Đề thi HK1 môn toán 11 trường chuyên Trần Đại Nghĩa năm học 2020-2021

A. PHẦN CHUNG (8 điểm)}

Bài 1 (1 điểm). Giải phương trình: $\sin x + \sin 2x + \sin 3x =0$.

Bài 2 (1 điểm). Xác định số hạng không chứa $x$ trong khai triển của $\left( 2x^2 – \dfrac{1}{x}\right) ^{15}$.

Bài 3 (1,5 điểm). Tìm số hạng đầu tiên và công sai của cấp số cộng $(u_n)$, biết rằng $\left\{ \begin{array}{l}u_2 + u_5 =11\\ u_6 + 2u_4 =27 \end{array}\right. $

Bài 4 (1 điểm). Bạn Nguyên tham gia trò chơi “Vòng quay kì diệu”: Vòng quay là một vòng tròn được chia thành $16$ ô bằng nhau (như hình vẽ), trong đó có $10$ ô được ghi chú ” Chúc mừng bạn đã nhận được $1$ phần quà” và $6$ ô được ghi chú “Chúc bạn may mắn lần sau”. Tính xác suất để sau ba lần quay bạn Nguyên được hai phần quà?

Bài 5 (3,5 điểm). Cho hình chóp $S.ABCD$ có đáy là hình bình hành. Gọi $M$, $N$, $I$ lần lượt là trung điểm của các cạnh $AB$, $CD$, $SA$.

a) Chứng minh $SC$ song song với mặt phẳng $(MNI)$.

b) Gọi $P$ là điểm thuộc cạnh $SB$. Xác định giao tuyến của mặt phẳng $(CMI)$ và mặt phẳng $(APN)$.

c) Gọi $G$, $K$ lần lượt là trọng tâm tam giác $ACD$, tam giác $SBC$. Tìm thiết diện của mặt phẳng $(IGK)$ và hình chóp $S. ABCD$.

B. PHẦN RIÊNG (2 điểm)

I. Dành cho các lớp 11CL, 11CH, 11CS, 11A1, 11A2

Bài 6a (1 điểm). Xét tính tăng, giảm của dãy số $(u_n)$ với $u_n=\dfrac{n+1}{2n^2+1}$, $n\in \mathbb{N^*}$.

Bài 7a (1 điểm). Câu lạc bộ “Kĩ năng sống” của một trường gồm $17$ học sinh lớp 10, $8$ học sinh lớp 11 và $6$ học sinh lớp 12. Ban chủ nhiệm câu lạc bộ cần chọn $9$ học sinh tham gia một hoạt động trải nghiệm do Quận đoàn tổ chức. Tính xác suất để trong các học sinh được chọn có đủ cả ba khối lớp.

II. Dành cho các lớp 11CV, 11CA1, 11CA2, 11CA3

Bài 6b (1 điểm). Xét tính tăng, giảm của dãy số $(u_n)$ với $u_n = \dfrac{2n-5}{n+4}$, $n\in \mathbb{N^*}$.

Bài 7b (1 điểm). Đội văn nghệ của một trường có $12$ học sinh nữ khối 11; $10$ học sinh nam khối 11 và $9$ học sinh nữ khối 10. Trong một tiết mục văn nghệ chào mừng kỉ niệm 20 năm thành lập trường, đội cần chọn $3$ bạn biểu diễn mở màn. Tính xác suất để trong $3$ bạn được chọn có cả nam lẫn nữ và có cả khối 10 và 11.

III. Dành cho các lớp 11TH1, 11TH2, 11TĐ

Bài 6c (1 điểm). Xét tính tăng, giảm của dãy số $(u_n)$ với $u_n = 2n^2 +n -1$, $n\in \mathbb{N^*}$.

Bài 7c (1 điểm). Câu lạc bộ Văn hóa Việt Nam của một trường có $10$ học sinh lớp 10, $11$ học sinh lớp 11 và $12$ học sinh lớp 12. Ban chủ nhiệm cần chọn $4$ bạn trong câu lạc bộ để chụp ảnh trang phục truyền thống của Việt Nam qua các thời kì. Tính xác suất để trong $4$ bạn được chọn có đủ cả ba khối.

IV. Dành cho lớp 11CT

Bài 6d (2 điểm). Tìm điều kiện của tham số $m$ để phương trình sau có nghiệm: $x+\sqrt{4-x^2}=m$.

Giải

A. PHẦN CHUNG (8 điểm)

Bài 1 (1 điểm).

$\sin x + \sin 2x + \sin 3x =0$

$\Leftrightarrow \sin x + \sin 3x + \sin 2x =0$

$\Leftrightarrow 2\sin 2x \cos x + \sin 2x =0$

$\Leftrightarrow \sin 2x \left( 2\cos x +1\right) =0$

$\Leftrightarrow \left[ \begin{array}{l} \sin 2x =0\\ \cos x = -\dfrac{1}{2} \end{array}\right. $

$\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{k\pi }{2}\\ x = \pm \dfrac{2\pi}{3} + 2k\pi \end{array}\right. $ $(k\in \mathbb{Z})$

Vậy $S=\left\{ \dfrac{k\pi }{2}; \pm \dfrac{2\pi}{3} + 2k\pi \ |\ k\in \mathbb{Z}\right\} $

Bài 2 (1 điểm).

Gọi $T_{k+1}$ là số hạng thứ $k+1$ không chứa $x$.

Ta có: $T_{k+1} = C_{15}^k \cdot \left( 2x^2\right) ^{15-k} \cdot \left( -\dfrac{1}{x}\right) ^k = C_{15}^k \cdot (-1)^k \cdot 2^{15-k} \cdot x^{30 – 3k}$

$T_{k+1}$ không chứa $x$ $\Leftrightarrow 30 -3k =0 \Leftrightarrow k = 10$

Vậy số hạng không chứa $x$ là: $T_{11} =C_{15}^{10}\cdot (-1)^{10} \cdot 2^5$

Bài 3 (1,5 điểm).

Gọi $u_1$ là số hạng đầu, $d$ là công sai.

Ta có: $\left\{ \begin{array}{l} u_2 + u_5 =11\\ u_6 + 2u_4 =27 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} u_1 + d + u_1 + 4d =11\\ u_1 + 5d + 2(u_1 + 3d) =27 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} 2u_1 + 5d =11\\ 3u_1 + 11d =27 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} d=3\\ u_1 =-2 \end{array}\right. $

Vậy $u_1 = -2$ và $d=3$.

Bài 4 (1 điểm).

Xác suất để quay vào ô trúng quà: $\dfrac{10}{16}$.

Xác suất để quay vào ô may mắn: $\dfrac{6}{16}$.

Biến cố “trúng quà” và “may mắn” là độc lập.

$\Rightarrow $ Xác suất để 2 lần quay vào ô trúng quà là: $C_3^2 \cdot \dfrac{10}{16} \cdot \dfrac{10}{16} \cdot \dfrac{6}{16} = \dfrac{225}{512}$.

Bài 5 (3,5 điểm).

a) Gọi $O$ là trung điểm của $AC$.

Ta có: $BM//CN$ và $BM = CN\Rightarrow BMNC$ là hình bình hành.

$\Rightarrow MN//BC$ $\Rightarrow NM$ đi qua trung điểm $O$ của $AC$.

$\triangle SAC$ có $OI$ là đường trung bình $\Rightarrow OI // SC$.

Ta có: $\left\{ \begin{array}{l} SC // OI\\ OI \subset (IMN) \end{array}\right. $ $\Rightarrow SC//(IMN)$

b) Ta có: $AN//CM$

Trong mặt phẳng $(SAB)$, gọi $L=AP \cap IM$ $\Rightarrow L \in (APN) \cap (CMI)$

Ta có: $\left\{ \begin{array}{l} AN \subset (APN)\\ CM \subset (CMI)\\ AN//CM\\ L\in (APN) \cap (CMI) \end{array}\right. $

$\Rightarrow Lx = (APN) \cap (CMI)$ sao cho $Lx // AN//CM$.

c) Gọi $T$ là trung điểm của $BC$.

Trong mặt phẳng $(SAT)$, gọi $X = IK \cap AT$

Trong mặt phẳng $(ABCD)$, gọi $Q = XG \cap BC$, $R= XG \cap AD$

Trong mặt phẳng $(SBC)$, gọi $U = QK \cap SB$

Từ đó suy ra thiết diện của mặt phẳng $(IGK)$ và hình chóp $S.ABCD$ là tứ giác $IUQR$.

B. PHẦN RIÊNG (2 điểm)

I. Dành cho các lớp 11CL, 11CH, 11CS, 11A1, 11A2

Bài 6a (1 điểm).

Ta có: $u_{n+1} – u_n = \dfrac{n+2}{2(n+1)^2+1} – \dfrac{n+1}{2n^2 +1}$

$= \dfrac{(n+2)(2n^2+1) – (n+1)(2n^2 +4n + 3)}{(2n^2 +1) (2n^2 + 4n +3)}$

$=\dfrac{2n^3 + 4n^2 +n +2 – (2n^3 + 6n^2 +7n + 3)}{(2n^2 +1) (2n^2 + 4n +3)}$

$= \dfrac{-2n^2 -6n -1}{(2n^2 +1) (2n^2 + 4n +3)}<0$, $\forall n \in \mathbb{N^*}$

Vậy $(u_n)$ là dãy giảm.

Bài 7a (1 điểm).

Số cách chọn 9 học sinh từ 31 học sinh: $C_{31}^9$.

Số cách chọn 9 học sinh chỉ có 1 khối: $C_{17}^9$.

Số cách chọn 9 học sinh có đúng 2 khối: $\left\{ \begin{array}{l} \text{ Khối 10, 11 }: C_{25}^9 – C_{17}^9 \\ \\ \text{ Khối 10, 12 }: C_{23}^9 – C_{17}^9\\ \\ \text{ Khối 11, 12 }: C_{14}^9 \end{array}\right. $

Xác suất để chọn có đủ cả ba khối lớp:

$$1-\dfrac{C_{17}^9 + \left( C_{25}^9 – C_{17}^9 + C_{23}^9 – C_{17}^9 + C_{14}^9\right ) }{C_{31}^9} \approx 0,859$$

II. Dành cho các lớp 11CV, 11CA1, 11CA2, 11CA3

Bài 6b (1 điểm).

Ta có: $u_{n+1} – u_n = \dfrac{2(n+1) -5}{n+5} – \dfrac{2n -5}{n+4}$

$= \dfrac{(n+4)(2n-3) – (n+5)(2n-5)}{(n+5)(n+4)}$

$= \dfrac{2n^2 + 5n -12 – (2n^2 +5n -25)}{(n+5)(n+4)}$

$=\dfrac{13}{(n+5)(n+4)} >0$, $\forall n\in \mathbb{N^*}$

Vậy $(u_n)$ là dãy tăng.

Bài 7b (1 điểm).

Số cách chọn 3 bạn trong 31 bạn: $C_{31}^3 = 4495$.

Số cách chọn 1 nữ lớp 10, 1 nữ lớp 11, 1 nam lớp 11: $C_9^1 \cdot C_{12}^1 \cdot C_{10}^1 = 1080$

Số cách chọn 1 nữ lớp 10, 2 nam lớp 11: $C_9^1 \cdot C_{10}^2 = 405$

Số cách chọn 2 nữ lớp 10, 1 nam lớp 11: $C_9^2\cdot C_{10}^1 = 360$

Vậy xác suất để chọn 3 bạn có cả nam lẫn nữ và có cả lớp 10 và 11: $\dfrac{1080 + 405 + 360}{4495} = \dfrac{369}{899}$

III. Dành cho các lớp 11TH1, 11TH2, 11TĐ

Bài 6c (1 điểm).

Ta có: $u_{n+1} – u_n = 2(n+1)^2 + n – (2n^2 +n -1)$

$= 2n^2 + 4n + 2 +n – 2n^2 -n +1$

$=4n +3>0$, $\forall n \in \mathbb{N^*}$

Vậy $(u_n)$ là dãy tăng.

Bài 7c (1 điểm).

Số cách chọn 4 bạn trong 33 bạn: $C_{33}^4$

Số cách chọn 1 bạn lớp 10, 1 bạn lớp 11, 2 bạn lớp 12: $C_{10}^1 \cdot C_{11}^1 \cdot C_{12}^2$

Số cách chọn 1 bạn lớp 10, 2 bạn lớp 11, 1 bạn lớp 12: $C_{10}^1 \cdot C_{11}^2 \cdot C_{12}^1$

Số cách chọn 2 bạn lớp 10, 1 bạn lớp 11, 1 bạn lớp 12: $C_{10}^2 \cdot C_{11}^1 \cdot C_{12}^1$

Vậy xác suất để chọn 4 bạn có đủ cả ba khối là: $$\dfrac{C_{10}^1 \cdot C_{11}^1 \cdot C_{12}^2 + C_{10}^1 \cdot C_{11}^2 \cdot C_{12}^1 +C_{10}^2 \cdot C_{11}^1 \cdot C_{12}^1 }{C_{33}^4}=\dfrac{15}{31}$$

Đề thi HK1 môn toán trường Nguyễn Thị Minh Khai năm học 2020-2021

Bài 1 (3 điểm). Giải các phương trình và hệ phương trình sau:

a} $|2x^2+2x+3|=x+3$

b) $\sqrt{2x-1}+ \sqrt{x}=3-x^2$

c) $\left\{ \begin{array}{l} x+y+xy=11\\ x+y-xy=-1 \end{array}\right.$

Bài 2 (2 điểm). Tìm giá trị tham số $m$ sao cho:

a) Phương trình $(m^2-2m)x+2-m=0$ vô nghiệm.

b) Phương trình $x^2-(2m+1)x+m^2+1=0$ có 2 nghiệm dương phân biệt.

Bài 3 (1 điểm). Tìm giá trị lớn nhất của hàm số $y=f(x)=x(3-2x)$ khi $0\le x\le \dfrac{3}{2}$.

Bài 4 (2 điểm). Cho $\triangle ABC$ có $I$ là trung điểm cạnh $AB$.

a) Chứng minh $CA^2 + CB^2 = 2CI^2 + \dfrac{AB^2}{2}$.

b) Tìm tập hợp các điểm $M$ sao cho $\left( \overrightarrow{MA} + \overrightarrow{MB}\right) \cdot \left( \overrightarrow{MB} – \overrightarrow{MC}\right) =0$.

Bài 5 (2 điểm). Trong mặt phẳng tọa độ $Oxy$, cho $\triangle ABC$ có $A(-5;0)$, $B(1;0)$, $C(2;3)$.

a) Tìm tọa độ tâm $I$ của đường tròn ngoại tiếp $\triangle ABC$.

b) Tìm tọa độ điểm $M$ thuộc tia $Oy$ sao cho $|2MA – MB|$ nhỏ nhất.

Giải

Bài 1  (3 điểm).

a) $|2x^2+2x+3|=x+3$

$\Leftrightarrow \left\{ \begin{array}{l} x+3\ge 0\\ \left[ \begin{array}{l} 2x^2 +2x+3 = x+3\\ 2x^2 +2x+3 = -x-3 \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -3\\ \left[ \begin{array}{l} 2x^2 +x =0\\ 2x^2 +3x +6=0 \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x\ge -3\\ \left[ \begin{array}{l} x=0\\ x=-\dfrac{1}{2} \end{array}\right. \end{array}\right. $

$\Leftrightarrow \left[ \begin{array}{l} x=0\\ x=-\dfrac{1}{2}\end{array}\right. $

Vậy $S=\left\{ 0;-\dfrac{1}{2}\right\} $.

b) $\sqrt{2x-1}+ \sqrt{x}=3-x^2$ $(1)$

Điều kiện xác định: $x\ge \dfrac{1}{2}$

$(1) \Leftrightarrow \sqrt{2x-1} -1 + \sqrt{x}-1 +x^2 -1=0$

$\Leftrightarrow \dfrac{2(x-1)}{\sqrt{2x-1}+1} + \dfrac{x-1}{\sqrt{x}+1}+ (x-1)(x+1)=0$

$\Leftrightarrow (x-1) \left( \dfrac{2}{\sqrt{2x-1}+1} + \dfrac{1}{\sqrt{x}+1} + x+1\right) =0$

$\Leftrightarrow x=1$ (nhận)

Vậy $S=\left\{ 1\right\} $.

c) $\left\{ \begin{array}{l} x+y+xy=11\\ x+y-xy=-1 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x+y = 5\\ xy=6 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x=5-y\\ -y^2 +5y -6=0 \end{array}\right. $
$\Leftrightarrow \left\{ \begin{array}{l} x=5-y\\ \left[ \begin{array}{l} y=3\\ y=2 \end{array}\right.\end{array}\right. $
$\Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x=2\\ y=3 \end{array}\right. \\ \left\{ \begin{array}{l} x=3\\ y=2\end{array}\right. \end{array}\right. $\
Vậy $(x;y)\in \left\{ (2;3); (3;2)\right\} $.

Bài 2 (2 điểm).

a) Ta có: $(m^2-2m)x+2-m=0 \Leftrightarrow (m^2 -2m)x = m-2 \ (2)$
$(2)$ vô nghiệm khi và chỉ khi $\left\{ \begin{array}{l} m^2 -2m =0\\ m-2\ne 0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m\ne 2\\ \left[ \begin{array}{l} m=0\\ m=2 \end{array}\right. \end{array}\right. $ $\Leftrightarrow m=0$

Vậy $m=0$ thì phương trình $(2)$ vô nghiệm.

b) $x^2-(2m+1)x+m^2+1=0$ $(3)$

Ta có: $\Delta = (2m+1)^2 -4(m^2 +1) = 4m-3$

Phương trình $(3)$ có $2$ nghiệm dương phân biệt khi và chỉ khi

$\left\{ \begin{array}{l} \Delta >0\\ S>0\\ P>0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} 4m-3>0\\ 2m+1>0\\ m^2 +1 >0 \text{ (luôn đúng) } \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m>\dfrac{3}{4}\\ m>-\dfrac{1}{2} \end{array}\right. $ $\Leftrightarrow m>\dfrac{3}{4}$

Vậy $m>\dfrac{3}{4}$ thì phương trình $(3)$ luôn có 2 nghiệm dương phân biệt.

Bài 3 (1 điểm).

Ta có: $y=x(3-2x) = -2x^2 +3x$

Tập xác định: $D=\mathbb{R}$

Tọa độ đỉnh: $I\left( \dfrac{3}{4};\dfrac{9}{8}\right) $
Với $0\le x\le \dfrac{3}{2}$ ta có bảng sau:

Vậy giá trị lớn nhất của hàm số $y=\dfrac{9}{8}$ khi $x=\dfrac{3}{4}$.

Bài 4 (2 điểm).

a) Ta có: $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$, $IA^2= IB^2 = \dfrac{AB^2}{4}$

Ta có: $CA^2 + CB^2 = \overrightarrow{CA}^2 + \overrightarrow{CB}^2 = \left( \overrightarrow{CI} + \overrightarrow{IA}\right) ^2 + \left( \overrightarrow{CI} + \overrightarrow{IB}\right) ^2$

$= 2CI^2 + 2\overrightarrow{CI}\left( \overrightarrow{IA} + \overrightarrow{IB}\right) + IA^2 + IB^2 = 2CI^2 + \dfrac{AB^2}{2}$

b) Ta có: $\left( \overrightarrow{MA} + \overrightarrow{MB}\right) \cdot \left( \overrightarrow{MB} – \overrightarrow{MC}\right) =0$ $\Leftrightarrow 2\overrightarrow{MI} \cdot \overrightarrow{CB}=0$ $\Rightarrow MI \bot CB$
Vậy $M$ thuộc đường thẳng đi qua $I$ và vuông góc với $BC$.

Bài 5 (2 điểm).
a) Gọi $E$, $F$ lần lượt là trung điểm của $AB$, $AC$ suy ra $E(-2;0)$, $F\left( -\dfrac{3}{2};\dfrac{3}{2}\right) $

$\overrightarrow{AB}=(6;0)$, $\overrightarrow{AC}= (7;3)$, $\overrightarrow{EI} = \left( x_I +2; y_I\right) $, $\overrightarrow{FI}= \left( x_I + \dfrac{3}{2}; y_I – \dfrac{3}{2}\right) $

Ta có: $\left\{ \begin{array}{l} EI \bot AB\\ FI \bot AC \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} \overrightarrow{EI}\cdot \overrightarrow{AB} = 0\\ \overrightarrow{FI}\cdot \overrightarrow{AC}=0 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} 6\left( x_I+2\right) =0\\ 7\left( x_I+\dfrac{3}{2}\right) + 3\left( y_I-\dfrac{3}{2}\right) =0 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} x_I=-2\\ y_I=\dfrac{8}{3}\end{array}\right. $

Vậy $I\left( -2;\dfrac{8}{3}\right) $.

b) Gọi $M(0;y)$ $(y\ge 0)$.

Ta có: $|2MA -MB| = |2\sqrt{y^2 +25}- \sqrt{y^2+1}| = 2\sqrt{y^2+25} – \sqrt{y^2 +1}=m$ $(m\ge 0)$

Khi đó ta có phương trình: $2\sqrt{y^2+25} – \sqrt{y^2+1} =m$ $(*)$

Ta đi tìm $m$ nhỏ nhất để phương trình $(*)$ có nghiệm không âm.

Đặt $t= \sqrt{y^2+1}$ $(t\ge 1)$

Khi đó: $2\sqrt{t^2 +24} =m+t$

$\Leftrightarrow 4t^2 +96 = t^2 + 2mt + m^2$

$\Leftrightarrow 3t^2 -2mt-m^2 +96=0$ $(**)$

$(*)$ có nghiệm không âm khi và chỉ khi $(**)$ có nghiệm lớn hơn hoặc bằng $1$.
Ta có: $\Delta’ = m^2 -3(-m^2 + 96) = 4m^2 – 288 \ge 0 \Leftrightarrow m^2 \ge 72$

Nếu $m^2 =72 \Rightarrow m=6\sqrt{2}$ thay vào $(**)$ ta tìm được $t=2\sqrt{2}$ thỏa yêu cầu và $m=6\sqrt{2}$ cũng là $m$ nhỏ nhất.
Với $t=2\sqrt{2} \Leftrightarrow y=\sqrt{7}$
Vậy $M(0;\sqrt{7})$.

Phương trình vô tỉ – Phương pháp lũy thừa

Phương trình vô tỉ (phương trình chứa căn thức) là một trong những nội dung quan trọng nhất của đại số 9, xuất hiện trong hầu hết các đề thi học sinh giỏi cũng như đề thi tuyển sinh. Kĩ năng giải phương trình cũng là một trong kĩ năng quan trọng của học sinh chuyên toán. Có rất nhiều dạng phương trình và nhiều phương pháp giải khác nhau cho phương trình vô tỉ, tựu chung lại cũng là phương pháp hữu tỉ hóa các phương trình, tức là đưa về phương trình dạng đa thức đã biết cách giải ở lớp 8.Trong chương này đưa ra một vài dạng phương trình vô tỉ cùng với đó là các phương pháp cơ bản nhất, không đi sâu quá nhiều vào các kĩ thuật và các dạng khó.

1. Lý thuyết

Nếu $A(x)$, $B(x)$ là các biểu thức chứa $x$, khi đó ta có các phương trình dạng $\sqrt{A} = \sqrt{B}$ và $\sqrt{A}=B$ là các phương trình vô tỉ cơ bản nhất, được giải bởi các tính chất sau.

  • Tính chất 1.  $\sqrt{A} = \sqrt{B} \Leftrightarrow \left\{\begin{array}{l}A \geq 0 \\ A = B\end{array} \right.$
  • Tính chất 2. $\sqrt{A} = B \Leftrightarrow \left\{\begin{array}{l}B \geq 0\\ A = B^2\end{array}\right.$

2. Phương pháp lũy thừa

Phương pháp lũy thừa là phương pháp tự nhiên nhất và kinh điển nhất để giải phương trình vô tỉ, nhằm mục đích đưa phương trình đã cho về dạng cơ bản hoặc đưa về phương trình hữu tỉ, việc lũy thừa đòi hỏi sự khéo léo để không làm cho bậc của biểu thức quá cao, và trong quá trình lũy thừa ta chú ý là tạo ra phương trình mới tương đương phương trình đã cho hay chỉ là hệ quả của phương trình đã cho, nếu là hệ quả thì phải có bước thử lại nghiệm.

Chú ý: $A = B \Leftrightarrow A^2 = B^2$ đúng khi và chỉ khi $A, B$ cùng dấu.

Còn $A = B\ (1) \Rightarrow A^2 = B^2\ (2)$ thì phương trình $(2)$ là phương trình hệ quả của phương trình $(1)$.

Ví dụ 1: Giải phương trình:

a) $\sqrt{-x^2+4x-3}=2x-5$

b) $\sqrt{x+1}+\sqrt{x-2} = \sqrt{3x}$

Giải

a) Ta có $ \sqrt{-x^2+4x-3} =2x-5  \Leftrightarrow \left\{ \begin{array}{l} 2x-5 \ge 0\\ -x^2+4x-3=(2x-5)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{5}{2}\\ 5x^2-24x+28=0 \end{array}\right.$  $  \Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{5}{2} \\ x=2 \ \text{hoặc} \ x=\dfrac{14}{5} \end{array}\right. $  $\Leftrightarrow x=\dfrac{14}{5}$

Vậy phương trình có nghiệm $x=\dfrac{14}{5}$.

b) Điều kiện $x \geq 2$. Phương trình tương đương với

$x+1+2\sqrt{(x+1)(x-2)}+x-2 = 3x$

$\Leftrightarrow 2\sqrt{x^2-x-2} = x + 1$

$\Leftrightarrow 4(x^2-x-2) = x^2+2x+1$

$\Leftrightarrow 3x^2 – 6x – 9 = 0 $

$\Leftrightarrow \left[\begin{array}{l}x = 3\ \text{ (nhận) }\\ x=-1 \ \text{ (loại) } \end{array}\right.$

Vậy phương trình có nghiệm $x = 3$.

Ví dụ 2: Giải phương trình $\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}.$

Giải
  • Ta có $\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}$

$\Leftrightarrow \left\{ \begin{array}{l} 3-2x-x^2 \ge 0\\ 7-x^2+x\sqrt{x+5}=3-2x-x^2 \ (2)\end{array}\right. $

  •  $(2) \Leftrightarrow x\sqrt{x+5} = -2x -4$

Nhận thấy $x=0$ không là nghiệm của $(2)$. Ta xét $x\ne 0$, khi đó phương trình tương đương

$\sqrt{x+5} = -\dfrac{2x+4}{x}$ $\Leftrightarrow \left\{ \begin{array}{l} -\dfrac{2x+4}{x} \ge 0\\ x+5 = \dfrac{(2x+4)^2}{x^2} \ (3) \end{array}\right. $

  •  $(3) \Leftrightarrow  x^2(x+5) = (2x+4)^2$

$\Leftrightarrow  x^3 +x^2 -16x -16 =0 \Leftrightarrow  \left[ \begin{array}{l} x=4 \ \text{ (loại) }\\ x=-1\ \text{ (nhận) }\\ x=-4 \ \text{ (loại) } \end{array}\right. $

  •  Vậy phương trình có nghiệm $x = -1$.

Ví dụ 3: Giải phương trình $\sqrt{x+1}-1=\sqrt{x-\sqrt{x+8}}$.

Giải
  •  Điều kiện $\left\{ \begin{array}{l} x \ge -1\\ \sqrt{x+1}-1 \ge 0\\ x-\sqrt{x+8} \ge 0 \end{array}\right.  (*)$.
  •  Khi đó phương trình tương đương:

$\sqrt{x+1}=1+\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow x+1=1+x-\sqrt{x+8}+2\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow \sqrt{x+8}=2\sqrt{x-\sqrt{x+8}}$

$\Leftrightarrow x+8=4(x-\sqrt{x+8})$

$\Leftrightarrow 4\sqrt{x+8}=3x-8$

$\Leftrightarrow  \left\{ \begin{array}{l} x \ge \dfrac{8}{3} \\ 16(x+8)=(3x-8)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{8}{3}\\ 9x^2-64x-64=0 \end{array}\right. $

$\Leftrightarrow x=8.$

  •  Vậy phương trình có nghiệm duy nhất $x=8.$

Ví dụ 4: Giải phương trình $\sqrt{x(x-1)}+\sqrt{x(x+2)}=2\sqrt{x^2}.$

Giải
  •  Điều kiện $\left\{ \begin{array}{l} x(x-1) \ge 0\\ x(x+2) \ge 0\\  x \ge 0 \end{array}\right.  \Leftrightarrow x=0 \ \text{ hoặc } \ x \ge 1.$
  •  Dễ thấy $x=0$ là một nghiệm của phương trình.
  •  Xét $x \ge 1.$ Khi đó phương trình tương đương
  •  $\sqrt{x-1}+\sqrt{x+2}=2\sqrt{x}$

$\Leftrightarrow x-1+x+2+2\sqrt{(x-1)(x+2)}=4x$

$\Leftrightarrow \sqrt{(x-1)(x+2)}=x-\dfrac{1}{2}$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{1}{2}\\ x^2+x-2=x^2-x+\dfrac{1}{4} \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x \ge \dfrac{1}{2}\\ x=\dfrac{9}{8} \end{array}\right. $

$\Leftrightarrow x=\dfrac{9}{8}$

  •  Vậy phương trình có nghiệm $x=\dfrac{9}{8}$ hoặc $x=0$.

Ví dụ 5: Giải phương trình $\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}$.

Giải
  •  Điều kiện $x \ge 1.$
  •  Khi đó phương trình tương đương

$\sqrt{(\sqrt{x-1})^2+2\sqrt{x-1}+1}+\sqrt{(\sqrt{x-1})^2-2\sqrt{x-1}+1}=\dfrac{x+3}{2}$

$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=\dfrac{x+3}{2}$

$\Leftrightarrow |\sqrt{x-1}+1|+|\sqrt{x-1}-1|=\dfrac{x+3}{2}$

  •  Với $1 \le x \le 2$ thì phương trình tương đương

$\sqrt{x-1}+1+1-\sqrt{x-1}=\dfrac{x+3}{2} \Leftrightarrow x=1.$

  •  Với $x>2$ thì phương trình tương đương

$\sqrt{x-1}+1+\sqrt{x-1}-1=\dfrac{x+3}{2}$

$\Leftrightarrow 4\sqrt{x-1}=x+3$

$\Leftrightarrow \left\{ \begin{array}{l} x \ge -3\\ 16x-16=x^2+6x+9 \end{array}\right.   \Leftrightarrow x=5.$

  •  Vậy phương trình có nghiệm $x=1$ hoặc $x=5$.

 

Ví dụ 6: Giải phương trình $\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}$.

Giải
  •  Điều kiện $\begin{cases} x+3 \ge 0&\\ 3x+1 \ge 0&\\ x \ge 0&\\ 2x+1 \ge 0 \end{cases} \Leftrightarrow x \ge 0.$

 Phương trình trở thành

 $\sqrt{3x+1}-\sqrt{2x+2}=\sqrt{4x}-\sqrt{x+3}$

$\Rightarrow 3x+1+2x+2-2\sqrt{(3x+1)(2x+2)}=4x+x+3-2\sqrt{4x(x+3)}$

$\Rightarrow \sqrt{(3x+1)(2x+2)}=\sqrt{4x(x+3)}$

$\Rightarrow 6x^2+8x+2=4x^2+12x$

$\Rightarrow x=1.$

  •  Thử lại ta thấy $x=1$ là nghiệm của phương trình.
  •  Vậy phương trình có nghiệm duy nhất $x=1.$
  • Chú ý: Trong ví dụ trên, ta dùng dấu “$\Rightarrow$” thay cho “$\Leftrightarrow$”, tức là phương trình sau chỉ là hệ quả của phương trình trước chứ không phải là tương đương. Do đó khi giải ra nghiệm ta phải thử lại phương trình ban đầu để nhận hay loại nghiệm.

Ví dụ 7: Giải phương trình $\sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}$.

Giải
  •  Sử dụng hằng đẳng thức $(a+b)^3=a^3+b^3+3ab(a+b)$. Ta được

$ \sqrt[3]{x+5}+\sqrt[3]{x+6}=\sqrt[3]{2x+11}$

$\Leftrightarrow 2x+11+3\sqrt[3]{x+5}.\sqrt[3]{x+6}(\sqrt[3]{x+5}+\sqrt[3]{x+6})=2x+11$

$\Rightarrow 3\sqrt[3]{x+5}.\sqrt[3]{x+6}.\sqrt[3]{2x+11}=0$

$\Leftrightarrow x=-6 \ \text{hoặc} -5 \ \text{hoặc} \ x=-\dfrac{11}{2}.$

  •  Thử lại ta thấy tất cả đều là nghiệm của phương trình.
  •  Vậy phương trình có ba nghiệm $x=-6$ hoặc $x=-5$ hoặc $x=-\dfrac{11}{2}.$

3. Bài tập rèn luyện

Bài 1. Giải các phương trình sau;

a) $\sqrt{x^2+3x+4}-3x=1$

b) $1+\sqrt{x-1}=\sqrt{6-x}$

c) $\sqrt{-x^2+4x-3}=2x-5$

d) $x-\sqrt{4-x^2}=0$

Bài 2. Giải các phương trình sau:

a) $\sqrt{2x+3}+\sqrt{2x+2}=1$

b) $\sqrt{5x-1}-\sqrt{x-1}=\sqrt{2x-4}$

c) $x^2-2x+4(x-3) \sqrt{\dfrac{x+1}{x-3}}=0$.

d) $\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}+3=0$

Bài 3. Giải các phương trình sau:

a) $\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x$

b) $\sqrt{x}+\sqrt{x+1}-\sqrt{x^2+x}=1$

c) $\sqrt{x(x+1)}+\sqrt{x(x+2)}=2\sqrt{x^2}$

d) $\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2$

Bài 4. Giải các phương trình sau

a) $\sqrt[3]{x+1}+\sqrt[3]{3x+1}=\sqrt[3]{x-1}$

b) $\sqrt[3]{2x-5}+\sqrt[3]{3x+7}=\sqrt[3]{5x+2}$

Bài 5. Giải các phương trình sau:

a) $\sqrt{x^2 – 3x + 4} + 1 – x – \sqrt{3 – x}=0$

b) $\sqrt{x^2+3x+4}+1+x-\sqrt{3+x}=0$

c) $\sqrt{x^2-3x+3}+1-x-\sqrt{2-x}=0$

d) $\sqrt{4x^2-10x+7}+2-2x-\sqrt{3-2x}=0$

Đề thi HK1 môn toán 11AB trường chuyên Lê Hồng Phong năm học 2020-2021

Bài 1 (2 điểm). Giải các phương trình sau:

a) $2\cos \left( 2x+\dfrac{\pi}{4}\right)=\sqrt{3}$
b) $\sqrt{3}\sin x + \cos x =2$

Bài 2 (1 điểm). Gieo một con súc sắc cân đối và đồng chất hai lần. Tính xác suất để số chấm xuất hiện trong hai lần gieo khác nhau.

Bài 3 (1 điểm). Từ các chữ số  $1$;  $2$;  $3$;  $4$;  $5$;  $6$ có thể lập được bao nhiêu số chẵn có $4$ chữ số khác nhau?

Bài 4 (1 điểm). Khai triển nhị thức $(1-3x)^n = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$. Biết $a_0 + a_1 + a_2 = 376$, tính $a_3$.

Bài 5 (1 điểm). Cho dãy số $(u_n)$ thỏa $\left\{ \begin{array}{l}u_1=1\\ u_{n+1}= 2u_n + n\end{array}\right. $

a) Chứng minh dãy số $v_n = u_n + n+1$ là cấp số nhân.

b) Đặt $S_n=u_1 + u_2 + \dots + u_n$. Tính $S_n$ theo $n$.

Bài 6 (1 điểm). Một số nguyên dương gọi là đối xứng nếu ta viết các chữ số theo thứ tự ngược lại thì được số bằng số ban đầu, ví dụ số $1221$ là một số đối xứng. Chọn ngẫu nhiên một số đối xứng có $4$ chữ số, tính xác suất chọn được số chia hết cho $7$.

Bài 7 (3 điểm). Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M$, $N$, $P$ lần lượt là các điểm trên cạnh $CD$, $AD$, $SA$ thỏa $MD = 2MC$, $NA = 3ND$, $PA=3PS$. Gọi $G$ là trọng tâm tam giác $SBC$.

a) Tìm giao điểm $K$ của đường thẳng $BM$ và mặt phẳng $(SAC)$.

b) Chứng minh mặt phẳng $(NPK)$ song song mặt phẳng $(SCD)$.

c) Chứng minh đường thẳng $MG$ song song mặt phẳng $(SAD)$.

Đáp án

Bài 1 (2 điểm).

a) $2\cos \left( 2x + \dfrac{\pi}{4}\right) = \sqrt{3}$

$\Leftrightarrow \cos \left( 2x+\dfrac{\pi}{4} \right) = \dfrac{\sqrt{3}}{2}$

$\Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi}{4} = \dfrac{\pi}{6} + 2k\pi \\\\ 2x + \dfrac{\pi}{4} = -\dfrac{\pi}{6} + 2k\pi\end{array}\right.(k\in \mathbb{Z}) $

$\Leftrightarrow \left[ \begin{array}{l}x = -\dfrac{\pi}{24} + k\pi \\\\ x= -\dfrac{5\pi}{24} + k\pi\end{array}\right. (k\in \mathbb{Z})$

Vậy $S=\left\{ -\dfrac{\pi}{24} + k\pi; -\dfrac{5\pi}{24} + k\pi \ | \ k\in \mathbb{Z} \right\} $.

b) $\sqrt{3} \sin x + \cos x =2$

$\Leftrightarrow \dfrac{\sqrt{3}}{2}\sin x + \dfrac{1}{2} \cos x =1$

$\Leftrightarrow \sin \left( x+ \dfrac{\pi}{6}\right) =1$

$\Leftrightarrow x+ \dfrac{\pi}{6} = \dfrac{\pi}{2} + 2k\pi $ $(k\in \mathbb{Z})$

$\Leftrightarrow x= \dfrac{\pi}{3} + 2k\pi$ $(k\in \mathbb{Z})$

Vậy $S=\left\{ \dfrac{\pi}{3} + 2k\pi \ | \ k\in \mathbb{Z} \right\} $.

Bài 2 (1 điểm).

Gọi $A$ là biến cố được $2$ số khác nhau $\Omega _A = \left\{ (a;b)\ | \ a, b \in \left\{ 1,2,…,6\right\} , a\ne b\right\} $

$\Rightarrow |\Omega _A | = 6\cdot 5 = 30$ $\Rightarrow P(A) = \dfrac{30}{36} = \dfrac{5}{6}$

Vậy xác suất để số chấm xuất hiện trong hai lần gieo khác nhau là $\dfrac{5}{6}$.

Bài 3 (1 điểm).

Gọi số có 4 chữ số thỏa yêu cầu đề bài là $\overline{abcd}$.
$\overline{abcd}$ là số chẵn nên $d\in \left\{ 2,4,6 \right\} $ suy ra $d$ có $3$ cách chọn.
$\overline{abc}$ có $A^3 _5$ cách chọn.
$\Rightarrow $ Số số thỏa mãn yêu cầu đề bài là: $3\cdot A^3 _5 = 3\cdot 5 \cdot 4 \cdot 4 =180$.

Bài 4 (1 điểm).

Ta có: $\left( 1-3x\right) ^n = \sum\limits_{k = 0}^n {C_n^k{{( – 3x)}^k}} $.

Suy ra $a_0 =1$, $a_1 = -3C_n ^1$, $a_2 = 9 C_n ^2$

Ta có: $a_0 + a_1 + a_2 = 376$

$\Rightarrow 1 -3C_n ^1 + 9 C_n ^2 =376$

$\Rightarrow 1 – 3n + \dfrac{9n(n-1)}{2} = 376 \Rightarrow n=10$

Vậy $a_3 = (-3)^3C_{10} ^3 = -3240$

Bài 5 (1 điểm).

a) $v_n = u_n + n +1$
$v_{n+1} = u_{n+1} + n+1 +1$

$ = 2u_n + n + n + 2 $

$= 2\left( u_n + n + 1\right)$

$ =2v_n$ $(\forall n)$

Vậy $(v_n)$ là cấp số nhân.

b) $v_1 = 1+1+1 =3 \Rightarrow v_n = 3\cdot 2^{n-1}$

$v_1+ v_2 + \dots + v_n = 3\left( 1+2+\dots + 2^{n-1}\right) $

         $= 3\left( 2^n -1\right) $

Ta có: $\left\{ \begin{array}{l}u_1 = v_1 -1 -1 = v_1 -2\\\\ u_2 = v_2 -2 -1 = v_2 -3\\ .\\ .\\ .\\ u_n = v_n – (n+1)\end{array}\right. $

$\Rightarrow u_1 + u_2 + \dots + u_n = v_1 + v_2 + \dots + v_n – \left( 2+3+\dots + n+1\right) $

   $= 3\left( 2^n -1\right) – \dfrac{[2+(n+1)]\cdot n}{2}$

   $= 3\cdot 2^n – \dfrac{n\cdot (n+3) }{2} -3$

Vậy $S_n = 3\cdot 2^n – \dfrac{n\cdot (n+3) }{2} -3$

Bài 6 (1 điểm).

Gọi số có $4$ chữ số thỏa mãn yêu cầu đề bài là $\overline{abba}$

  • Trường hợp 1: $a=b$ suy ra ta có $9$ số là $1111$, $2222$, . . ., $9999$.
  • Trường hợp 2: $a\ne b$ ta có $A_{10} ^2 -9=81$ số.

$\Rightarrow $ có $90$ số có $4$ chữ số là số đối xứng.

Ta có: $\overline{abcd} = a\cdot 1001 + 110\cdot b \ \vdots \ 7 \Rightarrow b\ \vdots \ 7 \Rightarrow \left[ \begin{array}{l}b=0\\\\ b=7\end{array}\right. $

Với $b=0$ hoặc $b=7$ ta có $18$ số đối xứng có $4$ chữ số chia hết cho $7$.

Vậy xác suất để chọn được số chia hết cho $7$ là $\dfrac{18}{90} = \dfrac{1}{5}$.

Bài 7 (3 điểm).

a) Trong mặt phẳng $(ABCD)$ có $BM \cap AC = K$

Ta có: $\left\{ \begin{array}{l}K= BM \cap AC\\\\ AC \subset (SAC)\end{array}\right. $ $\Rightarrow K = BM \cap (SAC)$

b) Trong mặt phẳng $(SAD)$ có:

  •  $\dfrac{AP}{PS} = \dfrac{AN}{ND} = \dfrac{1}{3} \Rightarrow NP//SD$

Ta có: $\left\{ \begin{array}{l}NP//SD \\\\ SD\subset (SCD)\end{array} \right. $

$\Rightarrow NP//(SCD)$

  • $\dfrac{CM}{AB} = \dfrac{CK}{AK} = \dfrac{1}{3} \Rightarrow \dfrac{CK}{AK} = \dfrac{ND}{AN} \Rightarrow NK // CD$

Ta có: $\left\{ \begin{array}{l}NK // CD\\\\ CD\subset (SCD)\end{array}\right. $

$\Rightarrow NK // (SCD)$

Mà $NP$, $NK \subset (PNK) \Rightarrow (PNK) // (SCD)$.

c) Gọi $Q=SG\cap BC$, $T= QM \cap AD$.

Ta có: $\dfrac{QM}{MT} = \dfrac{CM}{MD} = \dfrac{1}{2}= \dfrac{QG}{GS}$

$ \Rightarrow MG // ST$ mà $ST \subset (SAD) \Rightarrow MG // (SCD)$

Đề thi HK1 môn toán 10AB trường chuyên Lê Hồng Phong năm học 2020-2021

Bài 1 (1 điểm). Cho $(P):y=ax^{2}+bx+c$. Tìm $a$, $b$, $c$ biết $(P)$ có trục đối xứng là đường thẳng $x=2$ và $(P)$ qua hai điểm $A(0;1)$, $B(1;-2)$.

Bài 2 (1 điểm). Giải phương trình: $\sqrt{ x^2-3x+2}=x-1$.

Bài 3 (1 điểm). Cho hệ phương trình $\left\{ \begin{array}{l} (m+1)x+6y=m^2+3m+5\\ x+my=m^3-3 \end{array}\right.$.

Tìm tất cả các giá trị của tham số $m$ sao cho hệ phương trình có nghiệm.

Bài 4 (1 điểm). Giải hệ phương trình $\left\{ \begin{array}{l} x+2y=5\\  x^2+y^2+3xy=11 \end{array} \right.$.

Bài 5 (1 điểm). Cho phương trình $\dfrac{2x^{2}-8x+m}{x^{2}-4x+3}=1$. Tìm tất cả các giá trị của tham số $m$ để phương trình có nghiệm.

Bài 6 (3 điểm). Trong mặt phẳng $Oxy$, cho tam giác $ABC$ biết $A(2;-1)$, $B(1;2)$, $C(4;3)$.

a) Chứng minh $ABC$ là tam giác vuông cân.

b) Tìm giao điểm của đường thẳng $AB$ và trục tung.

c) Tìm tọa độ điểm $D$ sao cho $ABCD$ là hình thang có $AD//BC$ và diện tích $ABCD$ bằng 15.

Bài 7 (1 điểm). Cho hình vuông $ABCD$ cạnh $a$, gọi $I$ là giao điểm của $AC$ và $BD$. $M$ là điểm thỏa $MA^{2}+2MB^{2}+MC^{2}+2MD^{2}=12a^2$, tính $MI$.

Bài 8 (1 điểm). Cho các số thực $x$, $y$ thảo $x^{2} + y^{2}+xy=3$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của $P=x^{4}+y^{4}+2(x^{2}+y^{2})+12xy$.

Đáp án

Bài 1 (1 điểm).

Ta có: $\left\{ \begin{array}{l}\dfrac{-b}{2a} =2\\ A(0;1) \in (P)\\B(1;-2) \in (P)\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}b=-4a\\ c=1\\ a+b+c=-2\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}a=1\\ b=-4\\ c=1\end{array}\right. $

Vậy $(P): y= x^2 -4x +1$.

Bài 2 (1 điểm).

$\sqrt{x^2 -3x +2} = x-1$ $\Leftrightarrow \left\{ \begin{array}{l}x-1\ge 0\\ x^2 -3x +2 = \left( x-1\right) ^2\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}x\ge 1\\ x^2 -3x +2 = x^2 -2x +1\end{array}\right. $ $\Leftrightarrow x=1$

Vậy $S=\left\{ 1\right\} $.

Bài 3 (1 điểm).

$\left\{ \begin{array}{l}(m+1)x + 6y = m^2 +3m +5\\ x + my = m^3 -3\end{array}\right. $

Ta có: $D=\left| \begin{array}{*{20}{c}}{m+1}&{6}\\ {1}&{m}\end{array}\right|$ $=m(m+1) – 6 = m^2 +m -6$

$D_x=\left| \begin{array}{*{20}{c}}{m^2 +3m +5}&{6}\\ {m^3- 3}&{m}\end{array}\right|$ $=m(m^2+3m +5) – 6(m^3 -3)$

   $ = -5m^3 +3m^2 +5m +18 $

$D_y=\left| \begin{array}{*{20}{c}}{m+1}&{m^2 +3m+5}\\ {1}&{m^3 -3}\end{array}\right|$ $=(m+1)(m^3 -3) – (m^2 +3m +5)$ $ = m^4 + m^3 -m^2 -6m -8$

Hệ phương trình có nghiệm khi và chỉ khi $\left[ \begin{array}{l}D \ne 0\\ D = D_x = D_y =0\end{array}\right. $

  • Trường hợp 1: $D \ne 0 \Leftrightarrow m^2 +m -6 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}m\ne -3\\ m\ne 2\end{array}\right. $
  • Trường hợp 2: $D = D_x =D_y =0 \Leftrightarrow m=2$

Vậy hệ phương trình có nghiệm khi $m=2$ hoặc $m\ne -3 $

Bài 4 (1 điểm). 

$\left\{ \begin{array}{l}x+2y=5\\ x^2 + y^2 + 3xy =11\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}x=5-2y\\ \left( 5-2y\right) ^2 + y^2 + 3y\left( 5-2y\right) =11\end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l}x=5-2y\\ y^2 +5y -14 =0\end{array}\right. $ $\Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l}x=19\\ y=-7\end{array} \right. \\  \left\{ \begin{array}{l}x=1\\ y=2\end{array} \right.\end{array}\right. $

Vậy nghiệm của hệ phương trình là: $\left( 19;-7\right) $, $\left( 1;2\right) $.

Bài 5 (1 điểm). 

Điều kiện xác định: $x\ne 1$, $x\ne 3$

$\dfrac{2x^2 -8x+m}{x^2 -4x +3}=1$  $(1)$

$\Leftrightarrow 2x^2 -8x +m = x^2 -4x +3 $

$\Leftrightarrow x^2 -4x +m-3 =0$  $(2)$

$\Delta’ = 4 – (m-3) = 7-m$

  • Trường hợp 1: $\Delta’ =0 \Leftrightarrow m=7$ thì (2) có nghiệm kép $x_1 = x_2 =2$ (nhận).
  • Trường hợp 2: $\Delta’ >0 \Leftrightarrow m<7 $

Phương trình $(1)$ có nghiệm khi $1$ và $3$ không đồng thời là nghiệm của $(2)$

$\Leftrightarrow \left[ \begin{array}{l}1 – 4\cdot 1 + m-3 \ne 0\\ 9 – 4\cdot 3 + m-3 \ne 0\end{array}\right. $ $\Leftrightarrow m\ne 6$

Vậy $m=7$ hoặc $\left\{ \begin{array}{l}m<7\\ m\ne 6\end{array}\right. $ thì phương trình $(1)$ có nghiệm.

Bài 6 (3 điểm).

a) Ta có: $AB= \sqrt{10}$, $AC = 2\sqrt{5}$, $BC= \sqrt{10}$

$\triangle ABC$ có: $\left\{\begin{array}{l}AB = AC\\ AB^2 + BC^2 = AC^2\end{array}\right. $ $\Rightarrow \triangle ABC$ vuông cân tại $B$.

b) Gọi $M=AB\cap Oy \Rightarrow M(0;m)$

$\overrightarrow{AB}= (-1;3)$, $\overrightarrow{AM}=(-2;m+1)$

$M,\, A,\, B$ thẳng hàng nên $\overrightarrow{AB}$ và $\overrightarrow{AM}$ cùng phương                              $\Rightarrow \dfrac{-2}{-1}=\dfrac{m+1}{3} \Rightarrow m=5$

Vậy $M(0;5)$

c) $S_{ABCD} = \dfrac{1}{2}AB \left( BC + AD\right) $

$\Rightarrow 15 = \dfrac{1}{2}\cdot \sqrt{10} \left( \sqrt{10} + AD\right) $

$\Rightarrow AD = 2\sqrt{10} = 2BC$

$\overrightarrow{BC} = (3;1)$, $\overrightarrow{AD} = (x_D -2; y_D +1)$

Ta có: $\overrightarrow{AD}$ và $\overrightarrow{BC}$ cùng hướng, $AD = 2BC$

$\Rightarrow \overrightarrow{AD} = 2\overrightarrow{BC} \Rightarrow \left\{ \begin{array}{l}x_D -2 = 6\\ y_D +1 = 2\end{array}\right. $ $\Rightarrow \left\{ \begin{array}{l}x_D = 8\\ y_D =1 \end{array} \right. $

Vậy $D(8;1)$.

Bài 7 (1 điểm).

Ta có: $\overrightarrow{IA} + \overrightarrow{IC} = \overrightarrow{IB} + \overrightarrow{ID} = \overrightarrow{0}$, $IA = IB = IC = ID = \dfrac{a\sqrt{2}}{2}$

Ta có: $12a^2= MA^2 + 2MB^2 + MC^2 + 2MD^2 $

$=\left( \overrightarrow{MI} + \overrightarrow{IA}\right) ^2 + 2\left( \overrightarrow{MI} + \overrightarrow{IB}\right) ^2 + \left( \overrightarrow{MI} + \overrightarrow{IC}\right) ^2 + 2\left( \overrightarrow{MI} + \overrightarrow{ID} \right) ^2 $

$=6MI^2 + IA^2 + 2IB^2 + IC^2 + 2ID^2 + 2\overrightarrow{MI} \left( \overrightarrow{IA} + \overrightarrow{IC} + 2\overrightarrow{IB} + 2\overrightarrow{ID}\right) $

$=6MI^2 + 3a^2$

$\Rightarrow MI^2 = \dfrac{3}{2}a^2 \Rightarrow MI = \dfrac{a\sqrt{6}}{2}$

Vậy $MI = \dfrac{a\sqrt{6}}{2}$

Bài 8 (1 điểm).

Ta có: $x^2 + y^2 +xy =3 \Rightarrow \left( x+y\right) ^2 -xy =3$ $\Rightarrow 3+xy = \left( x+y\right) ^2 \ge 0$ $\Rightarrow xy\ge -3$

Dấu “=” xảy ra khi $\left\{ \begin{array}{l}x=\sqrt{3}\\ y=-\sqrt{3}\end{array}\right. $ hoặc ngược lại.

Lại có: $x^2 + y^2 + xy =3 \Rightarrow \left( x-y\right) ^2 + 3xy =3$ $\Rightarrow 3-3xy = \left( x-y\right) ^2 \ge 0$ $\Rightarrow xy \le 1$

Dấu “=” xảy ra khi $x=y=1$

Đặt $t=xy \Rightarrow t\in [-3;1]$

$P =x^4 + y^4 + 2\left( x^2 + y^2\right) + 12xy$

$= \left( x^2 + y^2\right) ^2 -2x^2y^2 + 2\left( x^2 + y^2\right) +12xy$

$=\left( 3-t\right) ^2 -2t^2 + 2\left( 3-t\right) + 12t$

$= -t^2 + 4t+15$

Vậy $P_{min} = -6$, $P_{max} = 18$

Đề thi HK1 môn toán trường Nguyễn Thị Minh Khai năm học 2018-2019

Bài 1. Giải các phương trình và hệ phương trình sau
a) $1-\sqrt{5-3 x+x^{2}}=2 x$
b) $\sqrt{3 x-5}+\sqrt{x+1}=4+4 x^{2}-x^{3}-3 x$
c) $\left\{\begin{array}{l}x+y+x y=5 \\ x^{2}+y^{2}=5\end{array}\right.$
Bài 2. Tìm giá trị tham số $\mathrm{m}$ sao cho
a) Phương trình $\mathrm{m}^{2} \mathrm{x}=4 \mathrm{x}-2 \mathrm{~m}+\mathrm{m}^{2}$ có nghiệm tùy $\dot{\mathrm{y}}$.
b) Phương trình $\mathrm{x}^{2}+2 \mathrm{mx}+4=0$ có hai nghiệm $x_1, x_2$ thỏa $|x_1-x_2| = 2\sqrt{2}$.
Bài 3.Tìm giá trị lớn nhất của hàm số $\mathrm{y}=\mathrm{x} \sqrt{1-\mathrm{x}^{2}}$ với $0<\mathrm{x}<1$.

Bài 4. Cho tam giác $ABC$ có $K$ là trung điểm $AB$. Gọi $I,J$ là các điểm thỏa
$\overrightarrow{\mathrm{AI}}=\frac{1}{3} \cdot \overrightarrow{\mathrm{AC}} ; 2 \sqrt{\mathrm{JB}}=\overline{\mathrm{JC}}$
a) Chứng minh rằng $\mathrm{K},$ I , J thẳng hàng.
b) Tìm tập hợp các điểm $\mathrm{M}$ sao cho $|2 \overrightarrow{\mathrm{MA}}-3 \overrightarrow{\mathrm{MB}}-2 \overrightarrow{\mathrm{MC}}|=|\overrightarrow{\mathrm{MB}}-\overrightarrow{\mathrm{MC}}|$
Bài 5.Trong mặt phẳng tọa độ Oxy cho $\mathrm{A}(-2 ; 2), \mathrm{B}(1 ; 0), \mathrm{C}(3 ;-3)$
a) Tính tọa độ trực tâm $\mathrm{H}$ của $\Delta \mathrm{ABC}$.
b) Tính tọa độ điểm D thuộc trục Oy sao cho $\mathrm{ABCD}$ là hình thang có cạnh đáy lớn
$\mathrm{BC}$.

Đáp án thang điểm

Đề thi học kì 1 môn toán 10 năm học 2017-2018 trường Lê Quý Đôn – TPHCM

BÀI 1. Xét tính chẵn – lẻ của hàm số: $f(x)=\dfrac{2 x^{2}+3}{|x+2|-|x-2|}$.

BÀI 2. Xác định parabol $(\mathrm{P}): f(x)=\alpha x^{2}+b x+2$ biết $(\mathrm{P})$ đi qua điểm $\mathrm{B}(-1 ; 6)$ và có tung độ đỉnh là $-\frac{1}{4}$.

BÀI 3. Giải các phương trình:
a) $\sqrt{2 x^{2}+7 x+5}=x+1$
b) $2 x-\left|x^{2}-4 x+5\right|=5$

BÀI 4. Cho $\forall x>1 ; y>1$. Chứng minh: $\dfrac{x y}{\sqrt{(y-1)(x-1)}} \geq 4$

BÀI 5. Cho tam giác $\mathrm{ABC}$ có $\mathrm{AB}=9, \mathrm{AC}=12, \widehat{\mathrm{BAC}}=120^{\circ}$. Tính diện tích tam giác $\mathrm{ABC}$, độ dài cạnh BC; độ dài trung tuyến AM và bán kính đường tròn nội tiếp tam giác ABC.

BÀI 6. Trong mặt phằng $0 \mathrm{xy}$ cho tam giác $\mathrm{ABC}$ với $\mathrm{A}(1 ; 3), \mathrm{B}(-3 ; 0), \mathrm{C}(0 ;-2)$
a) Tìm tọa độ điểm $\mathrm{M}$ sao cho $\mathrm{ABCM}$ là hình bình hành.
b) Tìm tọa độ điểm D thuộc trục $y^{\prime}$ Oy sao cho $|\overrightarrow{A D}+\overrightarrow{B D}-\overrightarrow{C D}|=2 \sqrt{5}$.

BÀI 7. Xác định tất cả các giá trị của m để phương trình $\dfrac{x-m}{x+1}=m+1$ có nghiệm.

Đáp án thang điểm

 

Đáp án đề thi học kì 1 môn toán 10 năm học 2018 trường PTNK – Cơ sở 2

Bài 1. Giải các phương trình sau:
a)$\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. 

a) Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
b) Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 3. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \\
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 4. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 5. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.

Bài 6. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.

a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Hết

Lời giải

 

Bài 1. 

a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x$
$\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) $
$\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\\\
x^2-x-1=3-2x
\end{array} \right. $
Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.

a) $P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.
b) Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\\\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2$ $\Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\\\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 3. 

$D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 4.

$\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$

Bài 5. 

a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 6. 

a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\\\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $

Đáp án đề thi HK1 lớp 11 trường PTNK năm học 2017 – 2018

Bài 1. Giải các phương trình sau:
a)  $ 2\cos ^2 \dfrac{x}{2}+\sqrt{3}\sin x=1+2\sin 3x $
b) $ 3 \tan^2 x+4\tan x+4\cot x+3\cot^2 x+2=0 $

Bài 2. Gọi S là tập tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các số 1;2;3;4;5;6;7. Lấy ngẫu nhiên một số từ S. Tính xác suất để lấy được số có mặt chữ số 6.

Bài 3. Trong khai triển của $ \left(2x^3-\dfrac{3}{x^2}\right)^n $ với $ n $ là số nguyên dương thỏa $ 2C_{n+6}^{5}=7A_{n+4}^3, $ tìm số hạng không chứa $ x? $

Bài 4. Tìm số hạng đầu và công sai của cấp số cộng $ (u_{n}) $ biết rằng công sai của $ (u_{n}) $ là số nguyên dương và
$u_{1}+u_{3}+u_{5}=15, \dfrac{1}{u_{1}}+\dfrac{1}{u_{3}}+\dfrac{1}{u_{5}}=\dfrac{59}{45} $.

Bài 5. Trong mặt phẳng tọa độ Oxy, cho điểm $ I(2;-5) $ và đường thẳng $ d:3x-2y+3=0. $ Viết phương trình đường thẳng $ d’ $ là ảnh của $ d $ qua phép đối xứng tâm $ I. $

Bài 6. Cho hình chóp $ S.ABCD $ có đáy $ ABCD $ là hình thang có $ AD $ là đáy lớn, $ AD=2BC. $ Gọi $ O $ là giao điểm của $ AC $ và $ BD. $ Gọi $ G_{1},G_{2} $ lần lượt là trọng tâm $ \Delta SCD, \Delta SAB, \ E $ là trung điểm $ SD. $
a)  Mặt phẳng $ (BCE) $ cắt $ SA $ tại $ F. $ Chứng minh: $ F $ là trung điểm $ SA. $
b) Chứng minh $ G_{1}G_{2} \parallel (SAD) $
c) Chứng minh $ (OG_{1}G_{2}) \parallel (SBC) $
d) Gọi $ M $ là điểm trên cạnh $ AB $ sao cho $ AB=4AM. $ Mặt phẳng $ (P) $ qua $ M $ và song song với $ BC, SD. $ Xác định thiết diện của hình chóp với mặt phẳng $ (P). $ Thiết diện là hình gì?

Hết

Đáp án

[userview]

Bài 1.

a) Phương trình tương đương với
$$
\begin{aligned}
& \cos x+\sqrt{3} \sin x=2 \sin 3 x \\
\Leftrightarrow & \frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x=\sin 3 x \\
\Leftrightarrow & \sin \left(x+\frac{\pi}{6}\right)=\sin 3 x \\
\Leftrightarrow x+\frac{\pi}{6}=3 x+k 2 \pi \text { hoặc } x+\frac{\pi}{6}=\pi-3 x+k 2 \pi \\
\Leftrightarrow x=\frac{\pi}{12}+k \pi \text { hoặc } x=\frac{5 \pi}{24}+\frac{k \pi}{2}, k \in \mathbb{Z}
\end{aligned}
$$

Bài 2. Gọi $\overline{a b c d}(a \neq 0)$ là số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7 .
$\overline{a b c d}:$ Có $A_{7}^{4}=840$ số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7
$\Longrightarrow|\Omega|=840$Gọi A là biên có sao cho số dược lậy là một số có mặt chữ số $6 .$
$$
|A|=4 . A_{6}^{3}=480 \Longrightarrow P(A)=\frac{|A|}{|\Omega|}=\frac{4}{7}
$$

Bài 3. 

\begin{aligned}
&2 C_{n+6}^{5}=7 A_{n+4}^{3} \Longleftrightarrow 2 \cdot \frac{(n+6) !}{5 !(n+1) !}=7 \cdot \frac{(n+4) !}{(n+1) !} \Longleftrightarrow \frac{(n+6) !}{(n+4) !}=420 \Longleftrightarrow(n+6)(n+5)=\\
&420 \Longleftrightarrow n^{2}+11 n-390=0 \Longleftrightarrow\left[\begin{array}{l}
n=15 \\
n=-26
\end{array} \Longleftrightarrow n=15(\text { vì n là số tự nhiên })\right.\\
&\text { Công thức } \mathrm{SHTQ}: T_{k+1}=C_{15}^{k} \cdot\left(2 x^{3}\right)^{15-k} \cdot\left(-\frac{3}{x^{2}}\right)^{k}=C_{15}^{k} \cdot 2^{15-k} \cdot(-3)^{k} \cdot x^{45-5 k}\\
&\text { Để số hạng không chứa } x \Longleftrightarrow 45-5 k=0 \Longleftrightarrow k=9 \text { . }\\
&\text { Vậy số hạng không chứa } \mathrm{x}: T_{10}=C_{15}^{9} .2^{6} \cdot(-3)^{9}=-6304858560 \text { . }
\end{aligned}

Bài 4. $\left\{\begin{array}{l}
u_{1}+u_{3}+u_{5}=15(1) \\
\frac{1}{u_{1}}+\frac{1}{u_{3}}+\frac{1}{u_{5}}=\frac{59}{45}(2) \end{array} \right.$
$(1) \Longleftrightarrow 3 u_{3}=15 \Longleftrightarrow u_{3}=5 $
$(2) \Longleftrightarrow \frac{1}{u_{1}}+\frac{1}{5}+\frac{1}{u_{5}}=\frac{59}{45} \Longleftrightarrow \frac{1}{u_{1}}+\frac{1}{u_{5}}=\frac{10}{9} $

$\Longleftrightarrow 9\left(u_{1}+u_{5}\right)=10 u_{1} u_{5} $

$\Longleftrightarrow 9.2 u_{3}= 10\left(u_{3}-2 d\right)\left(u_{3}+2 d\right)$

$\Longleftrightarrow 90=10\left(u_{3}^{2}-4 d^{2}\right)=25-4 d^{2}=9 $

$\Longleftrightarrow d^{2}=4$

$\Longleftrightarrow d=2(\text{vì} d>0) $
$u_{3}=5 \Longleftrightarrow u_{1}+2 d=5 \Longleftrightarrow u_{1}=5-2 d=1$.
và $u_{1}=1,d=2$

Bài 5. 

Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $\mathrm{M}$ qua phép đối xứng tâm $\mathrm{I} \Longleftrightarrow \mathrm{I}$ là trung điểm của $\mathrm{MM}^{\prime} \Longleftrightarrow$
$$
\left\{\begin{array}{l}
x_{I}=\frac{x_{M}+x_{M^{\prime}}}{2} \\
y_{I}=\frac{y_{M}+y_{M^{\prime}}}{2}
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
4=x+x^{\prime} \\
-10=y+y^{\prime}
\end{array} \Longleftrightarrow\left\{\begin{array}{l}
x=4-x^{\prime} \\
y=-10-y^{\prime}
\end{array}\right.\right.\right.
$$
Ta có: $3 x-2 y+3=0 \Longleftrightarrow 3\left(4-x^{\prime}\right)-2\left(-10-y^{\prime}\right)+3=0 \Longleftrightarrow 12-3 x^{\prime}+20+2 y^{\prime}+3=0 \Longleftrightarrow$
$3 x^{\prime}-2 y^{\prime}-35=0$
Vậy M’ thuộc dường thẳng d’:3x-2y-35=0.
Vậy ảnh của đường thẳng d qua phép đối xứng tâm I là đường thẳng $\mathrm{d}^{\prime}: 3 \mathrm{x}-2 \mathrm{y}-35=0 .$

Bài 6. 

a) Ta có: $C \in(S A C) \cap(B C E)(1)$.
Trong $(S B D)$ gọi $\mathrm{K}$ là giao diểm của $\mathrm{SO}$ và $\mathrm{BE}$ mà $S O \subset(S A C), B E \subset(B C E)=K \in$
$(S A C) \cap(B C E)(2)$
$(1)(2) \Longrightarrow C K=(S A C) \cap(B C E)$
Trong $(S A C)$ gọi $\mathrm{F}$ là giao điểm của $\mathrm{SA}$ và $\mathrm{CK}$ mà $\mathrm{CK} \subset(B C E)=F=\operatorname{SAn}(B C E) .$ $\mathrm{Vi} A D \| B C=\frac{O C}{O A}=\frac{O B}{O D}=\frac{B C}{A D}=\frac{1}{2} \Longleftrightarrow \frac{C O}{C A}=\frac{B O}{B D}=\frac{1}{3}$
Xét $\triangle S O D$ : Áp dụng định lý Menelaus với 3 điểm $\mathrm{B}, \mathrm{K}, \mathrm{E}$ thẩng hàng ta có:
$\frac{C O}{C A} \cdot \frac{K S}{K O} \cdot \frac{F A}{F S}=1 \Longleftrightarrow \frac{F A}{F S}=1 \Longleftrightarrow \mathrm{F}$ là trung điẻm $\mathrm{SA}$
b) Trong (SAB), goi P là giao điểm của $S G_{1}$ và AB. Vì $G_{1}$ là trọng tâm của $\triangle S A B=P$
là trung điểm của AB.

Trong (SCD), gọi P là giao điểm của $S G_{2}$ và CD. Vì $G_{2}$ là trọng tàm của $\triangle S C D=\mathrm{Q}$
là trung điểm của CD. Xét $\triangle S P Q$ ta có: $\frac{S G_{1}}{S P}=\frac{2}{3}=\frac{S G_{2}}{S Q}=G_{1} G_{2} \| P Q(3)$

Xét hình thang ABCD ta có: PQ là đường trung bình của hình thang ABCD (do P,Q làn
lượt là trung điểm của $\mathrm{AB}, \mathrm{CD} \Longrightarrow P Q \| A D(4)$
$$
\text { Tì }(3)(4)=G_{1} G_{2}\left\|A D, \operatorname{mà} \mathrm{AD} \subset(\mathrm{SAD})=G_{1} G_{2}\right\|(S A D)
$$
c) Ta có: $G_{1} G_{2} \| A D$ mà $A D\left\|B C=G_{1} G_{2}\right\| B C=G_{1} G_{2} \|(S B C)(5)$
Trong (SAB), gọi H là giao điểm của $A G_{1}$ và $\mathrm{SB}$. Vì $G_{1}$ là trọng tần của $\triangle S A B=\mathrm{H}$
là trung điểm của $\mathrm{SB}$. Xét $\triangle H A C$ ta có: $\frac{A O}{A C}=\frac{2}{3}=\frac{A G_{1}}{A H}=O G_{1}\left\|C H \operatorname{mà} C H \subset(S B C)=O G_{1}\right\|(S B C)(6)$
Tì $(5)(6)=\left(O G_{1} G_{2}\right) \|(S B C)$
d) Ta có: $M \in(P) \cap(A B C D) \operatorname{mà}(P)\left\|B C=(P) \cap(A B C D)=x M x^{\prime}\right\| B C$.
Trong (ABCD), gọi N là giao diểm của xMx’ và CD.
Ta có: $N \in(P) \cap(S C D) \operatorname{mà}(P)\left\|S D=(P) \cap(S C D)=y N y^{\prime}\right\| S D$
Trong (SCD) gọi I là giao diểm của yNy’ và SC.
Ta có: $I \in(P) \cap(S B C) \operatorname{mà}(P)\left\|B C \Longrightarrow(P) \cap(S B C)=t I t^{\prime}\right\| B C .$
Trong (SBC), gọi J là giao điểm của tIt’ và SB. $((P) \cap(A B C D)=M N$
$\Longrightarrow$ thiệt diê
Ta có: $M N\|I J\| A D=M N I J$ là hình thang.

[/userview]

Đáp án đề thi học kì 1 môn toán lớp 10 trường Phổ thông Năng khiếu năm 2016

Bài 1. Tìm m để phương trình $\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ vô nghiệm

Bài 2. Gọi $(P)$ là đồ thị của hàm số: $y= x^2 + bx + c \, \, (b,c \in \mathbb{R} )$. Biết các điểm $A(1;-4)$, $B(2;-3)$, thuộc $(P)$. \
Tìm tọa độ giao điểm của $(P)$ và $(P’)$, với $(P’)$ là đồ thị của hàm số $y= (2x-1)^2 -4$

Bài 3. Cho hệ phương trình: $\left\{ \begin{array}{l}
x+\dfrac{1}{m} \sqrt{y} =4 \\
\dfrac{1}{m} x + \sqrt{y} = \dfrac{2}{m} + 2
\end{array} \right.$, với m là tham số và $m \ne 0$.

Định m để hệ phương trình có nghiệm duy nhất.

Bài 4. Giải các phương trình sau:

a) $\sqrt{2x+1}+\sqrt{x-3}=4$
b) $x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$

Bài 5. Chứng minh đẳng thức: $\tan^2 a – \tan^2 b = \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$

Bài 6. Cho tam giác $ABC$ có các đỉnh $A(-1;3)$, $B(-3;-3)$, $C(2;2)$. Chứng minh tam giác $ABC$ là tam giác vuông và tìm trực tâm tam giác $ABC$.

Bài 7.  Cho hình bình hành $ABCD$ với $AB=6a$, $AD=3a$, $\angle ABC =60^0$. Gọi $M,N$ thỏa: $\overrightarrow{MA}+2 \overrightarrow{MB}=\overrightarrow{0}$, $3 \overrightarrow{ND}+2 \overrightarrow{NC}=\overrightarrow{0}$.
a) Tính $\overrightarrow{AM}. \overrightarrow{AD}$.
b) Tính độ dài cạnh $AN$ theo $a$.
c) Gọi $G$ là trọng tâm tam giác $AMN$. Tìm $x$ và $y$ thỏa: $\overrightarrow{BG}= x \overrightarrow{BA} + y \overrightarrow{BD}$.

Hết

Đáp án

[userview]

ptnk10hk12016

[/userview]