Tag Archives: 2022

ĐỀ VÀ ĐÁP ÁN THI VÀO LỚP 10 CHUYÊN TOÁN SGD TPHCM NĂM 2022

Thời gian làm bài 150 phút

Bài 1: ( 1,0 điểm)
Cho $x, y$ là hai số thực thỏa mãn $x y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1$.
Tính giá trị của biểu thức $M=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)$.

Bài 2: (2,5 điểm)
a) Giải phương trình $\sqrt{x+4}+|x|=x^2-x-4$
b) Giải hệ phương trình $\left\{\begin{array}{l}\frac{x}{y+z}=2 x-1 \\\ \frac{y}{z+x}=3 y-1 \\\ \frac{z}{x+y}=5 z-1\end{array}\right.$

Bài 3: (1,5 điểm)
Cho hình vuông $A B C D$. Trên các cạnh $B C$ và $C D$ lần lượt lấy các điểm $M$ và $N$ sao cho $\widehat{M A N}=45^{\circ}$.
a) Chứng minh $M N$ tiếp xúc với đường tròn tâm $A$ bán kính $A B$.
b) Kė $M P$ song song với $A N$ ( $P$ thuộc đoạn $A B$ ) và kẻ $N Q$ song song với $A M$ ( $Q$ thuộc đoạn $A D$ ). Chứng minh $A P=A Q$.
Bài 4: (2,0 điếm)
Cho ba số thực dương $a, b, c$ thỏa $a+b+c=3$.
a) Chứng minh rằng $a b+b c+c a \leq 3$.
b) Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}$.

Bài 5: (2,0 điểm)
Cho tam giác $A B C$ nhọn $(A B<A C)$ có các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ tại $I$. Đường thẳng qua $A$ vuông góc với $I H$ tại $K$ và cắt $B C$ tại $M$.
a) Chứng minh tứ giác $I F K C$ nội tiếp và $\frac{B I}{B D}=\frac{C I}{C D}$.
b) Chứng minh $M$ là trung điểm của $B C$.

Bài 6: (1,0 điểm )
Số nguyên dương $n$ được gọi là “số tốt” nếu $n+1$ và $8 n+1$ đều là các số chính phương.
a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có $1,2,3$ chữ số.
b) Tìm các số nguyên $k$ thỏa mãn $|k| \leq 10$ và $4 n+k$ là hợp số với mọi $n$ là “số tốt”.

Đáp án do Star Education thực hiện

ĐỀ và ĐÁP ÁN THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU NĂM 2022

Bài 1. Cho hai phương trình: $x^2-2 a x+3 a=0 \quad$ (1) và $x^2-4 x+a=0$
a) Chứng minh ít nhất một trong hai phương trình trên có nghiệm.
b) Giả sử hai phương trình đều có hai nghiệm phân biệt. $T_1, T_2$ là tổng bình phương các nghiệm của (1) và $(2)$. Chứng minh $T_1+5 T_2>68$

Bài 2. Cho các số dương $a \geq b \geq c$ thỏa $a^2+b^2+c^2=1$. Chứng minh:
$$
\sqrt{4+(b+c)^2} \leq 2 a+b+c \leq \sqrt{4+4 a^2}
$$

Bài 3. Cho phương trình: $2^x+5^y=k^2\left(x ; y ; k \in \mathbb{N}^*\right)$
a) Chứng minh phương trình trên vô nghiệm khi $y$ là số chẵn.
b) Tìm $k$ để phương trình có nghiệm.

Bài 4. Cho tam giác $A B C$ có trực tâm $H, D$ đối xứng với $H$ qua $A$. $I$ là trung điểm của $C D$, đường tròn $(I)$ đường kính $C D$ cắt $A B$ tại $E, F(E$ thuộc tia $A B)$
a) Chứng minh $\angle E C D=\angle F C H$ và $A E=A F$.
b) Chứng minh $H$ là trực tâm của $\triangle C E F$.
c) $B H$ cắt $A C$ tại $K$. Chứng minh $E F K H$ nội tiếp và $E F$ là tiếp tuyến chung của $(C K E)$ và $(C K F)$.
d) Chứng minh tiếp tuyến tại $C$ của $(I)$ và tiếp tuyến tại $K$ của $(K E F)$ cắt nhau trên đường thẳng $A B$.

Bài 5. Cho dãy số nguyên $a_1 \geq a_2 \geq a_3 \geq \ldots \geq a_{21} \geq a_{22}$ thỏa mãn:
i) $\left|a_i\right| \leq 11$ và $a_i \neq 0 \forall i=1 ; 2 ; \ldots ; 22$
ii) $a_1+a_2+a_3+\ldots+a_{22}=1$
a) Chứng minh: $a_1 ; a_2>0$
b) Chứng minh có thể chọn $k \geq 1$ số từ $a_2 ; a_3 ; \ldots ; a_{22}$ để tổng $S$ của chúng thỏa $-10 \leq a_1+S \leq 0$.
c) Chứng minh từ dãy đã cho có thể chọn $n \geq 1$ số có tổng bằng 0 .

Đề thi và đáp án học sinh giỏi quốc gia năm 2022 (VMO 2022)

Ngày thi thứ nhất. Thời gian làm bài 180 phút.

Bài 1 (5,0 điểm)
Cho $a$ là một số thực không âm và dãy số $\left(u_n\right)$ được xác định bởi
$$
u_1=6, u_{n+1}=\dfrac{2 n+a}{n}+\sqrt{\dfrac{n+a}{n} u_n+4}, \quad \forall n \geq 1 .
$$
a) Với $a=0$, chứng minh rằng $\left(u_n\right)$ có giới hạn hữu hạn và tìm giới hạn đó.
b) Với mọi $a \geq 0$, chứng minh rằng $\left(u_n\right)$ có giới hạn hữu hạn.

Bài 2 (5,0 điểm)
Tìm tất cả các hàm số $f:(0 ;+\infty) \rightarrow(0 ;+\infty)$ thoả mãn
$$
f\left(\dfrac{f(x)}{x}+y\right)=1+f(y), \forall x, y \in(0 ;+\infty) .
$$

Bài 3(5,0$ điểm)
Cho tam giác nhọn $A B C$. Các điểm $E, F$ lần lượt thay đổi trên tia đối của các tia $B A, C A$ sao cho $B F=C E(E \neq B, F \neq C)$. Gọi $M, N$ tương ứng là trung điểm của $B E, C F$ và $D$ là giao điểm của $B F$ với $C E$.
a) Gọi $I, J$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $D B E, D C F$. Chứng minh rằng $M N$ song song với $I J$.
b) Gọi $K$ là trung điểm của $M N$ và $H$ là trực tâm của tam giác $A E F$. Chứng minh rằng $H K$ luôn đi qua một điểm cố định.

Bài 4 (5,0 điểm)
Với mỗi cặp số nguyên dương $(n, m)$ thoả mãn $n<m$, gọi $s(n, m)$ là số các số nguyên dương thuộc đoạn $[n ; m]$ và nguyên tố cùng nhau với $m$. Tìm tất cả các số nguyên dương $m \geq 2$ thoả mãn đồng thời hai điều kiện sau:
i) $\dfrac{s(n, m)}{m-n} \geq \frac{s(1, m)}{m}$ với mọi $n=1,2, \ldots, m-1$;
ii) $2022^m+1$ chia hết cho $m^2$.

Ngày thi thứ hai. Thời gian làm bài 180 phút.

Bài 5(6,0 điểm)
Cho $P(x)$ và $Q(x)$ là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của $P(x)$ đều không vượt quá 2021 và $Q(x)$ có ít nhất một hệ số lớn hơn 2021. Giả sử $P(2022)=Q(2022)$ và $P(x), Q(x)$ có chung nghiệm hữu tỷ $\dfrac{p}{q} \neq 0(p, q \in \mathbb{Z} ; p$ và $q$ nguyên tố cùng nhau). Chứng minh rằng $|p|+n|q| \leq Q(n)-P(n)$ với mọi $n=1,2, \ldots, 2021$.

Bài 6 (7,0 điểm)
Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu $x_i\left(1 \leq x_i \leq 6\right)$ là số chấm trên mặt xuất hiện của con súc sắc thứ $i(i=1,2,3,4)$.
a) Tính số các bộ $\left(x_1, x_2, x_3, x_4\right)$ có thể có.
b) Tính xác suất để có một số trong $x_1, x_2, x_3, x_4$ bằng tổng của ba số còn lại.
c) Tính xác suất để có thể chia $x_1, x_2, x_3, x_4$ thành hai nhóm có tổng bằng nhau.

Bài 7 (7,0 điểm)
Cho tam giác $A B C$ có $B, C$ cố định trên đường tròn $(O)$ ( $B C$ không đi qua tâm $O$ ) và điểm $A$ thay đổi trên cung lớn $\overparen{B C}$ sao cho $A B \neq A C$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với $B C$ tại $D$. Gọi $I_a$ là tâm đường tròn bàng tiếp góc $\widehat{B A C}, L$ là giao điểm của $I_a D$ với $O I$ và $E$ là điểm trên $(I)$ sao cho $D E$ song song với $A I$.
a) Đường thẳng $L E$ cắt đường thẳng $A I$ tại $F$. Chứng minh rằng $A F=A I$.
b) Trên đường tròn $(J)$ ngoại tiếp tam giác $I_a B C$ lấy điểm $M$ sao cho $I_a M$ song song với $A D, M D$ cắt lại $(J)$ tại $N$. Chứng minh rằng trung điểm $T$ của $M N$ luôn thuộc một đường tròn cố định.

Đáp án chính thức

(Nguồn: Bộ giáo dục Việt Nam)

Đề và đáp án thi vào lớp 10 Chuyên Toán TPHCM năm 2022

Bài 1. (1,0 diểm)
Cho $x, y$ là hai số thực thỏa mãn $x y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1$.
Tính giá trị của biểu thức $M=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)$.
Bài 2. (2,5 diểm)
a) Giải phương trình $\sqrt{x+4}+|x|=x^2-x-4$.
Bài 3. (1,5 diểm)
Cho hình vuông $A B C D$ Trên các cạnh $B C$ và $C D$ lần lượt lấy các điểm $M$ và $N$ sao cho $\angle M A N=45^{\circ}$.
a) Chứng minh $M N$ tiếp xúc với dường tròn tâm $A$ bán kính $A B$.
b) Kẻ $M P$ song song với $A N$ ( $P$ thuộc đoạn $A B)$ và kẻ $N Q$ song song với $A M(Q$ thuộc đoạn $A D)$. Chứng minh $A P=A Q$.
Bài 4. (2,0 diểm)
Cho ba số thực dương $a, b, c$ thỏa $a+b+c=3$.
a) Chứng minh rằng $a b+b c+c a \leq 3$.
b) Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}$.
Bài 5. (2,0 diểm)
Cho tam giác $A B C$ nhọn $(A B<A C)$ có các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ tại $I$. Đường thẳng qua $A$ vuông góc với $I H$ tại $K$ và cắt $B C$ tại $M$.
a) Chứng minh tứ giác $I F K C$ nội tiếp và $\frac{B I}{B D}=\frac{C I}{C D}$.
b) Chứng minh $M$ là trung diểm của $B C$.

Bài 6. (1,0 diểm)
Số nguyên dương $n$ được gọi là “số tốt” nếu $n+1$ và $8 n+1$ dều là các số chính phương.
a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số.
b) Tìm các số nguyên $k$ thỏa mãn $|k| \leq 10$ và $4 n+k$ là hợp số với mọi $n$ là “số tốt”.

Đáp án được thực hiện vởi Star Education

Bài 1.

Điều kiện: $x y \leq 1$. Biến đổi giả thiết
$$
\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1-x y \Leftrightarrow\left(1+x^2\right)\left(1+y^2\right)=(1-x y)^2 \Leftrightarrow(x+y)^2=0 \Leftrightarrow y=-x .
$$
Thay vào biểu thức $M$ ta được
$$
\begin{aligned}
M & =\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right) \
& =\left(x+\sqrt{1+x^2}\right)\left(-x+\sqrt{1+x^2}\right) \
& =\left(\sqrt{1+x^2}\right)^2-x^2=1
\end{aligned}
$$

Bài 2.

a)

Lời giải:
a) Điều kiện: $\left\{\begin{array}{l}x+4 \geq 0 \\\\ x^2-x-4 \geq 0\end{array} \right.$

$\Leftrightarrow\left[\begin{array}{l}-4 \leq x \leq \frac{1-\sqrt{17}}{2} \\\\ x \geq \frac{1+\sqrt{17}}{2}\end{array}\right.$
Phương trình đã cho tương đương
$$
x^2-\sqrt{x+4}-|x|-(x+4)=0 \Leftrightarrow(|x|+\sqrt{x+4})(|x|-\sqrt{x+4}-1)=0 \Leftrightarrow|x|-1=\sqrt{x+4}
$$

  • Nếu $x \geq 0,(1) \Rightarrow x-1=\sqrt{x+4}$
    $$
    \Rightarrow x^2-2 x+1=x+4 \Leftrightarrow x^2-3 x-3=0 \Leftrightarrow\left[\begin{array}{l}
    x=\frac{3+\sqrt{21}}{2} \text { (Nhận) } \\\\
    x=\frac{3-\sqrt{21}}{2} \text { (Loại) }
    \end{array}\right.
    $$
  • Nếu $x<0,(1) \Rightarrow-x-1=\sqrt{x+4}$
    $$
    \Rightarrow x^2+2 x+1=x+4 \Leftrightarrow x^2+x-3=0 \Leftrightarrow\left[\begin{array}{l}
    x=\frac{-1+\sqrt{13}}{2} \text { (Loại) } \\\\
    x=\frac{-1-\sqrt{13}}{2} \text { (Nhận) }
    \end{array} .\right.
    $$
    Thử lại, ta được $x=\frac{3+\sqrt{21}}{2}$ và $x=\frac{-1-\sqrt{13}}{2}$ là các nghiệm của phương trình đã cho.

b) Điều kiện: $(x+y)(y+z)(z+x) \neq 0$. Hệ dã cho tương dương
$$
\left\{\begin{array} { l }
{ \frac { x } { y + z } + 1 = 2 x } \\\\
{ \frac { y } { z + x } + 1 = 3 y } \\\\
{ \frac { z } { x + y } + 1 = 5 z }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ \frac { x + y + z } { y + z } = 2 x } \\\\
{ \frac { x + y + z } { z + x } = 3 y } \\\\
{ \frac { x + y + z } { x + y } = 5 z }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x+y+z=2 x(y+z) \\\\
x+y+z=3 y(z+x) \\\\
x+y+z=5 z(x+y)
\end{array}\right.\right.\right.
$$
Dễ thấy $x y z \neq 0$. Từ trên suy ra
$$
2 x(y+z)=3 y(z+x)=5 z(x+y) \Leftrightarrow 2\left(\frac{1}{y}+\frac{1}{z}\right)=3\left(\frac{1}{z}+\frac{1}{x}\right)=5\left(\frac{1}{x}+\frac{1}{y}\right) .
$$
Ta tính được $\frac{1}{z}=\frac{19}{x}, \frac{1}{y}=\frac{11}{x} \Rightarrow x=11 y=19 z$. Thay lại vào phương trình $(*)$ ta dược
$$
x+\frac{x}{11}+\frac{x}{19}=2 x\left(\frac{x}{11}+\frac{x}{19}\right) \Leftrightarrow 1+\frac{1}{11}+\frac{1}{19}=2\left(\frac{x}{11}+\frac{x}{19}\right) \Leftrightarrow x=\frac{239}{60} .
$$
Suy ra $y=\frac{239}{660}, z=\frac{239}{1140}$.
Vậy nghiệm duy nhất của hệ là $(x, y, z)=\left(\frac{239}{60}, \frac{239}{660}, \frac{239}{1140}\right)$.

Bài 3.

a) Trên tia đối của tia $D C$ lấy $F$ sao cho $D F=B M$.
Xét $\triangle A D F$ và $\triangle A B M$ có $A D=A B, \angle A D F=\angle A B M=90^{\circ}$ và $D F=B M$.
Do đó $\triangle A D F=\triangle A B M(\mathrm{c}-\mathrm{g}-\mathrm{c})$
$\Rightarrow \angle D A F=\angle B A M$ và $A F=A M$.
Suy ra $\angle D A F+\angle D A N=\angle B A M+\angle D A N=90^{\circ}-45^{\circ}=45^{\circ}$.
$\Rightarrow \angle N A F=45^{\circ}=\angle N A M$, mà $A F=A M$ nên $\triangle N A F=\triangle N A M$. (c-g-c)
Kẻ $A E \perp M N(E \in M N) \Rightarrow A E=A D=A B \Rightarrow M N$ tiếp xúc với $(A, A B)$.
b) Ta có: $\triangle N A F=\triangle N A M \Rightarrow \angle A N F=\angle A N M$, mà $\angle A N F=\angle N A P($ do $D C | A B)$, dẫn đến $\angle A N M=\angle N A P$.

Từ $A N | M P \Rightarrow A P M N$ là hình thang, kết hợp với $\angle A N M=\angle N A P$, ta được $A P M N$ là hình thang cân.
Do đó $A P=M N$, tương tự ta cũng có $A Q=M N$, dẫn dến $A P=A Q$.

Bài 4.

a)

a) Ta có $a^2+b^2 \geq 2 a b, b^2+c^2 \geq 2 b c, c^2+a^2 \geq 2 c a$ nên
$$
2\left(a^2+b^2+c^2\right) \geq 2(a b+b c+c a) \Leftrightarrow a^2+b^2+c^2 \geq a b+b c+c a .
$$
Khi đó
$$
\begin{aligned}
9=(a+b+c)^2 & =a^2+b^2+c^2+2 a b+2 b c+2 c a \
& \geq a b+b c+c a+2(a b+b c+c a)=3(a b+b c+c a)
\end{aligned}
$$
Do đó $a b+b c+c a \leq 3$.
Dấu “=” xảy ra khi và chỉ khi $a=b=c=1$.

b)

b) Ta có
$$
\begin{aligned}
& \frac{a}{b^2+1}-a=\frac{-a b^2}{b^2+1} \geq-\frac{a b^2}{2 b}=-\frac{a b}{2} \
& \frac{b}{c^2+1}-b=\frac{-b c^2}{c^2+1} \geq-\frac{b c^2}{2 c}=-\frac{b c}{2} \
& \frac{c}{a^2+1}-c=\frac{-c a^2}{a^2+1} \geq-\frac{c a^2}{2 a}=-\frac{c a}{2}
\end{aligned}
$$
Do đó
$$
\begin{aligned}
& \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c^2}{a^2+1}-(a+b+c) \geq-\frac{a b+b c+c a}{2} \geq-\frac{3}{2} \
\Rightarrow & \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1} \geq-\frac{3}{2}+a+b+c=\frac{3}{2}
\end{aligned}
$$
Vậy giá trị nhỏ nhất của $P$ là $\frac{3}{2}$, dấu “=” xảy ra khi và chỉ khi $a=b=c=1$.

Bài 5.

Vẽ dường tròn $(O)$ ngoại tiếp $\triangle A B C$
a) Ta có: Các tứ giác $A F D C, A K D I, B F E C, A F H E$ nội tiếp.
$\Rightarrow H F \cdot H C=H D \cdot H A=H K . H I \Rightarrow I F K C$ nội tiếp.
Mặt khác: $\widehat{I F B}=\widehat{A C B}=\widehat{B F D}$ (do các tứ giác $B F E C, A F D C$ nội tiếp)
$\Rightarrow F B$ là phân giác $\widehat{I F D}$.
Mà $F B \perp F C$ nên $F B$ là phân giác trong, $F C$ là phân giác ngoài $\triangle I F D$
$$
\Rightarrow \frac{B I}{B D}=\frac{C I}{C D}
$$
b) Gọi $S$ là giao điểm thứ hai của $I A$ và đường tròn ngoại tiếp $O$.
Ta chứng minh được $I F . I E=I B . I C=I S . I A$
$\Rightarrow A S F E$ nội tiếp hay 5 điểm $A, S, F, H, E$ cùng thuộc đường tròn đường kính $A H$
$\Rightarrow \widehat{A S H}=\widehat{A F H}=90^{\circ}$
Mặt khác do: $I K \perp A M, A D \perp I M$ nên $H$ là trực tâm $\triangle A I M \Rightarrow M H \perp A I$.
Từ đó, ta có: $S, H, M$ thẳng hàng.
Vẽ đường kính $A Q$ của đường tròn ngoại tiếp $\triangle A B C$.
Ta có $\widehat{A S Q}=90^{\circ}$ nên $S, H, M, Q$ thẳng hàng
Xét tứ giác $B H C Q$ có: $B H / / C Q$ (cùng $\perp A C)$ và $C H / / B Q($ cùng $\perp A B)$
Nên $B H C Q$ là hình bình hành nghĩa là có $M$ là trung điểm $B C$.

Bài 6.

Lời giải:
a) Ví dụ: $3\left(3+1=2^2\right.$ và $\left.8 \cdot 3+1=5^2\right), 15\left(15+1=4^2\right.$ và $\left.8 \cdot 15+1=11^2\right)$ và 120 $\left(120+1=11^2\right.$ và $\left.8 \cdot 120+1=31^2\right)$.
b) Nhận xét $a^2 \equiv 0,1(\bmod 3)$ với mọi $a \in \mathbb{N}$.
Đặt $n+1=x^2$ và $8 n+1=y^2(x, y \in \mathbb{N})$.

  • Nếu $n \equiv 1(\bmod 3)$ thì $x^2=n+1 \equiv 2(\bmod 3)$, vô lí.
  • Nếu $n \equiv 2(\bmod 3)$ thì $y^2=8 n+1 \equiv 17 \equiv 2(\bmod 3)$, vô lí.
    Vậy $n \equiv 0(\bmod 3)$ hay $n$ chia hết cho 3 .
    Nếu $k=1,5,7,-5,-7$ thì với $n=3$ (là số tốt), $4 n+k$ nhận các giá trị $13,17,19,7,5$ là các số nguyên tố. (Loại)
    Nếu $k=-1$, với $n=15$ (là số tốt) thì $4 n+k=59$ là số nguyên tố. (Loại)
    Nếu $k=-10$, với $n=3$ thì $4 n+k=2$ là số nguyên tố. (Loại)
    Nếu $k=-9$, với $n=3$ thì $4 n+k=3$ là số nguyên tố. (Loại)
    Nếu $k \geq-8, k$ chẵn hoặc $k$ chia hết cho 3 thì $4 n+k \geq 4 \cdot 3-8=4$ và $4 n+k$ có ước là 2 hoặc 3 , do đó $4 n+k$ là hợp số.
    Vậy các giá trị cần tìm của $k$ là
    $$
    k \in{-8,-6,-4,-3,-2,0,2,3,4,6,8,9,10} .
    $$

Đề thi chọn học sinh giỏi quốc gia 2021 – 2022

Ngày 1 (04/3/2022)

Bài 1 (5,0 điểm)

Cho $a$ là một số thực không âm và dãy số $(u_{n})$ được xác định bởi

$u_{1}=6, u_{n+1}=\dfrac{2n+a}{n} + \sqrt{\dfrac{n+a}{n} u_{n} + 4},  \,\, \forall n \geq 1.$

a) Với $a=0$, chứng minh rằng $(u_{n})$ có giới hạn hữu hạn và tìm giới hạn đó.

b) Với mọi $a\geq 0$, chứng minh rằng $(u_{n})$ có giới hạn hữu hạn.

Bài 2 (5,0 điểm)

Tìm tất cả các hàm số $f: \left( 0; + \infty \right) \rightarrow \left( 0; + \infty \right)$ thỏa mãn

$f\left( \dfrac{f(x)}{x} + y \right) = 1+f(y), \,\, \forall x,y \in \left( 0; + \infty \right).$

Bài 3 (5,0 điểm)

Cho tam giác nhọn $ABC$. Các điểm $E, F$ lần lượt thay đổi trên tia đối của các tia $BA, CA$ sao cho $BF = CE \,\, (E \ne B, F\ne C)$. Gọi $M, N$ tương ứng là trung điểm của $BE, CF$ và $D$ là giao điểm của $BF$ với $CE$.

a) Gọi $I, J$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $DBE, DCF$. Chứng minh rằng $MN$ song song với $IJ$.

b) Gọi $K$ là trung điểm của $MN$ và $H$ là trực tâm của tam giác $AEF$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.

Bài 4 (5,0 điểm)

Với mỗi cặp số nguyên dương $(n, m)$ thỏa mãn $n < m$, gọi $s(n,m)$ là số các số nguyên dương thuộc đoạn $[n;m]$ và nguyên tố cùng nhau với $m$. Tìm tất cả các số nguyên dương $m \geq 2$ thỏa mãn đồng thời hai điều kiện sau:

i) $\dfrac{s(n,m)}{m-n} \geq \dfrac{s(1,m)}{m}$ với mọi $n = 1,2,…,m-1$;

ii) $2022^{m} + 1$ chia hết cho $m^{2}$.

 

Ngày 2 (05/3/2022)

Bài 5 (6,0 điểm)

Cho $P(x)$ và $Q(x)$ là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của $P(x)$ đều không vượt quá 2021 và $Q(x)$ có ít nhất một hệ số lớn hơn 2021. Giả sử $P(2022) = Q(2022)$ và $P(x), Q(x)$ có chung nghiệm hữu tỷ $\dfrac{p}{q} \ne 0 \, (p,q \in \mathbb{Z}$; $p$ và $q$ nguyên tố cùng nhau). Chứng minh rằng $| p | + n | q | \leq Q(n) – P(n)$ với mọi $n = 1, 2, …, 2021$.

Bài 6 (7,0 điểm)

Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu $x_{i} \, (1\leq x_{i} \leq 6)$ là số chấm trên mặt xuất hiện của con súc sắc thứ $i \, (i=1,2,3,4).$

a) Tính số các bộ $(x_{1}, x_{2}, x_{3}, x_{4})$ có thể có.

b) Tính xác suất để có một số trong $x_{1}, x_{2}, x_{3}, x_{4}$ bằng tổng của ba số còn lại.

c) Tính xác suất để có thể chia $x_{1}, x_{2}, x_{3}, x_{4}$ thành hai nhóm có tổng bằng nhau.

Bài 7 (7,0 điểm)

Cho tam giác $A B C$ có $B, C$ cố định trên đường tròn $(O)$ ($B C$ không đi qua tâm $O$) và điểm $A$ thay đổi trên cung lớn $\overparen{B C}$ sao cho $A B \neq A C$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với $B C$ tại $D$. Gọi $I_{a}$ là tâm đường tròn bàng tiếp góc $\widehat{B A C}, \,L$ là giao điểm của $I_{a} D$ với $O I$ và $E$ là điềm trên $(I)$ sao cho $D E$ song song với $A I$.
a) Đường thẳng $L E$ cắt đường thẳng $A I$ tại $F$. Chứng minh rằng $A F=A I$.
b) Trên đường tròn $(J)$ ngoại tiếp tam giác $I_{a} B C$ lấy điểm $M$ sao cho $I_{a} M$ song song với $A D,\, M D$ cắt lại $(J)$ tại $N$. Chứng minh rằng trung điểm $T$ của $M N$ luôn thuộc một đường tròn cố định.