Thời gian làm bài 150 phút
Bài 1: ( 1,0 điểm)
Cho $x, y$ là hai số thực thỏa mãn $x y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1$.
Tính giá trị của biểu thức $M=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)$.
Bài 2: (2,5 điểm)
a) Giải phương trình $\sqrt{x+4}+|x|=x^2-x-4$
b) Giải hệ phương trình $\left\{\begin{array}{l}\frac{x}{y+z}=2 x-1 \\\ \frac{y}{z+x}=3 y-1 \\\ \frac{z}{x+y}=5 z-1\end{array}\right.$
Bài 3: (1,5 điểm)
Cho hình vuông $A B C D$. Trên các cạnh $B C$ và $C D$ lần lượt lấy các điểm $M$ và $N$ sao cho $\widehat{M A N}=45^{\circ}$.
a) Chứng minh $M N$ tiếp xúc với đường tròn tâm $A$ bán kính $A B$.
b) Kė $M P$ song song với $A N$ ( $P$ thuộc đoạn $A B$ ) và kẻ $N Q$ song song với $A M$ ( $Q$ thuộc đoạn $A D$ ). Chứng minh $A P=A Q$.
Bài 4: (2,0 điếm)
Cho ba số thực dương $a, b, c$ thỏa $a+b+c=3$.
a) Chứng minh rằng $a b+b c+c a \leq 3$.
b) Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}$.
Bài 5: (2,0 điểm)
Cho tam giác $A B C$ nhọn $(A B<A C)$ có các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ tại $I$. Đường thẳng qua $A$ vuông góc với $I H$ tại $K$ và cắt $B C$ tại $M$.
a) Chứng minh tứ giác $I F K C$ nội tiếp và $\frac{B I}{B D}=\frac{C I}{C D}$.
b) Chứng minh $M$ là trung điểm của $B C$.
Bài 6: (1,0 điểm )
Số nguyên dương $n$ được gọi là “số tốt” nếu $n+1$ và $8 n+1$ đều là các số chính phương.
a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có $1,2,3$ chữ số.
b) Tìm các số nguyên $k$ thỏa mãn $|k| \leq 10$ và $4 n+k$ là hợp số với mọi $n$ là “số tốt”.
Đáp án do Star Education thực hiện