_2=\{1,2,6,7,8\}\\\\
    A_3=\{1,2,9,10,11\}\\\\
    A_4=\{1,2,12,13,14\}\\\\
    A_5=\{1,3,6,10,13\}\\\\
    A_6=\{2,3,6,9,12\}
    \end{cases}$$
    Bộ $6$ tập hợp này thỏa mãn tất cả các điều kiện của bài toán.

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Lê Phúc Lữ, thầy Nguyễn Tấn Phát, Nguyễn Tiến Hoàng, Nguyễn Công Thành, Trần Tín Nhiệm, Châu Cẩm Triều, Lê Quốc Anh.

Đề thi vào lớp 10 Chuyên Toán vào trường PTNK năm 2020

ĐỀ BÀI

Bài 1.  Cho các phương trình: $x^2+ ax +3=0$ và $x^2 +bx +5=0$ với $a$, $b$ là tham số. a) Chứng minh nếu $ab\ge 16$ thì trong hai phương trình trên có ít nhất một phương trình có nghiệm. b) Giả sử hai phương trình trên có nghiệm chung $x_0$. Tìm $a$, $b$ sao cho $|a|+|b|$ có giá trị nhỏ nhất. Bài 2. Cho phương trình: $3x^2-y^2=23^n$ với $n$ là số tự nhiên. a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x,y)$. b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x,y)$. Bài 3.  Cho đường tròn $(O)$, dây cung $BC$ không chứa tâm $O$ và điểm $A$ thay đổi trên cung lớn $BC$. Lấy các điểm $E$ và $F$ thỏa mãn: $\angle ABE =\angle CAE =\angle ACF =\angle BAF =90^\circ $. a) Chứng minh rằng $AE\cdot AC =AF \cdot AB$ và điểm $O$ là trung điểm $EF$. b) Hạ $AD$ vuông góc với $EF$ $(D\in EF)$. Chứng minh các tam giác $DAB$ và $DCA$ đồng dạng và điểm $D$ thuộc một đường tròn cố định. c) Gọi $G$ là giao điểm của $AD$ với đường tròn $(O)$ $(G\ne A)$. Chứng minh $AD$ đi qua một điểm cố định và $GB\cdot AC = GC\cdot AB$. d) Gọi $K$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh $AK$ đi qua một điểm cố định. Bài 4.  Cho số tự nhiên $a=3^{13}\cdot 5^7 \cdot 7^{20}$ a) Gọi $A$ là tập hợp các số nguyên dương $k$ sao cho $k$ là ước của $a$ và $k$ chia hết cho 105. Hỏi tập $A$ có bao nhiêu phần tử? b) Giả sử $B$ là một tập con bất kỳ của $A$ có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của $B$ sao cho tích của chúng là số chính phương. Bài 5. Cho hệ phương trình với $k$ là tham số: $\left\{ \begin{array}{l} \dfrac{x}{\sqrt{yz}}+\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{x}{z}}=k\\ \dfrac{y}{\sqrt{zx}}+\sqrt{\dfrac{y}{z}}+\sqrt{\dfrac{y}{x}}=k\\ \dfrac{z}{\sqrt{xy}}+\sqrt{\dfrac{z}{x}}+\sqrt{\dfrac{z}{y}}=k \end{array} \right. $ a) Giải hệ với $k=1$. b) Chứng minh hệ vô nghiệm với $k\ge 2$ và $k\ne 3$.

LỜI GIẢI

Bài 1.  Xét phương trình: $x^2 +ax +3=0 \quad (1)$, ta có: $\Delta_1 = a^2-12$. Xét phương trình: $x^2 +bx +5=0 \quad (2)$, ta có: $\Delta_2 = b^2-20$ Ta có: $\Delta_1 + \Delta_2 = a^2 + b^2 -32 \ge 2ab -32 \ge 0$ Vậy trong hai số $\Delta_1$ và $\Delta_2$ có ít nhất một số không âm hay một trong hai phương trình đã cho có nghiệm. Dễ thấy $x_0 \ne 0$.
  • $(1) \Leftrightarrow -a=\dfrac{x_0^2+3}{x_0} \Leftrightarrow |a|=\dfrac{x_0^2+3}{|x_0|}$ $(2) \Leftrightarrow -b=\dfrac{x_0^2+5}{x_0} \Leftrightarrow |b|=\dfrac{x_0^2+5}{|x_0|}$
  • Suy ra $|a|+|b|= 2|x_0| + \dfrac{8}{|x_0|} \ge 2\sqrt{2|x_0| \cdot \dfrac{8}{|x_0|}} =8 $
Dấu $”=”$ xảy ra khi và chỉ khi: $x_0^2=4 \Leftrightarrow \left[ \begin{array}{l} x_0 =2 \\ x_0 = -2 \end{array} \right. $ Với $x_0=2$ hoặc $x_0=-2$, lần lượt giải được $a=\dfrac{7}{2}; \, b= \dfrac{9}{2}$ hoặc \ $a=-\dfrac{7}{2}; \, b=- \dfrac{9}{2}$ Vậy giá trị nhỏ nhất của $|a|+|b|$ là 8 khi $a=\dfrac{7}{2}; \, b= \dfrac{9}{2}$ hoặc $a=-\dfrac{7}{2}; \, b=- \dfrac{9}{2}$ Bài 2. a) Ta nhận thấy 1 số chính phương $m=a^2$ khi chia cho 3 thì có số dư lần lượt là 0 hoặc 1. Nên tổng 2 số chính phương nếu chia hết cho 3 thì mỗi số đều phải chia hết cho 3. Quay lại bài toán, do $n$ chẵn nên $23^n$ và $y^2$ đều là các số chính phương mà $23^n +y^2 =3x^2\ \vdots \ 3 \Rightarrow 23^n\ \vdots \ 3$ (vô lí) Vậy $n$ chẵn thì phương trình đã cho không có nghiệm nguyên. b) Do $n$ lẻ $\Rightarrow n=2k+1$ ($k\in \mathbb{N^*}$) Xét $\left\{ \begin{array}{l} x=3\cdot 23^k\\ y=2\cdot 23^k \end{array}\right. $ $\Rightarrow 3x^2-y^2=23^{2k+1}=23^n$ Vậy phương trình có nghiệm nguyên Bài 3.
a) Ta có $\angle BAE + \angle EAF = 90^\circ$ và $\angle CAF + \angle EAF = 90^\circ$. Suy ra $\angle BAE = \angle CAF$. $\triangle ABE \backsim \triangle ACF$, suy ra $AE \cdot AC = AB \cdot AF$ Gọi $I$ là giao điểm của $BE$ và $CF$. Khi đó $AI$ là đường kính của $O$. Tứ giác $AEIF$ là hình bình hành, $O$ là trung điểm $AI$ nên là trung điểm $EF$. b) Các tứ giác $ADBE, ADFC$ nội tiếp. Khi đó $\angle ADB = \angle AEB = \angle AFC = \angle ACD$. $\angle ABD = \angle AEC = \angle IFE = \angle AFC = \angle ADC$. Suy ra $\triangle ADB \backsim \triangle ACDA$. (g.g) Ta có $\angle BDC = 2 \angle ADB = 2 \angle AEB = 2 \angle EIF = \angle BOC$. Suy ra tứ giác $BDOC$ nội tiếp. $D$ thuộc đường tròn ngoại tiếp tam giác $BOC$ cố định. c)  Gọi $S$ là giao điểm của $AD$ và $(BOC$), ta có $\angle OBS = \angle ODS = 90^\circ$. Suy ra $OS$ là đường kính của $(BOC$, do đó $S$ cố định. $AD$ qua $S$ cố định và $SB, SC$ là tiếp tuyến của $(O)$. Khi đó $\triangle SAB \backsim \triangle SGB$, suy ra $\dfrac{AB}{BG} = \dfrac{SB}{SG}$ tương tự thì $\dfrac{AC}{GC} = \dfrac{SC}{SG}$. Mà $SB = SC$, nên $\dfrac{AB}{BG} = \dfrac{AC}{CG}$, suy ra $GB \cdot AC = GC \cdot AB$. Dễ thấy $D$ là trung điểm của $AG$. d) Gọi $M$ là trung điểm của $BC$. Ta chứng minh $A, M, K$ thẳng hàng. Ta chứng minh được $\angle DAE = \angle KAF$ ($\angle 90^\circ – \angle AED$). Gọi $T$ là trung điểm $CG$. Ta có $\triangle ACD \backsim \triangle BCG$ suy ra $\triangle ABC \backsim \triangle DCG$. Từ đó ta có $\triangle ACM \backsim \triangle DCT$. Khi đó $\angle CAM = \angle CDT = \angle ACD = \angle BAD$. Mà $\angle CAM = \angle CAF + \angle FAM$ và $\angle BAD = \angle BAE + \angle EAD$. Suy ra $\angle FAM = \angle EAD = \angle FAK$. Vậy $A, M, K$ thẳng hàng. $AK$ qua trung điểm $M$ của $BC$ cố định. Bài 4.  a) $k\ \vdots \ 105 \Rightarrow k$ chia hết cho 3, 5, 7 $\Rightarrow k=3^n\cdot 5^m \cdot 7^p$ với $m$, $n$, $p$ nguyên dương $\Rightarrow $ có $13\cdot 7\cdot 20 =1820$ cách. b) Giả sử $B$ là tập hợp 9 số nguyên dương $a_i$, $i=\overline{1,9}$\ với $a_i=3^{n_i}\cdot 5^{m_i}\cdot7^{p_i}$ trong đó $0\le n_i\le 13$; $0\le m_i\le 7$ và $0\le p_i\le 20$ Do $B$ có 9 phân tử. Xét nguyên lý Dirichlet với tập các số $n_i$ thì ta có ít nhất 5 số hạng $a_i$ sao cho các số mũ $n_i$ của 3 tương ứng cùng tính chẵn lẻ. Xét tiếp nguyên lý Dirichlet 5 số này cho số mũ $m_i$ của 5 tương ứng thì ta có ít nhất 3 số mà số mũ $m_i$ cũng cùng tính chẵn lẻ. Với 3 số còn lại này ta cũng xét nguyên lý Dirichlet cho số mũ $p_i$ của 7 thì ta sẽ có ít nhất 2 số cũng tính chẵn lẻ. Do 2 số được chọn này có số mũ cùng tính chẵn lẻ với cả các số 3, 5 và 7 nên tích chúng lại sẽ là số chính phương. Bài 5.  Điều kiện $x, y, z > 0$ hoặc $x, y, z < 0$. Từ hệ ta có $x + \sqrt{xz} + \sqrt{xy} = k\sqrt{yz} (1), y + \sqrt{yz} + \sqrt{yz} = k\sqrt{xz} (2), z +\sqrt{zx}+\sqrt{zy} = k\sqrt{xy} (3)$. a) Khi $k = 1$ ta có $x + \sqrt{xz} + \sqrt{xy} = \sqrt{yz} (1), y + \sqrt{yz} + \sqrt{yz} = \sqrt{xz} (2), z +\sqrt{zx}+\sqrt{zy} = \sqrt{xy} (3)$.
  • Nếu $x, y, z > 0$ thì cộng (3) phương trình ta có vô lí.
  • Nếu $x, y, z < 0$. Cộng 3 phương trình ta có $x+y+z +\sqrt{xy}+\sqrt{xz}+\sqrt{zy} = 0 \Leftrightarrow (\sqrt{-x}-\sqrt{y})^2 +(\sqrt{-y}-\sqrt{-z})^2+(\sqrt{-x}-\sqrt{-z})^2 = 0$, do đó $x=y=z$.
  • Thử lại thấy bộ $(x,y,z)$ mà $x=y=z <0$ thỏa hệ phương trình.
b) Giả sử $k\geq 2, k = 3$ thì hệ có nghiệm $(x,y,z)$. Từ hệ ta có $x+y+z = (k-2)(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}) \geq 0, suy ra $x, y, z > 0$. Giả sử $x = \max{x,y,z}$, ta có $k = \dfrac{x+\sqrt{xy}+\sqrt{xz}}{\sqrt{yz}} \geq 3$. $k = \dfrac{z+\sqrt{xz}+\sqrt{yz}}{\sqrt{xy}} \leq 3$. Do đó $k = 3$ (vô lí). Vậy hệ vô nghiệm khi $k \geq 2 $ và $k \neq 3$.