Tag Archives: ChuyenToan

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2021

Bài 1. Cho hệ phương trình: $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\ x+y=m\end{array}\right.$

a) Giải hệ với $m=7$

b) Tìm $m$ sao cho hệ có nghiệm $(x, y)$

Bài 2. Cho $M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}, N=\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}, K=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

a) Chứng minh nếu $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c}$ thì $N=0$

b) Cho $M=K=4, N=1$. Tính tích $a b c$.

Bài 3. Cho dãy $n$ số thực $x_{1} ; x_{2} ; \ldots ; x_{n}(n \geq 5)$ thỏa: $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ và $x_{1}+x_{2}+\ldots x_{n}=1$

a) Chứng minh nếu $x_{n} \geq \frac{1}{3}$ thì $x_{1}+x_{2} \leq x_{n}$

b) Chứng minh nếu $x_{n} \leq \frac{2}{3}$ thì tìm được số nguyên dương $k<n$ sao cho

$\frac{1}{3} \leq x_{1}+x_{2}+\ldots+x_{k} \leq \frac{2}{3}$

Bài 4. a) Tìm tất cả các số tự nhiên $n$ sao cho $(2 n+1)^{3}+1$ chia hết cho $2^{2021}$

b) Tìm tất cả số tự nhiên $n$ và số nguyên tố $p$ sao cho $\frac{2 n+2}{p}$ và $\frac{4 n^{2}+2 n+1}{p}$ là các số nguyên. Chứng minh với $n$ và $p$ tìm được, các số nguyên trên không thể đồng thời là số chính phương.

Bài 5. Cho tam giác $A B C$ vuông tại $A$. Các điểm $E, F$ lần lượt thay đổi trên các cạnh $A B, A C$ sao cho $E F | B C$. Gọi $D$ là giao điểm của $B F$ và $C E, H$ là hình chiếu của $D$ lên $E F$. Đường tròn $(I)$ đường kính $E F$ cắt $B F, C E$ tại $M, N$. ( $M$ khác $F, N$ khác $E$ )

a) Chứng minh $A D$ và đường tròn ngoại tiếp $\triangle H M N$ cùng đi qua tâm $I$ của đường tròn tâm $I$.

b) Gọi $K, L$ lần lượt là hình chiếu vuông góc của $E, F$ lên $B C$ và $P, Q$ tương ứng là giao điểm của $E M, F N$ với $B C$. Chứng minh tứ giác $A E P L, A F Q K$ nội tiếp và $\frac{B P \cdot B L}{C Q \cdot C K}$ không đổi khi $E, F$ thay đổi.

c) Chứng minh nếu $E L$ và $F K$ cắt nhau trên đường tròn $(I)$ thì $E M$ và $F N$ cắt nhau trên đường thẳng $B C$.

Bài 6. Cho $N$ tập hợp $(N \geq 6)$, mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái $a$, $b, c, \ldots, x, y, z$.

a) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 1 chữ cái, và không có chữ cái nào có mặt trong tất cả $N$ tập hợp này.

Chứng minh không có chữ cái nào có mặt trong 6 tập hợp từ $N$ tập đã cho.

b) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 2 chữ cái, và không có hai chữ cái nào cùng xuất hiện trong $N$ tập hợp này.

Hỏi trong số $N$ tập hợp đã cho, có nhiều nhất bao nhiêu tập hợp có chung đúng 2 chữ cái?

 

LỜI GIẢI

 

Bài 1.

a) $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\ x+y=m\end{array}\right.$ (1)

ĐKXĐ: $x \geq 2, y \geq 1$

(1) $\Leftrightarrow\left\{\begin{array}{l}x-2+y-1+2 \sqrt{(x-2)(y-1)}=4 \\ x+y=7\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}2 \sqrt{(x-2)(y-1)}=0 \\ x+y=7\end{array}\right.$

$\Leftrightarrow\left[\left\{\begin{array}{l}x-2=0 \\ x+y=7 \\ y-1=0 \\ x+y=7\end{array} \Leftrightarrow\left\{\left\{\begin{array}{l}x=2 \\ y=5 \\ y=1 \\ x=6\end{array}(n)\right.\right.\right.\right.$

Vậy $(x, y) \in[(2 ; 5),(6 ; 1)]$

b) Đặt $u=\sqrt{x-2}, v=\sqrt{y-1}(u, v \geq 0$

Hệ phương trình trở thành: $\left\{\begin{array}{l}u+v=2 \\ u^{2}+v^{2}=m-3\end{array}\right.$

$\Rightarrow 2 u^{2}-4 u+7-m=0$ (2)

Để hệ (1) có nghiệm thì (2) phải có nghiệm không âm, nhỏ hơn hoặc bằng 2 , khi và chỉ khi:

$\left\{\begin{array} { l }{ \Delta ^ { \prime } \geq 0 } \\ { S > 0 } \\ { P \geq 0 } \\ { ( x _ { 1 } – 2 ) ( x _ { 2 } – 2 ) > 0 } \\ { S \leq 4 }\end{array} \Leftrightarrow \left\{\begin{array}{l}m \geq 7 \\ m \leq 7\end{array}\right.\right.$

Vậy $5 \leq m \leq 7$ thì hệ đã cho có nghiệm $(x, y)$

Bài 2.

a) $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0$.

$M K =\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right) $

$=\frac{1}{b+c}+\frac{b}{a(c+a)}+\frac{c}{a(a+b)}+\frac{a}{b(b+c)}+\frac{1}{c+a}+\frac{c}{b(a+b)}+$

$ \frac{a}{c(b+c)}+\frac{b}{c(c+a)}+\frac{1}{a+b} $

$=N+\frac{b}{c+a}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{c}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{a}{b+c}\left(\frac{1}{b}+\frac{1}{c}\right) $

$=N+\frac{b}{a c}+\frac{c}{a b}+\frac{a}{b c} $

$=N+\frac{a^{2}+b^{2}+c^{2}}{a b c}$

Mà $M K=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N+\frac{a^{2}+b^{2}+c^{2}}{a b c}=\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0$

b) Ta có $M=K=4 ; N=1$

Theo câu a) ta được:

$M K=N+\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow 16=1+\frac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow a^{2}+b^{2}+c^{2}=15 a b c $

$\Rightarrow(a+b+c)^{2}-2(a b+b c+c a)=15 a b c(*)$

Ta có:

$K+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=(a+b+c) N \Rightarrow 7=a+b+c $

$M=4 \Rightarrow a b+b c+c a=4 a b c .$

Thay vào $(*) \Rightarrow 7^{2}-2.4 a b c=15 a b c \Rightarrow a b c=\frac{49}{23}$.

Bài 3.

a) Giả sử rằng $x_{1}+x_{2}>x_{n} \geq \frac{1}{3}>0$

$\Rightarrow x_{2}>0 \Rightarrow x_{i}>0, \forall i \geq 2 \text {. }$

Suy ra $x_{1}+x_{2}+x_{n-2}+x_{n-1}+x_{n} \leq x_{1}+x_{2}+\ldots+x_{n-2}+x_{n-1}+x_{n}=1$

Nhưng $x_{1}+x_{2}>\frac{1}{3}$ và $x_{n-1}, x_{n-2}>\frac{1}{2}\left(x_{1}+x_{2}\right)>\frac{1}{6}$ và $x_{n} \geq \frac{1}{3}$ nên khi cộng theo vế, ta có $V T>1$, vô lý.

Vậy điều giả sử là sai hay nếu $x_{n} \geq \frac{1}{3}$ thì $x_{1}+x_{2} \leq x_{n}$

b) Giả sử không tồn tại số $k$ như trên.

Khi đó tồn tại chỉ số $l \leq n-1$ để

$x_{1}+\ldots+x_{l}<\frac{1}{3} \text { và } x_{1}+\ldots+x_{l+1}>\frac{2}{3}$

Suy ra $x_{l+1}>\frac{1}{3} \Rightarrow x_{k}>\frac{1}{3}>0, \forall k \geq l+1$.

Nếu $l<n-1$ thì tồn tại $x_{l+2}$ do $l+2 \leq n$. Ta có

$x_{l+2} \geq x_{l+1}>\frac{1}{3} \Rightarrow\left(x_{1}+x_{2}+\ldots+x_{l+1}\right)+x_{l+2}>1$, vô lý do $x_{1}+\ldots+x_{n}=1$.

Từ đó $l=n-1$. Để ý rằng $x_{n} \leq \frac{2}{3}$ nên $x_{1}+\ldots+x_{n-1}=1-x_{n} \geq 1-\frac{2}{3}=\frac{1}{3}$.

Kết hợp với $l=n-1$ nên $x_{1}+\ldots+x_{n-1}>\frac{2}{3} \Rightarrow x_{n}<\frac{1}{3}$, vô lý.

Vậy điều giả sử là sai hay phải tồn tại chỉ số $k<n$ để:

$\frac{1}{3} \leq x_{1}+x_{2}+\cdots+x_{k} \leq \frac{2}{3}$

Bài 4.

(a) $(2 n+1)^{3}+1 \vdots 2^{2021} $

$\Leftrightarrow(2 n+2)\left(4 n^{2}+2 n+1\right) \vdots 2^{2021} $

$\Leftrightarrow 2(n+1)\left(4 n^{2}+2 n+1\right) \vdots 2^{2021} $

$\Leftrightarrow(n+1)\left(4 n^{2}+2 n+1\right) \vdots 2^{2020} $

$\Leftrightarrow n+1 \vdots 2^{2020} \quad\left(\text { do } 4 n^{2}+2 n+1 \equiv 1(\bmod 2)\right) $

$\Leftrightarrow n=2^{2020} k-1\left(k \in \mathbb{Z}^{+}\right)$

b) Từ $p \mid 2 n+2$ và $p \mid 4 n^{2}+2 n+1$ thì $p$ phải là số lẻ, dẫn đến $p \mid n+1$.

Do $4 n+2+2 n+1=4(n-1)(n+1)+2(n+1)+3$ nên $p \mid 3$, từ đó $p=3$. Kết hợp với điều kiện $p \mid n+1$ thì $n=3 k-1$ với $k \in \mathbb{Z}^{+}$.

Ta chứng minh rằng $\frac{2 n+2}{3}$ và $\frac{4 n+2+2 n+1}{3}$ không cùng là số chính phương. Thật vậy, giả sử rằng ta có điều ngược lại, vì chúng đều là số nguyên dương nên:

$\frac{2 n+2}{3} \cdot \frac{4 n^{2}+2 n+1}{3}=s^{2}\left(s \in \mathbb{Z}^{+}\right)$

Viết lại thành $(2 n+1)^{3}=(3 s-1)(3 s+1)$. Do $s$ là số chẵn nên $(3 s-1,3 s+1)=1$, dẫn đến việc tồn tại các số nguyên $a, b$ để $a b=2 n+1,(a, b)=1$ và:

$\left\{\begin{array}{l}3 s-1=a^{3} \\ 3 s+1=b^{3}\end{array}\right.$

Từ đây $2=(b-a)\left(b^{2}+b a+a^{2}\right)$. Do $b>a$ nên $b-a \in{1,2}$. Xét từng trường hợp và giải ra cụ thể, ta được $(a, b)=(-1,1)$. Tuy nhiên điều này dẫn đến $s=0$, trái với việc $s>0$ từ điều đã giả sử.

Vậy giả sử ban đầu là sai hay hai số đã cho không thể cùng là số chính phương.

Bài 5.

a) a. Qua $D$ vế đường thẳng song song $B C$ cắt $A B, A C$ tại $X, Y$.

Ta có $\frac{D Y}{B C}=\frac{D F}{B F}=\frac{D E}{E C}=\frac{D X}{B C}$.

Suy ra $D X=D Y$. Suy ra $D$ là trung điểm của $X Y$.

Do đó $A D$ qua trung điểm $I$ của $E F$.

Ta có $D H F N, D H E M$ nội tiếp. Suy ra $\widehat{D H N}=\widehat{D F N}=\widehat{M A N}$ và $\widehat{D H M}=$ $\widehat{N E M}=\widehat{N A M}$.

Suy ra $\widehat{M H N}=2 \widehat{M A N}=\widehat{M I N}$.

Suy ra tứ giác $M I H N$ nội tiếp. Ta có điều cần chứng minh.

b) Ta có $\triangle B M P \backsim \triangle B L F$. Suy ra $B M \cdot B F=B P \cdot B L$. Mặt khác $\triangle B A F \backsim \triangle B E M$, suy ra $B E \cdot B A=B M \cdot B E$.

Do đó $B A \cdot B E=B P \cdot B L$.

Từ đó ta có tứ giác $A E P L$ nội tiếp.

Chứng minh tương tự thì tứ giác $A F Q K$ nội tiếp.

Và $\frac{B P \cdot B L}{C Q \cdot C K}=\frac{B E \cdot B A}{C F \cdot C A}=\frac{A B^{2}}{A C^{2}}$.

c) Giả sử $E L, F K$ cắt nhau tại $S$ thuộc $(I)$. Khi đó $\angle E S F=90^{\circ}$ và $E F L K$ là hình vuông. Vẽ $P U \perp A B, Q V \perp A C$.

Ta có $\frac{B P}{B C}=\frac{B U}{B A}=\frac{B K}{B L}$ và $\frac{C Q}{B C}=\frac{C V}{C A}=\frac{C L}{C K}$ Đặt $x=E F=K L$

Ta cần chứng minh $\frac{B K}{B L}+\frac{C L}{C K}=1$.

$\Leftrightarrow B K \cdot C K+B L \cdot C L=B L \cdot C K $

$\Leftrightarrow B K(C L+x)+(B K+x) C L=(B K+x)(C L+x) \Leftrightarrow x^{2}=B K \cdot C L .$

Đúng vì tam giác $B E K$ và $C F L$ đồng dạng.

 

Bài 6.

a) Giả sử có chữ cái $\sigma$ sao cho $\sigma$ có mặt trong 6 tập hợp từ $N$ tập đã cho, chẳng hạn 6 tập $A_{1}, A_{2}, \ldots, A_{6}$.

Vì hai tập hợp bất kỳ có chung đúng một chữ cái nên hai tập hợp bất kỳ trong 6 tập trên bao giờ cũng chỉ có chũ cái chung duy nhất là $\sigma$.

Do đó, tổng số chữ cái có mặt trong 6 tập trên là: $1+6(5-1)=25$.

$-$ Nếu $N=6$ thì vô lý do $\sigma$ không xuất hiện trong tất cả $N$ tập hợp. Do đó $N \geq 7$.

$-$ Với $N \geq 7$, lấy tập $A_{7}$, có 2 khả năng:

$-$ $A_{7}$ chứa $\sigma$ : Vì $A_{7}$ và những tập $A_{1}, A_{2}, \ldots, A_{6}$ có chung đúng một chũ̃ cái $\sigma$ nên $A_{7}$ còn chứa 4 phần tử không nằm trong bất kỳ tập nào thuộc $A_{1}, A_{2}$, …, $A_{6}$.

Suy ra tổng số chữ cái trong 7 tập trên là: $1+7(5-1)=29>26$ (vô lý)

$-$ $A_{7}$ không chứa $\sigma$.

Khi đó $A_{7}$ sẽ có chung đúng 1 phần tử với mỗi tập $A_{1}, A_{2}, \ldots, A_{6}$ và 6 phần tử này phải khác nhau. (vì 6 tập $A_{1}, A_{2}, \ldots, A_{6}$ đã có chung $\sigma$ )

Do đó $A_{7}$ có ít nhất 6 phần tử. (vô lý).

Vậy không có chữ cái nào nằm trong 6 tập hợp từ $N$ tập hợp đã cho.

b) Giả sử có nhiều nhất $k$ tập hợp có chung đúng 2 chữ cái, chẳng hạn $a$ và $b$.

Khi đó dễ thấy $k \geq N-1$ nên tồn tại một tập hợp khác chưa được kể tên trong $k$ tập hợp trên, đặt là tập hợp $X, X$ không chứa ${a, b}$.

  • Nếu $X$ không chứa cả $a$ lẫn $b$. $X$ giao mỗi tập trong $k$ tập kia ở 2 phần tử khác nhau nên $2 k \leq 5 \Rightarrow k \leq 2$

  • Nếu $X$ chỉ chứa $a$, không chứa $b$.

Khi đó 4 phần tử còn lại giao với $k$ tập kia ở các phần tử khác nhau, mà $\mathrm{X}$ có 5 phần tử nên $k \leq 4$.

Vậy có nhiều nhất 4 tập hợp có chung đúng 2 chữ cái.

Để chỉ ra một ví dụ về khả năng có 4 tập hợp, xét $N=6$. Để thuận tiện, thay các chữ cái bằng các con số từ 1 đến 26 . Khi đó chọn bộ $N$ tập hợp như sau:

$\left\{\begin{array}{l}A_{1}={1,2,3,4,5} \ A_{2}={1,2,6,7,8} \\ A_{3}={1,2,9,10,11} \\ A_{4}={1,2,12,13,14} \\ A_{5}={1,3,6,10,13} \\ A_{6}={2,3,6,9,12}\end{array}\right.$

Bộ 6 tập hợp này thỏa mãn tất cả các điều kiện của bài toán.

 

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Nguyễn Ngọc Duy, thầy Vương Trung Dũng, thầy Lê Phúc Lữ, thầy Nguyễn Tấn Phát, Nguyễn Tiến Hoàng, Nguyễn Công Thành, Trần Tín Nhiệm, Châu Cẩm Triều, Lê Quốc Anh.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2020

Bài 1. (2 điểm) Cho các phương trình: $x^{2}+a x+3=0$ và $x^{2}+b x+5=0$ với $a, b$ là tham số.

(a) Chứng minh nếu $a b \geq 16$ thì trong hai phương trình trên có ít nhất một phương trình có nghiệm.

(b) Giả sử hai phương trình trên có nghiệm chung $x_{0}$. Tìm $a, b$ sao cho $|a|+|b|$ có giá trị nhỏ nhất.

Bài 2. (1,5 điểm) Cho phương trình: $3 x^{2}-y^{2}=23^{n}$ với $n$ là số tự nhiên.

(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.

(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.

Bài 3. (3,5 điểm) Cho đường tròn $(O)$, dây cung $B C$ không chứa tâm $O$ và điểm $A$ thay đổi trên cung lớn $B C$. Lấy các điểm $E$ và $F$ thỏa mãn: $\angle A B E=\angle C A E=$ $\angle A C F=\angle B A F=90^{\circ}$.

(a) Chứng minh rằng $A E \cdot A C=A F \cdot A B$ và điểm $O$ là trung điểm $E F$.

(b) Hạ $A D$ vuông góc với $E F(D \in E F)$. Chứng minh các tam giác $D A B$ và $D C A$ đồng dạng và điểm $D$ thuộc một đường tròn cố định.

(c) Gọi $G$ là giao điểm của $A D$ với đường tròn $(O)(G \neq A)$. Chứng minh $A D$ đi qua một điểm cố định và $G B \cdot A C=G C \cdot A B$.

(d) Gọi $K$ là tâm đường tròn ngoại tiếp tam giác $A E F$. Chứng minh $A K$ đi qua một điểm cố định.

Bài 4. (1,5 điểm) Cho số tự nhiên $a=3^{13} \cdot 5^{7} \cdot 7^{20}$

(a) Gọi $A$ là tập hợp các số nguyên dương $k$ sao cho $k$ là ước của $a$ và $k$ chia hết cho 105. Hỏi tập $A$ có bao nhiêu phần tử?

(b) Giả sử $B$ là một tập con bất kỳ của $A$ có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của $B$ sao cho tích của chúng là số chính phương.

Bài 5. (1,5 điểm) Cho hệ phương trình với $k$ là tham số:

$\left\{\begin{array}{l}\frac{x}{\sqrt{y z}}+\sqrt{\frac{x}{y}}+\sqrt{\frac{x}{z}}=k \\ \frac{y}{\sqrt{z x}}+\sqrt{\frac{y}{z}}+\sqrt{\frac{y}{x}}=k \\ \frac{z}{\sqrt{x y}}+\sqrt{\frac{z}{x}}+\sqrt{\frac{z}{y}}=k\end{array}\right.$

(a) Giải hệ với $k=1$.

(b) Chứng minh hệ vô nghiệm với $k \geq 2$ và $k \neq 3$.

 

LỜI GIẢI

 

Bài 1. ( 2 điểm) Cho các phương trình: $x^{2}+a x+3=0$ và $x^{2}+b x+5=0$ với $a, b$ là tham số.

(a) Chứng minh nếu $a b \geq 16$ thì trong hai phương trình trên có ít nhất một phương trình có nghiệm.

(b) Giả sử hai phương trình trên có nghiệm chung $x_{0}$. Tìm $a, b$ sao cho $|a|+|b|$ có giá trị nhỏ nhất.

Lời giải.

(a) Xét phương trình: $x^{2}+a x+3=0 \quad(1)$, ta có: $\Delta_{1}=a^{2}-12$.

Xét phương trình: $x^{2}+b x+5=0 \quad(2)$, ta có: $\Delta_{2}=b^{2}-20$

Ta có: $\Delta_{1}+\Delta_{2}=a^{2}+b^{2}-32 \geq 2 a b-32 \geq 0$

Vậy trong hai số $\Delta_{1}$ và $\Delta_{2}$ có ít nhất một số không âm hay một trong hai phương trình đã cho có nghiệm.

(b) Có hai cách giải tham khảo sau:

Cách 1. Vì $x_{0}$ là nghiệm chung của phương trình (1) và (2) nên phương trình $2 x^{2}+(a+b) x+8=0$ có nghiệm.

Suy ra: $\Delta=(a+b)^{2}-64 \geq 0 \Leftrightarrow|a+b| \geq 8$

Ta có: $|a|+|b| \geq|a+b| \geq 8$. Dấu ” $=$ ” xảy ra khi và chỉ khi: $\left\{\begin{array}{l}a b \geq 0 \\|a+b|=8\end{array}\right.$

  • Nếu $a+b=8$ thì $x_{0}=-2$, suy ra: $\left\{\begin{array}{l}(-2)^{2}-2 a+3=0 \\ (-2)^{2}-2 b+5=0\end{array} \Leftrightarrow\right.$

$\left\{\begin{array}{l}a=\frac{7}{2} \\ b=\frac{9}{2}\end{array}\right.$

  • Nếu $a+b=-8$ thì $x_{0}=2$, suy ra: $\left\{\begin{array}{l}2^{2}+2 a+3=0 \\ 2^{2}+2 b+5=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-\frac{7}{2} \\ b=-\frac{9}{2}\end{array}\right.\right.$

Cách 2. Dễ thấy $x_{0} \neq 0$.

  • $(1) \Leftrightarrow-a=\frac{x_{0}^{2}+3}{x_{0}} \Leftrightarrow|a|=\frac{x_{0}^{2}+3}{\left|x_{0}\right|}$

$(2) \Leftrightarrow-b=\frac{x_{0}^{2}+5}{x_{0}} \Leftrightarrow|b|=\frac{x_{0}^{2}+5}{\left|x_{0}\right|}$

  • Suy ra $|a|+|b|=2\left|x_{0}\right|+\frac{8}{\left|x_{0}\right|} \geq 2 \sqrt{2\left|x_{0}\right| \cdot \frac{8}{\left|x_{0}\right|}}=8$ Dấu ” $=$ “xảy ra khi và chỉ khi: $x_{0}^{2}=4 \Leftrightarrow\left[\begin{array}{l}x_{0}=2 \ x_{0}=-2\end{array}\right.$ Với $x_{0}=2$ hoặc $x_{0}=-2$, lần lượt giải được $a=\frac{7}{2} ; b=\frac{9}{2}$ hoặc $a=-\frac{7}{2} ; b=-\frac{9}{2}$

Vậy giá trị nhỏ nhất của $|a|+|b|$ là 8 khi $a=\frac{7}{2} ; b=\frac{9}{2}$ hoặc $a=-\frac{7}{2} ; b=$ $-\frac{9}{2}$

 

Bài 2. (1,5 điểm) Cho phương trình: $3 x^{2}-y^{2}=23^{n}$ với $n$ là số tự nhiên.

(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.

(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.

Lời giải.

(a) Ta nhận thấy 1 số chính phương $m=a^{2}$ khi chia cho 3 thì có số dư lần lượt là 0 hoặc 1 .

Nên tổng 2 số chính phương nếu chia hết cho 3 thì mỗi số đều phải chia hết cho $3 .$

Quay lại bài toán, do $n$ chẵn nên $23^{n}$ và $y^{2}$ đều là các số chính phương mà $23^{n}+y^{2}=3 x^{2} \vdots 3 \Rightarrow 23^{n} \vdots 3$ (vô lý)

Vậy $n$ chẵn thì phương trình đã cho không có nghiệm nguyên.

(b) Do $n$ lẻ $\Rightarrow n=2 k+1\left(k \in \mathbb{N}^{*}\right)$

Xét $\left\{\begin{array}{l}x=3 \cdot 23^{k} \\ y=2 \cdot 23^{k}\end{array} \Rightarrow 3 x^{2}-y^{2}=23^{2 k+1}=23^{n}\right.$

Vậy phương trình có nghiệm nguyên

 

Bài 3. (3,5 điểm) Cho đường tròn $(O)$, dây cung $B C$ không chứa tâm $O$ và điểm $A$ thay đổi trên cung lớn $B C$. Lấy các điểm $E$ và $F$ thỏa mãn: $\angle A B E=$ $\angle C A E=\angle A C F=\angle B A F=90^{\circ}$.

(a) Chứng minh rằng $A E \cdot A C=A F \cdot A B$ và điểm $O$ là trung điểm $E F$.

(b) Hạ $A D$ vuông góc với $E F(D \in E F)$. Chứng minh các tam giác $D A B$ và $D C A$ đồng dạng và điểm $D$ thuộc một đường tròn cố định.

(c) Gọi $G$ là giao điểm của $A D$ với đường tròn $(O)(G \neq A)$. Chứng minh $A D$ đi qua một điểm cố định và $G B \cdot A C=G C \cdot A B$.

(d) Gọi $K$ là tâm đường tròn ngoại tiếp tam giác $A E F$. Chứng minh $A K$ đi qua một điểm cố định.

Lời giải.

(a) Ta có $\angle B A E+\angle E A F=90^{\circ}$ và $\angle C A F+\angle E A F=90^{\circ}$.

Suy ra $\angle B A E=\angle C A F . \triangle A B E \backsim \triangle A C F$, suy ra $A E \cdot A C=A B \cdot A F$

Gọi $I$ là giao điểm của $B E$ và $C F$. Khi đó $A I$ là đường kính của $O$.

Tứ giác $A E I F$ là hình bình hành, $O$ là trung điểm $A I$ nên là trung điểm $E F$.

(b) Các tứ giác $A D B E, A D F C$ nội tiếp.

Khi đó $\angle A D B=\angle A E B=\angle A F C=\angle A C D . \angle A B D=\angle A E C=\angle I F E=$ $\angle A F C=\angle A D C$. Suy ra $\triangle A D B \sim \triangle A C D A$. (g.g)

Ta có $\angle B D C=2 \angle A D B=2 \angle A E B=2 \angle E I F=\angle B O C$.

Suy ra tứ giác $B D O C$ nội tiếp. $D$ thuộc đường tròn ngoại tiếp tam giác BOC cố định.

(d) Gọi $M$ là trung điểm của $B C$. Ta chứng minh $A, M, K$ thẳng hàng.

Ta chứng minh được $\angle D A E=\angle K A F\left(\angle 90^{\circ}-\angle A E D\right)$.

Gọi $T$ là trung điểm $C G$. Ta có $\triangle A C D \sim \triangle B C G$ suy ra $\triangle A B C \sim \triangle D C G$.

Từ đó ta có $\triangle A C M \backsim \triangle D C T$.

Khi đó $\angle C A M=\angle C D T=\angle A C D=\angle B A D$.

Mà $\angle C A M=\angle C A F+\angle F A M$ và $\angle B A D=\angle B A E+\angle E A D$.

Suy ra $\angle F A M=\angle E A D=\angle F A K$. Vậy $A, M, K$ thẳng hàng. $A K$ qua trung điểm $M$ của $B C$ cố định.

 

Bài 4. (1,5 điểm) Cho số tự nhiên $a=3^{13} \cdot 5^{7} \cdot 7^{20}$

(a) Gọi $A$ là tập hợp các số nguyên dương $k$ sao cho $k$ là ước của $a$ và $k$ chia hết cho 105 . Hỏi tập $A$ có bao nhiêu phần tử?

(b) Giả sử $B$ là một tập con bất kỳ của $A$ có 9 phần tử. Chứng minh ta luôn có thể tìm được 2 phần tử của $B$ sao cho tích của chúng là số chính phương.

Lời giải.

(a) $k: 105 \Rightarrow k$ chia hết cho $3,5,7$

$\Rightarrow k=3^{n} \cdot 5^{m} \cdot 7^{p} \text { với } m, n, p \text { nguyên dương }$

$\Rightarrow \text { có } 13 \cdot 7 \cdot 20=1820 \text { cách. }$

(b) Cách 1: Giả sử $B$ là tập hợp 9 số nguyên dương $a_{i}, i=\overline{1,9}$ với $a_{i}=3^{n_{i}} \cdot 5^{m_{i}} \cdot 7^{p_{i}}$ trong đó $0 \leq n_{i} \leq 13 ; 0 \leq m_{i} \leq 7$ và $0 \leq p_{i} \leq 20$

Do $B$ có 9 phân tử. Xét nguyên lý Dirichlet với tập các số $n_{i}$ thì ta có ít nhất 5 số hạng $a_{i}$ sao cho các số mũ $n_{i}$ của 3 tương ứng cùng tính chẵn lẻ.

Xét tiếp nguyên lý Dirichlet 5 số này cho số mũ $m_{i}$ của 5 tương ứng thì ta có ít nhất 3 số mà số mũ $m_{i}$ cũng cùng tính chẵn lẻ.

Với 3 số còn lại này ta cũng xét nguyên lý Dirichlet cho số mũ $p_{i}$ của 7 thì ta sẽ có ít nhất 2 số cũng tính chẵn lẻ.

Do 2 số được chọn này có số mũ cùng tính chẵn lẻ với cả các số 3,5 và 7 nên tích chúng lại sẽ là số chính phương.

– Cách 2: Ta chia 9 số từ tập $B$ vào 8 tập con như sau:

$B_{1}$= ( số mũ của 3,5,7 đều chẵn )

$B_{2}$= ( số mũ 3,5,7 đều lẻ )

$B_{3}$= ( số mũ của 3 chẵn; 5,7 đều lẻ )

$B_{4}$= ( số mũ của 5 chẵn; 3,7 lẻ )

$B_{5}$= ( số mũ của 7 chẵn; 3,5 lẻ )

$B_{6}$= ( số mũ của 3,5 đều chẵn; 7 lẻ )

$B_{7}$= ( số mũ của 3,7 đều chẵn; 5 lẻ )

$B_{8}$= ( số mữ của 5,7 đều chẵn; 3 lẻ )

Do có 8 tập mà có 9 số nên theo nguyên lý Dirichlet thì có ít nhất 2 số thuộc cùng một tập $B_{i}$ nên tích của chúng sẽ là một số chính phương.

Bài 5. (1,5 điểm) Cho hệ phương trình với $k$ là tham số:

$\left\{\begin{array}{l}\frac{x}{\sqrt{y z}}+\sqrt{\frac{x}{y}}+\sqrt{\frac{x}{z}}=k \\ \frac{y}{\sqrt{z x}}+\sqrt{\frac{y}{z}}+\sqrt{\frac{y}{x}}=k \\ \frac{z}{\sqrt{x y}}+\sqrt{\frac{z}{x}}+\sqrt{\frac{z}{y}}=k \ \text { (a) Giải hệ với } k=1\end{array}\right.$

(b) Chứng minh hệ vô nghiệm với $k \geq 2$ và $k \neq 3$.

Lời giải.

– Cách 1: Điều kiện $x, y, z$ cùng dấu đôi một.

Ta xét hệ phương trình với $k \geq 1$

Hệ phương trình $\Leftrightarrow\left\{\begin{array}{l}x+\sqrt{x z}+\sqrt{x y}=k \sqrt{y z} \\ y+\sqrt{x y}+\sqrt{y z}=k \sqrt{z x} \\ z+\sqrt{z y}+\sqrt{z x}=k \sqrt{x y}\end{array}\right.$

Đặt $a=\sqrt{x y}, b=\sqrt{y z}, c=\sqrt{z x}(a, b, c>0)$

  • Trường hợp 1: $x, y, z>0 \Rightarrow x=\frac{a c}{b} ; y=\frac{a b}{c} ; z=\frac{b c}{a}$ Hệ phương trình $\Leftrightarrow\left\{\begin{array}{l}\frac{a c}{b}+a+c=k b \\ \frac{a b}{c}+a+b=k c \\ \frac{b c}{a}+b+c=k a\end{array} \Rightarrow\left\{\begin{array}{l}k a^{2}=a b+a c+b c(1) \\ k b^{2}=a b+b c+c a(2) \\ k c^{2}=a b+a c+b c(3)\end{array}\right.\right.$ Lấy (1)-(2): $k\left(a^{2}-b^{2}\right)=0 \Leftrightarrow a^{2}=b^{2} \Leftrightarrow\left\{\begin{array}{l}a=b \\ a=-b \text { (loại) }\end{array}\right.$

Tương tự lấy (2)-(3): $b=c$

Vậy $a=b=c \Rightarrow k a^{2}=3 a^{2} \Rightarrow k=3$

  • Trường hợp 2: $x, y, z<0 \Rightarrow x=-\frac{a c}{b} ; y=-\frac{a b}{c} ; z=-\frac{b c}{a}$

Hệ phương trình $\Rightarrow\left\{\begin{array}{l}k a^{2}=a b+a c-b c \\ k b^{2}=a b+b c-c a \\ k c^{2}=a c+b c-a b\end{array}\right.$

Cộng các phương trình lại ta có: $k\left(a^{2}+b^{2}+c^{2}\right)=a b+b c+a c$ mà $a b+b c+c a \leq a^{2}+b^{2}+c^{2}$

Suy ra $k\left(a^{2}+b^{2}+c^{2}\right) \leq a^{2}+b^{2}+c^{2} \Leftrightarrow k \leq 1$

Vậy $k=1$ và $a=b=c \Leftrightarrow x=y=z<0$

Câu a) Áp dụng điều trên, hệ có nghiệm $x=y=z<0$.

Câu b) Suy ra điều phải chứng minh.

– Cách 2: Điều kiện xác định là: $x, y, z$ cùng dương hoặc cùng âm.

Đặt $a=\sqrt{\frac{x}{y}}, b=\sqrt{\frac{y}{z}}, c=\sqrt{\frac{z}{x}}$ thì $a, b, c>0$ và $a b c=1$.

Ta có: $\frac{a}{c}=\frac{|x|}{\sqrt{y z}}, \frac{b}{a}=\frac{|y|}{\sqrt{z x}}, \frac{c}{b}=\frac{|z|}{\sqrt{x y}}$.

(a) Khi $k=1$, nếu $x, y, z>0$ thì $\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=1$. Cộng lại suy ra $\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)+\left(c+\frac{1}{c}\right)+\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)=3$ Theo bất đẳng thức Cô-si thì rõ ràng $a+\frac{1}{a} \geq 2, b+\frac{1}{b} \geq 2, c+\frac{1}{c} \geq 2$ nên đẳng thức trên không thể xảy ra.

Xét trường hợp $x, y, z$ cùng âm thì $-\frac{a}{c}+a+\frac{1}{c}=-\frac{b}{a}+b+\frac{1}{a}=-\frac{c}{a}+c+\frac{1}{b}=1$

Trừ vào các vế và phân tích, ta suy ra: $\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=0$

Từ đây dễ dàng suy ra ít nhất 2 trong $a, b, c$ phải là 1 mà $a b c=1$ nên

$a=b=c=1$. Vì thế nên thay vào ta có $x=y=z<0$. Và mọi bộ số như thế đều thỏa mãn hệ.

(b) Với $k \geq 2$, giả sử hệ có nghiệm $(x, y, z)$. Nếu như $x, y, z<0$ thì ta có $\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=k-1>0 .$

Từ đó suy ra $a-1, b-1, c-1$ đều cùng dấu, kéo theo $a, b, c>1$ hoặc $a, b, c<1$ Tuy nhiên $a b c=1$ nên điều này không thể xảy ra.

Do đó, ta phải có $a, b, c>0$ nên đưa về

$\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=k$

Trong các số $a, b, c$ giả sử $a=\max {a, b, c}$ thì $k=\frac{a}{c}+a+\frac{1}{c} \geq$ $\frac{a}{c}+2 \sqrt{\frac{a}{c}} \geq 1+2=3$ nên ta cần có $k \geq 3$. Vì $k \neq 3$ nên $k>3$.

Vì $a=\max {a, b, c} \geq 1$ nên ta có $2 b+1 \geq \frac{b}{a}+b+\frac{1}{a}=k>3$ kéo theo $b>1$. Tương tự từ $2 c+1>\frac{c}{b}+c+\frac{1}{b}=k>3$ nên $c>1$. Từ đây suy ra $a, b, c>1$ trong khi $a b c=1$, vô lý.

Vậy hệ luôn vô nghiệm với $k \geq 2$ và $k \neq 3$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2019

Bài 1. Cho phương trình $a x^{2}+b x+c=0(1)$ thỏa mãn các điều kiện:

$a>0 \text { và } 2 \sqrt{|a c|}<|b|<a+c$

(a) Chứng minh rằng phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$ và

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0 \text { và }\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

(b) Biết rằng $a>c$. Chứng minh rằng $-1<x_{1}, x_{2}<1$

Bài 2. (a) Tìm tất cả những số tự nhiên $n$ sao cho $2^{n}+1$ chia hết cho $9 .$

(b) Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^{n}+1$ không chia hết cho $2^{m}-1$ với mọi số tự nhiên $m$ sao cho $2<m \leq n$.

Bài 3. Cho $a$ và $b$ là hai số thực phân biệt thỏa mãn điều kiện $a^{4}-4 a=b^{4}-4 b$.

(a) Chứng minh rằng $0<a+b<2$.

(b) Biết rằng $a^{4}-4 a=b^{4}-4 b=k>0$. Chứng minh rằng $-\sqrt{k}<a b<0$.

Bài 4. Cho tam giác $A B C$ có $A B<A C$. Gọi $d_{1}$, $d_{2}$ lần lượt là các đường phân giác trong và ngoài góc $\angle B A C$. Gọi $M, N$ lần là hình chiếu vuông góc của $B$ lên $d_{1}, d_{2}$. Gọi $P, Q$ lần lượt là hình chiếu vuông góc của $C$ lên $d_{1}, d_{2}$.

(a) Chứng minh rằng $M N$ và $P Q$ lần lượt đi qua trung điểm của $A B, A C$.

(b) Chứng minh rằng $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Trên $d_{1}$ lấy các điểm $E$ và $F$ sao cho $\angle A B E=\angle B C A$ và $\angle A C F=\angle C B A$. ( $E$ thuộc nữa mặt phẳng bờ $A B$ chứa $C ; F$ thuộc nữa mặt phẳng bờ $A C$ chứa $B)$. Chứng minh rằng $\frac{B E}{C F}=\frac{A B}{A C}$.

(d) Các đường thẳng $B N$ và $C Q$ lần lượt cắt $A C$ và $A B$ tại các điểm $K$ và $L$. Chứng minh rằng các đường thẳng $K E$ và $L F$ cắt nhau trên đường thẳng $B C$.

Bài 5. Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ $n$ quốc gia, người ta nhận thấy rằng cứ 10 học sinh bất kỳ thì có ít nhất 3 học sinh đến từ cùng một quốc gia.

(a) Gọi $k$ là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng $n<\frac{k+10}{2}$.

(b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60 . Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến cùng một quốc gia.

 

LỜI GIẢI

 

Bài 1. Cho phương trình $a x^{2}+b x+c=0(1)$ thỏa mãn các điều kiện:

$a>0 \text { và } 2 \sqrt{|a c|}<|b|<a+c$

(a) Chứng minh rằng phương trình (1) có hai nghiệm phân biệt $x_{1}, x_{2}$ và

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0 \text { và }\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

(b) Biết rằng $a>c$. Chứng minh rằng $-1<x_{1}, x_{2}<1$

Lời giải.

(a) Có

$|b|>2 \sqrt{|a c|}$

nên $b^{2}>4 a c$. Suy ra $\Delta=b^{2}-4 a c>0$ vậy phương trình có hai nghiệm phân biệt.

$|b|<a+c$

$\Leftrightarrow-a-c<b<a+c $

$\Leftrightarrow\left\{\begin{array}{l}a+b+c>0 \\ a-b+c>0\end{array}\right.$

Suy ra

$\left(1-x_{1}\right)\left(1-x_{2}\right)$

$=1-\left(x_{1}+x_{2}\right)+x_{1} x_{2}$

$=1+\frac{b}{a}+\frac{c}{a}$

$=\frac{a+b+c}{a}>0$

$\left(1+x_{1}\right)\left(1+x_{2}\right)$

$=1+\left(x_{1}+x_{2}\right)+x_{1} x_{2}$

$=1-\frac{b}{a}+\frac{c}{a}$

$=\frac{a-b+c}{a}>0$

(b) Có

$\left(1-x_{1}\right)\left(1-x_{2}\right)>0$

Xét Trường hợp :

$\left\{\begin{array}{l}x_{1}>1 \\ x_{2}>1\end{array} \Rightarrow x_{1} x_{2}>1 \Rightarrow \frac{c}{a}>1 \Rightarrow c>a\right.$

mâu thuẫn với giả thiết $a>c$.

Vậy $x_{1}, x_{2}<1$.

$\left(1+x_{1}\right)\left(1+x_{2}\right)>0$

Xét trường hợp:

$\left\{\begin{array}{l}x_{1}<-1 \\ x_{2}<-1\end{array} \Rightarrow x_{1} x_{2}>1 \Rightarrow \frac{c}{a}>1 \Rightarrow c>a\right.$

mâu thuẫn với giả thiết $a>c$.

Vậy $x_{1}, x_{2}>-1$.

Bài 2. (a) Tìm tất cả những số tự nhiên $n$ sao cho $2^{n}+1$ chia hết cho 9 .

(b) Cho $n$ là số tự nhiên $n>3$. Chứng minh rằng $2^{n}+1$ không chia hết cho $2^{m}-1$ với mọi số tự nhiên $m$ sao cho $2<m \leq n$.

Lời giải.

(a) $n=3 k$, suy ra $2^{n}+1=8^{k}+1 \equiv(-1)^{k}+1(\bmod 9)$. Suy ra $k$ lẻ, $k=$ $2 t+1$. Suy ra $n=3(2 t+1)=6 t+3$.

Nếu $n=3 k+1$ ta có $2^{n}+1=3 \cdot 8^{k}+1 \equiv(-1)^{k} \cdot 3+1(\bmod 9)$, suy ra $2^{n}+1$ không chia hết cho 9 .

Nếu $n=3 k+2$ ta có $2^{n}+1=4 \cdot 8^{k}+1 \equiv 4(-1)^{k}+1$, suy ra $2^{n}+1$ không chia hết cho 9 .

Vậy với $n=6 t+2$, với $t$ là số tự nhiên là các số cần tìm.

(b) Cách 1: Ta có $2^{k m}-1: 2^{m}-1$. Từ $2^{2 n}=\left(2^{n}+1\right)\left(2^{n}-1\right)$ chia hết cho $2^{m}-1$. Đặt $2 n=k m+q(0 \leq q<m)$.

Khi đó $2^{2 n}-1=2^{k m+q}-2^{q}+2^{q}-1=2^{q}\left(2^{k m}-1\right)+2^{q}-1$ chia hết cho $2^{m}-1$, suy ra $2^{q}-1$ chia hết cho $m$ mà $0 \leq 2^{q}-1<2^{m}-1$, suy ra $q=0$. Do đó $2 n=k m$.

Trường hợp 1: Nếu $m$ lẻ, suy ra $k$ chẵn, $k=2 k^{\prime}$, suy ra $n=k^{\prime} m, 2^{n}+1=$ $2^{k^{\prime} m}+1=2^{k^{\prime} m}-1+2$ chia hết cho $2^{m}-1$, suy ra 2 chia hết cho $2^{m}-1$ (vô lý)

Trường hợp 2: Nếu $m$ chẵn $m=2 m^{\prime}$ thì $n=k m^{\prime}$, suy ra $2^{k m^{\prime}}+1$ chia hết cho $2^{m}-1$, mà $2^{m}-1$ chia hết cho $2^{m^{\prime}}-1$ nên $2^{k m^{\prime}}+1$ chia hết cho $2^{m^{\prime}}-1$, suy ra 2 chia hết cho $2^{m^{\prime}}-1$ vô lý vì $m^{\prime}>1$.

Cách 2: Ta có $2^{n-m}\left(2^{m}-1\right): 2^{m}-1$, suy ra $2^{n}-2^{n-m}: 2^{m}-1$, mà $2^{n}+1: 2^{m}-$ 1 suy ra $2^{n-m}+1$ chia hết cho $2^{m}-1$.

Lý luận tương tự ta có $2^{n-k m}+1$ chia hết cho $2^{m}-1$. Giả sử $n=k m+$ $q, 0 \leq q<m$. Chọn $k$ như trên ta có $2^{q}+1$ chia hết cho $2^{m}-1$. Mà $q<m$ nên $2^{q}+1=2^{m}-1$, giải ra $q=1, m=2$ (vô lý).

Bài 3. Cho $a$ và $b$ là hai số thực phân biệt thỏa mãn điều kiện $a^{4}-4 a=$ $b^{4}-4 b$.

(a) Chứng minh rằng $0<a+b<2$.

(b) Biết rằng $a^{4}-4 a=b^{4}-4 b=k>0$. Chứng minh rằng $-\sqrt{k}<a b<0$.

Lời giải.

(a) Ta có $a^{4}-b^{4}=4(a-b)$, mà $a^{4}-b^{4}=(a-b)(a+b)\left(a^{2}+b^{2}\right)$ nên đẳng thức được viết lại thành

$(a-b)(a+b)\left(a^{2}+b^{2}\right)=4(a-b)$

Mà $a \neq b$ nên $(a+b)\left(a^{2}+b^{2}\right)=4$. Vi $a^{2}+b^{2}>0($ do $a, b$ không thể đồng thời bằng 0 ) nên ta có $a+b>0$.

Ngoài ra, ta cũng có đánh giá $a^{2}+b^{2}>\frac{(a+b)^{2}}{2}$ (đẳng thức không xảy ra vì $a \neq b$ ) nên

$4>\frac{(a+b)^{3}}{2} \Leftrightarrow(a+b)^{3}<8 \Leftrightarrow a+b<2 .$

Vậy ta được $0<a+b<2$.

(b) Rõ ràng $a b \neq 0$, ta sẽ chứng minh $a, b$ trái dấu. Ta xét hai trường hợp:

  • Nếu $a>0, b>0$ thì $a^{4}-4 a=a\left(a^{3}-4\right)>0$ nên $a>\sqrt[3]{4}>1$. Tương tự thì $b>1$. Khi đó $a+b>2$, mâu thuẫn với a).

  • Nếu $a<0, b<0$ thì $a+b<0$, cũng mâu thuẫn với a).

Do đó $a, b$ trái dấu và $a b<0$.

Không mất tính tổng quát, giả sử $a<0<b$ thì đặt $c=-a>0$, ta viết lại $c^{4}+4 c=b^{4}-4 b=k>0$. Từ đây dễ thấy $(b-c)\left(b^{2}+c^{2}\right)=4$ và $b \neq c$.

Ta cần chứng minh

$-\sqrt{k}<a b \Leftrightarrow-\sqrt{k}<-b c \Leftrightarrow b c<\sqrt{k} .$

Cộng hai vế của các đẳng thức trên lại, ta có

$2k =b^{4}-4 b+c^{4}+4 c=b^{4}+c^{4}-4(b-c)=b^{4}+c^{4}-(b-c)^{2}\left(b^{2}+c^{2}\right)=2 b c\left(b^{2}-b c+c^{2}\right)$

Suy ra $k=b c\left(b^{2}-b c+c^{2}\right)$, mà $b^{2}-b c+c^{2}>b c$ (đẳng thức không xảy ra vì $b \neq c)$ nên $k>b c \cdot b c=(b c)^{2} \Leftrightarrow b c<\sqrt{k}$. Vậy ta có đpcm.

Bài 4. Cho tam giác $A B C$ có $A B<A C$. Gọi $d_{1}, d_{2}$ lần lượt là các đường phân giác trong và ngoài góc $\angle B A C$. Gọi $M, N$ lần là hình chiếu vuông góc của $B$ lên $d_{1}, d_{2}$. Gọi $P, Q$ lần lượt là hình chiếu vuông góc của $C$ lên $d_{1}, d_{2}$.

(a) Chứng minh rằng $M N$ và $P Q$ lần lượt đi qua trung điểm của $A B, A C$.

(b) Chứng minh rằng $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Trên $d_{1}$ lấy các điểm $E$ và $F$ sao cho $\angle A B E=\angle B C A$ và $\angle A C F=$ $\angle C B A$. ( $E$ thuộc nữa mặt phẳng bờ $A B$ chứa $C ; F$ thuộc nữa mặt phẳng bờ $A C$ chứa $B)$. Chứng minh rằng $\frac{B E}{C F}=\frac{A B}{A C}$.

(d) Các đường thẳng $B N$ và $C Q$ lần lượt cắt $A C$ và $A B$ tại các điểm $K$ và $L$. Chứng minh rằng các đường thẳng $K E$ và $L F$ cắt nhau trên đường thẳng $B C$.

Lời giải.

(a) Tứ giác $A M B N$ có $\angle A=\angle M=\angle N=90^{\circ}$ nên tứ giác $A M B N$ là hình chữ nhật. Suy ra $M N$ đi qua trung điểm $A B$.

Tương tự, $A P C Q$ là hình chữ nhật nên $P Q$ đi qua trung điểm $A C$.

(b) Có: $\angle N M A=\angle B A M=\angle M A C$ nên $M N | A C$ mà theo ý a) $N D$ đi qua trung điểm $A B$ nên ta thu được $N M$ đi qua trung điểm $B C$.

Tương tự, $P Q$ đi qua trung điểm $B C$ nên $M N$ và $P Q$ cắt nhau trên $B C$.

(c) Gọi $T$ là giao điểm của $d_{1}$ và $B C$. Dễ dàng chứng minh được $\triangle A B E \sim$ $A C T(g-g)$ nên $\frac{A B}{A C}=\frac{B E}{C T}$.

Tương tự, $\triangle A B T \sim \triangle A C F(g-g)$ nên $\frac{A B}{A C}=\frac{B T}{C F}$.

Do đó, ta có:

$\left(\frac{A B}{A C}\right)^{2}=\frac{B E \cdot B T}{C T \cdot C F}$

mà $A T$ là phân giác góc $A$ nên

$\frac{B T}{C T}=\frac{A B}{A C}$

Ta thu được

$\frac{A B}{A C}=\frac{B E}{C F}$

(d) $\triangle B E T$ có:

$\angle B E T=\angle E B A+\angle E A B=\angle A C B+\angle C A T=\angle B T E$

nên $\triangle B E T$ cân tại $B$. Suy ra $M$ là trung điểm $E T$.

Có TM $|$ NB nên

$\frac{T M}{N B}=\frac{D M}{D N}=\frac{E M}{K N}$

suy ra $\triangle D M E \sim \triangle D N K(c-g-c)$.

Ta thu được $D, E, K$ thẳng hàng.

Tương tự, $L, D, F$ thẳng hàng ta có điều phải chứng minh.

 

Bài 5. Trong một buổi gặp gỡ giao lưu giữa các học sinh đến từ $n$ quốc gia, người ta nhận thấy rằng cứ 10 học sinh bất kỳ thì có ít nhất 3 học sinh đến từ cùng một quốc gia.

(a) Gọi $k$ là số các quốc gia có đúng 1 học sinh tham dự buổi gặp gỡ. Chứng minh rằng $n<\frac{k+10}{2}$.

(b) Biết rằng số các học sinh tham dự buổi gặp gỡ là 60. Chứng minh rằng có thể tìm được ít nhất là 15 học sinh đến cùng một quốc gia.

Lời giải.

(a) Giả sử ngược lại rằng $n \geq \frac{k+10}{2}$ thì $2 n-k \geq 10$. Gọi $A$ là tập hợp các quốc gia có đúng 1 học sinh tham gia và $B$ là tập hợp các quốc gia còn lại. Khi đó, mỗi quốc gia trong $B$ sẽ có ít nhất 2 học sinh.

Ta chọn tất cả học sinh trong $A$ và mỗi quốc gia trong $B$, chọn 2 học sinh thì có $k+2(n-k)=2 n-k$ học sinh.

Các học sinh này có đặc điểm là: không có 3 học sinh nào đến từ cùng quốc gia. Do $2 n-k \geq 10$ nên có thể chọn ra trong đó 10 học sinh nào đó không thỏa mãn đề bài.

(b) Theo câu a, ta có $2 n-k<10$ nên $2 n-k \leq 9 \Leftrightarrow n \leq \frac{k+9}{2}$.

Do số học sinh tổng cộng là 60 , để chỉ ra có 15 học sinh đến từ cùng quốc gia thì theo nguyên lý Dirichlet, ta chỉ cần chỉ ra rằng

$\frac{60-k}{n-k} \geq 15 \Leftrightarrow 15 n-14 k \leq 60$

Ta sẽ chứng minh đánh giá trên đúng với mọi $(n, k)$. Vì ta đã có $n \leq \frac{k+9}{2}$ nên ta sẽ đưa về chứng $\operatorname{minh} 15\left(\frac{k+9}{2}\right)-14 k \leq 60 \Leftrightarrow k \geq \frac{15}{13}$. Do đó, với $k \geq 2$ thì khẳng định đúng. Tiếp theo, ta xét hai trường hợp

  • Nếu $k=0$ thì theo $(*)$, ta phải có $n \leq 4$ nên $15 n-14 k=15 n \leq 60$, đúng.

  • Nếu $k=1$ thì theo $(*)$, khi đó loại trừ học sinh ở nước đó ra thì còn lại 59 học sinh, đến từ 4 quốc gia. Theo nguyên lý Dirichlet, tồn tại 15 học sinh đến từ cùng quốc gia.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2018

Bài 1. Cho các phương trình $x^{2}-x+m=0$

(1) và $m x^{2}-x+1=0$

(2) với $m$ là tham số.

(a) Tìm $m$ để các phương trình (1) và (2) đều có 2 nghiệm dương phân biệt.

(b) Giả sử điều kiện ở câu a) được thỏa mãn gọi $x_{1}$; $x_{2}$ là nghiệm của (1) và $x_{3} ; x_{4}$ là nghiệm của (2).

Chứng minh rằng $x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{1}+x_{4} x_{1} x_{2}>5$

Bài 2. Cho $a, b$ là hai số nguyên thỏa mãn $a^{3}+b^{3}>0$.

(a) Chứng minh rằng $a^{3}+b^{3} \geq a+b>0$.

(b) Chứng minh rằng $a^{3}+b^{3} \geq a^{2}+b^{2}$.

(c) Tìm tất cả các bộ số $x, y, z, t$ nguyên sao cho $x^{3}+y^{3}=z^{2}+t^{2}$ và $z^{3}+t^{3}=$ $x^{2}+y^{2}$.

Bài 3. Cho $A_{n}=2018^{n}+2032^{n}-1964^{n}-1984^{n}$ với $n$ là số tự nhiên.

(a) Chứng minh với mọi số tự nhiên $n$ thì $A_{n}$ chia hết cho 51 .

(b) Tìm tất cả những số tự nhiên $n$ sao cho $A_{n}$ chia hết cho 45 .

Bài 4. Cho tam giác $A B C$ nhọn. Một đường tròn qua $B, C$ cắt các cạnh $A B, A C$ lần lượt tại $E$ và $F ; B F$ cắt $C E$ tại $D$. Lây điểm $K$ sao cho từ giác $D B K C$ là hình bình hành.

(a) Chứng minh rằng $\triangle K B C$ đồng dạng với $\triangle D F E, \triangle A K C$ dồng dạng với $\triangle A D E$.

(b) Hạ $D M$ vuông góc với $A B, D N$ vuông góc với $A C$. Chứng minh rằng $M N$ vuông góc với $A K$.

(c) Gọi $I$ là trung điểm $A D$, $J$ là trung điểm $M N$. Chứng minh rằng đường thẳng $I J$ đi qua trung điểm của cạnh $B C$.

(d) Đường thẳng $I J$ cắt đường tròn ngoại tiếp tam giác $I M N$ tại $T(T \neq I)$. Chứng minh rằng $A D$ tiếp xúc với đường tròn ngoại tiếp tam giác $D T J$.

Bài 5. Đội văn nghệ của một trường THCS có 8 học sinh. Nhà trường muốn thành lập các nhóm tốp ca, mỗi nhóm gồm đúng 3 học sinh, (mỗi học sinh có thể tham gia vài nhóm tốp ca khác nhau). Biết rằng hai nhóm tốp ca bất kỳ có chung nhau nhiều nhất là một học sinh.

(a) Chứng minh rằng không có học sinh nào tham gia từ 4 nhóm tốp ca trở lên.

(b) Có thể thành lập nhiều nhất là bao nhiêu nhóm tốp ca như vậy?

LỜI GIẢI

 

Bài 1. Cho các phương trình $x^{2}-x+m=0 \quad$ (1) và $m x^{2}-x+1=0$

(2) với $m$ là tham số.

(a) Tìm $m$ để các phương trình (1) và $(2)$ đều có 2 nghiệm dương phân biệt.

(b) Giả sử điều kiện ở câu a) được thỏa mãn gọi $x_{1}$; $x_{2}$ là nghiệm của (1) và $x_{3} ; x_{4}$ là nghiệm của $(2)$.

Chứng minh rằng $x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{1}+x_{4} x_{1} x_{2}>5$

Lời giải.

(a) Xét phương trình (1): $x^{2}-x+m=0$

Phương trình (1) có hai nghiệm dương phân biệt:

$\left\{\begin{array}{l}\Delta>0 \\ S>0 \ P>0\end{array} \Leftrightarrow\left\{\begin{array}{l}1-4 m>0 \\ 1>0 \ m>0\end{array} \Leftrightarrow\left\{\begin{array}{l}m<\frac{1}{4} \\m>0\end{array} \Leftrightarrow 0<m<\frac{1}{4}\right.\right.\right.$

Phương trình (2) có hai nghiệm dương phân biệt:

$\left\{\begin{array}{l}m \neq 0 \\ \Delta>0 \\ S>0 \\ P>0\end{array} \Leftrightarrow\left\{\begin{array}{l}m \neq 0 \\ 1-4 m>0 \\ \frac{1}{m}>0 \\ \frac{1}{m}>0\end{array} \Leftrightarrow\left\{\begin{array}{l}m \neq 0 \\ m<\frac{1}{4} \\ m>0\end{array} \Leftrightarrow 0<m<\frac{1}{4}\right.\right.\right.$

Vậy để $(1)$ và $(2)$ có hai nghiệm dương phân biệt thì $0<m<\frac{1}{4}$

b) Theo Viet ta có: $\left\{\begin{array}{l}x_{1}+x_{2}=1 \\ x_{1} x_{2}=m \\ x_{3}+x_{4}=\frac{1}{m} \\ x_{3} x_{4}=\frac{1}{m}\end{array}\right.$

$\text { Ta có } x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{1}+x_{4} x_{1} x_{2}$

$=x_{1} x_{3}+\frac{x_{2}}{m}+\frac{x_{1}}{m}+m x_{4}$

$=m\left(x_{3}+x_{4}\right)+\frac{1}{m}\left(x_{1}+x_{2}\right)$

$=1+\frac{1}{m}>1+\frac{1}{\frac{1}{4}}=5(\text { dpcm }) .$

Bài 2. Cho $a, b$ là hai số nguyên thỏa mãn $a^{3}+b^{3}>0$.

(a) Chứng minh rằng $a^{3}+b^{3} \geq a+b>0$.

(b) Chứng minh rằng $a^{3}+b^{3} \geq a^{2}+b^{2}$.

(c) Tìm tất cả các bộ số $x, y, z, t$ nguyên sao cho $x^{3}+y^{3}=z^{2}+t^{2}$ và $z^{3}+t^{3}=x^{2}+y^{2} .$

Lời giải. $a, b \in \mathbb{Z}: a^{3}+b^{3}>0$

(a) $a^{3}+b^{3}>0 \Leftrightarrow(a+b)\left(a^{2}-a b+b^{2}\right)>0$

Do $a^{2}-a b+b^{2}=\left(a-\frac{b}{2}\right)^{2}+\frac{3 b^{2}}{4} \geq 0$. Dấu “=” xảy ra $\Leftrightarrow a=b=0$ (loại).

$\Rightarrow a^{2}-a b+b^{2}>0$ nên $a+b>0$ (đpcm).

Ta có: $a^{3}+b^{3} \geq a+b$

$\Leftrightarrow(a+b)\left(a^{2}-a b+b^{2}-1\right) \geq 0 \quad (* *)$

Do $\left\{\begin{array}{l}a^{2}-a b+b^{2}>0 \\ a, b \in \mathbb{Z}\end{array} \Rightarrow a^{2}-a b+b^{2} \geq 1\right.$ nên $(* *)$ đúng.

Vậy $a^{3}+b^{3} \geq a+b$ và dấu “=” xảy ra $\Leftrightarrow\left\{\begin{array}{l}a=1 \\ b=0\end{array}\right.$ hay $\left\{\begin{array}{l}a=0 \\ b=1\end{array}\right.$ hay $\left\{\begin{array}{l}a=1 \\ b=1\end{array}\right.$

(b) Cách 1:

Do $a+b>0 \Rightarrow a+b \geq 1$.

TH1: $a+b=1 \Leftrightarrow b=1-a$.

Ta có: $a^{3}+b^{3} \geq a^{2}+b^{2} \Leftrightarrow a^{3}+(1-a)^{3} \geq a^{2}+(1-a)^{2}$

$\Leftrightarrow a^{2}-a \geq 0$

$\Leftrightarrow a \leq 0$ hoặc $a \geq 1$ (đúng vì $a \in \mathbb{Z}$ )

Vậy $a^{3}+b^{3} \geq a^{2}+b^{2}$ và dấu “=” xảy ra $\Leftrightarrow(a ; b) \in{(0 ; 0) ;(1 ; 1) ;(0 ; 1) ;(1 ; 0)}$.

TH2: $a+b \geq 2$

Ta có: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \geq 2\left(a^{2}-a b+b^{2}\right)=a^{2}+b^{2}+$ $(a-b)^{2} \geq a^{2}+b^{2}$.

Cách 2:

Rõ ràng $a, b$ không thể đồng thời bé hơn 0 .

TH1: $a=b=0$ : hiển nhiên $a^{3}+b^{3} \geq a^{2}+b^{2}$

TH2: Một trong hai số bằng 0 , số còn lại khác 0 .

Giả sử: $\left\{\begin{array}{l}b=0 \\ a \neq 0\end{array} \Rightarrow a>1 \Rightarrow a^{3} \geq a^{2} \Rightarrow a^{3}+b^{3} \geq a^{2}+b^{2}\right.$

Dấu “=” xảy ra khi $a=1$.

TH3: $a, b \geq 1 \Rightarrow\left\{\begin{array}{l}a^{3} \geq a^{2} \\ b^{3} \geq b^{2}\end{array} \Rightarrow a^{3}+b^{3} \geq a^{2}+b^{2}\right.$

TH4: $\left\{\begin{array}{l}a>0 \\ b<0\end{array} \Rightarrow\left\{\begin{array}{l}a \geq 1 \\ b \leq-1\end{array}\right.\right.$

Đặt $a=|b|+k, k>1$

$a^{3}+b^{3} \geq a^{2}+b^{2}$

$\Leftrightarrow(|b|+k)^{3}+b^{3} \geq(|b|+k)^{2}+b^{2}$

$\Leftrightarrow 3|b|^{2} k+3|b| k^{2}+k^{3} \geq 2|b|^{2}+2|b| k+k^{2}$

$\left.\Rightarrow 3 b^{2} k+3|b| k+k^{3} \geq 2 b^{2}+2|b| k+k^{2} \quad \text { (Do k }>1\right)$

$\Leftrightarrow(3 k-2) b^{2}+|b| k+k^{2}(k-1) \geq 0 \text { (đúng). }$

Vậy $a^{3}+b^{3} \geq a^{2}+b^{2}$.

(c) Từ giả thiết $\Rightarrow x^{3}+y^{3} \geq 0 ; z^{3}+t^{3} \geq 0$.

Nếu $x^{3}+y^{3}=0 \Rightarrow z^{2}+t^{2}=0 \Rightarrow z=t=0$

$\Rightarrow x^{2}+y^{2}=0 \Rightarrow x=y=0 \text {. }$

Nếu $z^{3}+t^{3}=0$, tương tự ta có $x=y=z=t=0$.

Nếu $\left\{\begin{array}{l}x^{3}+y^{3}>0 \\ z^{3}+t^{3}>0\end{array}\right.$

Từ giả thiết suy ra $\left(x^{3}+y^{3}\right)+\left(z^{3}+t^{3}\right)=x^{2}+y^{2}+z^{2}+t^{2}(* * *)$

Theo câu b) : $\left\{\begin{array}{l}x^{3}+y^{3} \geq x^{2}+y^{2} \\ z^{3}+t^{3} \geq z^{t}+t^{2}\end{array}\right.$

Nếu $(* * *) \Leftrightarrow(x ; y),(z, t)$ là một trong các bộ $(1 ; 1) ;(1 ; 0) ;(0 ; 1)$.

Vậy nghiệm phương trình:

$(x, y, z, t) \in{(0 ; 0 ; 0 ; 0),(1 ; 1 ; 1 ; 1),(1 ; 0 ; 0 ; 1),(0 ; 1 ; 1 ; 0),(1 ; 0 ; 1 ; 0),(0 ; 1 ; 0 ; 1)} \text {. }$

Bài 3. Cho $A_{n}=2018^{n}+2032^{n}-1964^{n}-1984^{n}$ với $n$ là số tự nhiên.

(a) Chứng minh với mọi số tự nhiên $n$ thì $A_{n}$ chia hết cho 51 .

(b) Tìm tất cả những số tự nhiên $n$ sao cho $A_{n}$ chia hết cho 45 .

Lời giải.

(a) Do $2018 \equiv 1964 \quad(\bmod 3) \Rightarrow 2018^{n} \equiv 1964^{n} \quad(\bmod 3)$. $2032 \equiv 1984 \quad(\bmod 3) \Rightarrow 2032^{n} \equiv 1984^{n} \quad(\bmod 3) .$

$\Rightarrow A_{n} \vdots 3 .$

Ta lại có $2018 \equiv 1984 \quad(\bmod 17) \Rightarrow 2018^{n} \equiv 1984^{n} \quad(\bmod 17)$. $2032 \equiv 1964 \quad(\bmod 17) \Rightarrow 2032^{n} \equiv 1964^{n} \quad(\bmod 17) .$ $\Rightarrow A_{n} \vdots 17 .$

Do $(3 ; 17)=1$ nên $A_{n}: 51 \quad \forall n$

(b) $A_{n}=2018^{n}+2032^{n}-1964^{n}-1984^{n}$.

  • Ta xét các trường hợp của $n$ để $A_{n} \vdots 5$.

Ta có $A_{n} \equiv(-2)^{n}+2^{n}-2 \cdot(-1)^{n}(\bmod 5)$.

Do đó nếu $n$ lẻ $\Rightarrow A_{n} \equiv 2 \quad(\bmod 5) \quad$ (loại).

Nếu $n=4 k \Rightarrow A_{n} \equiv 2 \cdot 2^{4 k}-2 \equiv 2-2 \equiv 0 \quad(\bmod 5)$ (nhận)

Nếu $n=4 k+2 \Rightarrow A_{n} \equiv 2 \cdot 2^{4 k+2}-2 \equiv 8-2 \equiv 6(\bmod 5)$ (loại). Vậy $A_{n} \vdots 5 \Leftrightarrow n \vdots 4$.

  • Ta xét các trường hợp của $n$ để $A_{n}: 9$.

Ta có

$\begin{aligned} A_{n} & \equiv 2^{n}+(-2)^{n}-2^{n}-4^{n} \quad(\bmod 9) \\ & \equiv 2^{n}-4^{n} \quad(\bmod 9) \quad(\text { Do n chẵn }) \\ & \equiv 2^{n}\left(1-2^{n}\right) \quad(\bmod 9) \end{aligned}$

$\operatorname{Vi}(2 ; 9)=1 \Rightarrow 2^{n}-1: 9 .$

Xét $n=3 k$ với $k \in \mathbb{N}$. Ta có $A_{n} \equiv 2^{3 k}-1 \equiv(-1)^{k}-1 \quad(\bmod 9) \Rightarrow k$ chẵn

Xét $n=3 k+1$ với $k \in \mathbb{N}$. Ta có $A_{n} \equiv 2^{3 k+1}-1 \equiv 2 \cdot(-1)^{k}-$ $1(\bmod 9)$ (loại).

Xét $n=3 k+2$ với $k \in \mathbb{N}$. Ta có $A_{n} \equiv 2^{3 k+2}-1 \equiv 4 \cdot(-1)^{k}-$ $1(\bmod 9)$ (loại).

Vậy $A_{n} \vdots 45 \Leftrightarrow n \vdots 12$.

Bài 4. Cho tam giác $A B C$ nhọn. Một đường tròn qua $B, C$ cắt các cạnh $A B, A C$ lần lượt tại $E$ và $F ; B F$ cắt $C E$ tại $D$. Lấy điểm $K$ sao cho từ giác $D B K C$ là hình bình hành.

(a) Chứng minh rằng $\triangle K B C$ đồng dạng với $\triangle D F E, \triangle A K C$ đồng dạng với $\triangle A D E$.

(b) Hạ $D M$ vuông góc với $A B, D N$ vuông góc với $A C$. Chứng minh rằng

$M N$ vuông góc với $A K$.

(c) Gọi $I$ là trung điểm $A D, J$ là trung điểm $M N$. Chứng minh rằng đường thẳng $I J$ đi qua trung điểm của cạnh $B C$.

(d) Đường thẳng $I J$ cắt đường tròn ngoại tiếp tam giác $I M N$ tại $T(T \neq I)$. Chứng minh rằng $A D$ tiếp xúc với đường tròn ngoại tiếp tam giác $D T J$.

Lời giải.

(a) Tứ giác $B E F C$ nội tiếp nên $\angle D E F=\angle D B C$ và $\angle D F E=\angle D C B$.

Và $B D C K$ là hình bình hành nên $\angle D B C=\angle K C B, \angle D C B=\angle K B C$

Do đó $\angle D E F=\angle K C B, \angle D F E=\angle K B C$, suy ra $\triangle K B C \sim \triangle D F E$

Ta có $\angle A E C=\angle A B K$ và $\angle A B K=\angle A B D+\angle D B K=\angle A C E+\angle D C K=$ $\angle A C K$ (do $\angle A B D=\angle A C E, \angle D B K=\angle D C K)$

Do $\triangle D E F \sim \triangle K C B$ nên $\frac{D E}{C K}=\frac{E F}{B C}$ (1)

Mặt khác $\triangle A E F \sim \triangle A C B$ nên $\frac{E F}{B C}=\frac{A E}{A C}$ (2)

Từ (1) và (2) suy ra $\frac{D E}{C K}=\frac{A E}{A C}$

Xét $\triangle A E D$ và $\triangle A C K$ có $\angle A E D=\angle A C K, \frac{D E}{C K}=\frac{A E}{A C}$

Suy ra $\triangle A E D \sim \triangle A C K(\mathrm{c}-\mathrm{g}-\mathrm{c})$

(b) Gọi $Q$ là giao điểm của $A K$ và $M N$

Ta có $\triangle D A E \backsim \triangle K A C$ nên $\angle K A C=\angle D A E$ hay $\angle Q A C=\angle D A M$

Tứ giác $A M D N$ có $\angle A M D+\angle A N D=90^{\circ}+90^{\circ}=180^{\circ}$ nên nội tiếp.

Suy ra $\angle D N M=\angle D A M=\angle Q A N$

Mà $\angle D N M+\angle M N A=90^{\circ}$, suy ra $\angle Q A N+\angle M N A=90^{\circ}$

Suy ra $\angle A Q N=90^{\circ}$. Vậy $A K \perp M N$.

(c) Cách 1. Ta có $I J \perp M N$ và $A K \perp M N$, suy ra $I J | A K$.

Mà $I$ là trung điểm $A D$, suy ra $I J$ qua trung điểm $P$ của $D K$. Lại có $D B K C$ là hình bình hành nên $P$ cũng là trung điểm $B C$.

Cách 2. Gọi $P$ là trung điểm của $B C$. $V, U$ lần lượt là trung điểm của $D B, D C$.

Ta có $M I=\frac{1}{2} A D=N I$, suy ra $I$ thuộc trung trực của $M N$.

Ta có $M V=\frac{1}{2} B D\left(\triangle D B M\right.$ vuông tại $M$ ) và $P U=\frac{1}{2} D B$ (đường trung bình)

Suy ra $M V=P U$

Tương tự thì ta có $P V=N U$

Ta có: $\angle M V D=2 \angle M B D=2 \angle N C D=\angle N U D$ và $\angle D V P=\angle D U P$

Suy ra $\angle M V P=\angle P U N$

Xét $\triangle M V P$ và $\triangle P U N$ có $M V=P U, P V=N U, \angle M V P=\angle P U N$

$\Rightarrow \triangle M V P=\triangle P U N(\mathrm{c}-\mathrm{g}-\mathrm{c})$

Suy ra $P M=P N$. Do đó $P$ thuộc trung trực của $M N$.

Vậy $I, P, J$ thuộc trung trực $M N$ nên $I, P, J$ thẳng hàng hay $I J$ qua trung điểm $P$ của $B C$.

(d) Ta có tam giác $I M N$ cân tại $I, I J \perp M N$ nên $I T$ là đường kính của đường tròn ngoại tiếp $\triangle I M N$

Suy ra $\angle I N T=90^{\circ}$.

Suy ra $I J \cdot I T=I N^{2}$ mà $I N=I D$ suy ra $I J \cdot I T=I D^{2}$

Do đó $I D^{2}=I J \cdot I T$. Suy ra $\triangle I D J \sim \triangle I T D(\mathrm{c}-\mathrm{g}-\mathrm{c})$ nên $\angle I D J=\angle I T D$

Từ đó ta có $I D$ là tiếp tuyến của đường tròn ngoại tiếp $\triangle D T J$.

Bài 5. Đội văn nghệ của một trường THCS có 8 học sinh. Nhà trường muốn thành lập các nhóm tốp ca, mỗi nhóm gồm đúng 3 học sinh, (mỗi học sinh có thể tham gia vài nhóm tốp ca khác nhau). Biết rằng hai nhóm tốp ca bất

kỳ có chung nhau nhiều nhất là một học sinh.

(a) Chứng minh rằng không có học sinh nào tham gia từ 4 nhóm tốp ca trở lên.

(b) Có thể thành lập nhiều nhất là bao nhiêu nhóm tốp ca như vậy?

Lời giải.

(a) Giả sử có 1 học sinh tham gia 4 nhóm $A, B, C, D$ là $x$.

Khi đó $A={(x, a, b)} \quad B={(x, c, d)} \quad C={(x, e, f)} \quad D={(x, g, h)}$.

Vi các nhóm không có chung quá 1 thành viên nên các học sinh: $a, b, c, d, e, f, g, h$

là khác nhau (vô lí vì chỉ có 8 học sinh tham gia).

(b) Ta chứng minh lập được nhiều nhất là 8 nhóm.

Thật vậy, nếu có 9 nhóm, mối nhóm có 3 học sinh thì khi đó số lượt học sinh tham gia là $9 \cdot 3=27$ lượt tham gia.

Mà chỉ có 8 học sinh nên theo nguyên lý Dirichlet thì có ít nhất một học sinh có nhiều hơn hoặc bằng 4 lượt (mâu thuẫn do câu $a$ ).

(Một học sinh tham gia 1 nhóm tính là 1 lượt).

Gọi 8 học sinh là $a, b, c, d, e, f, g, h$.

8 nhóm học sinh được chia như sau:

${(a, b, c)} ; \quad{(h, b, e)} ; \quad{(b, d, f)} ; \quad{(a, d, e)} ;$

${(h, c, f)} ;  \quad{(c, e, g)} ; \quad{(a, f, g)} ; \quad{(h, d, g)} .$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Đề thi thử vào lớp chuyên toán Star Education năm 2021 – Lần 2

Thời gian làm bài 150 phút.

Bài 1. (2,0 diểm)
a) Tìm $m$ để phương trình $\frac{x^{2}-(3 m+1) x+2 m^{2}+2 m}{x}=0$ có hai nghiệm $x_{1}, x_{2}$ phân biệt thỏa $\left(\sqrt{x_{1}-m}+\sqrt{x_{2}-m}\right)^{4}=(2 m-1)^{2}$
b) Giải hệ phương trình $\left\{\begin{array}{l}\sqrt{x^{2}-y}=z-1 \\ \sqrt{y^{2}-z}=x-1 \\ \sqrt{z^{2}-x}=y-1\end{array}\right.$
Bài 2. (1,5 diểm) Cho các số $x, y, z$ nguyên dương thỏa $x>y>z$.
a) Cho $(x ; y ; z)$ thỏa $y z+x(x+y+z)=2021$.
Tìm giá trị nhỏ nhất của biểu thức $A=(x-y)^{2}+(x-z)^{2}+(y-z)^{2}$
b) Chứng minh rằng nếu $y$ không nhỏ hơn trung bình cộng của $x$ và $z$ thì
$$
(x+y+z)(x y+y z+x z-2) \geq 9 x y z
$$
Bài 3. (2,0 diềm) Cho $x, y$ là các số nguyên không đồng thời bằng 0 sao cho $x^{3}+y$ và $x+y^{3}$ chia hết cho $x^{2}+y^{2}$.
a) Tìm $x, y$ nếu $x y=0$.
b) Chứng minh rằng $x y \neq 0$ thì $x, y$ là nguyên tố cùng nhau.
c) Tìm tất cả cặp số nguyên $(x, y)$ thỏa đề bài.
Bài 4. (3,0 diểm) Cho tam giác $A B C$ nhọn, có trực tâm $H ; A H$ cắt $B C$ tại $D$. Trên tia đối tia $D H$ lấy điểm $M$. Đường tròn ngoại tiếp tam giác $M B H$ cắt $A B$ tại $E$ cắt $B C$ tại $K$; đường tròn ngoại tiếp tam giác $M C H$ cắt $A C$ tại $F$ và $B C$ tại $L$.
a) Chứng minh $B E F C$ nội tiếp và $\angle E M A=\angle F M A$.
b) $M E$ cắt $C H$ tại $P, M F$ cắt $B H$ tại $Q$. Chứng minh $P Q$ vuông góc $O A$ với $O$ là tâm đường tròn ngoại tiếp tam giác $A B C$.
c) $H K$ cắt $A C$ tại $U, H L$ cắt $A B$ tại $V$. Chứng minh $U V$ luôn song song với một đường thẳng cố định khi $M$ thay đổi.

Bài 5. (1,5 diểm) Trong một hội nghị Toán quốc tế có n người, mỗi người trong họ có thể nói được nhiều nhất 3 ngôn ngữ. Trong 3 người bất kì thì luôn có 2 người có thể nói chung một ngôn ngữ.
a) Cho $n \geq 9$, chứng minh răng cố một ngôn ngữ được nói bởi ít nhất 3 người.
b) Nếu $n=8$, diều kết luận của câu a) còn đúng không? Tại sao?

Đáp án có sau một tuần

 

Đề thi chuyên toán vào lớp 10 trường Phổ thông Năng khiếu năm 2011

Bài 1. Cho phương trình bậc hai $x^{2}-(m+3) x+m^{2}=0$ trong đó $m$ là tham số sao cho phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$.
(a) Khi $m=1$. Chứng minh rằng ta có hệ thức $\sqrt[8]{x_{1}}+\sqrt[8]{x_{2}}=\sqrt{2+\sqrt{2+\sqrt{6}}}$
(b) Tìm tất cả các giá trị của $m$ sao cho $\sqrt{x_{1}}+\sqrt{x_{2}}=\sqrt{5}$
(c) Xét đa thức $P(x)=x^{3}+a x^{2}+b x$. Tìm tất cả các cặp số $(a, b)$ sao cho ta có hệ thức $P\left(x_{1}\right)=P\left(x_{2}\right)$ với mọi giá trị của tham số $m$.
Bài 2. (a) Cho $a, b$ là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức
$$
P=\frac{\sqrt{1+a^{2}} \sqrt{1+b^{2}}}{1+a b}
$$
(b) Cho các số $x, y, z$ thỏa $|x| \leq 1,|y| \leq 1,|z| \leq 1$. Chứng minh rằng:
$$
\sqrt{1-x^{2}}+\sqrt{1-y^{2}}+\sqrt{1-z^{2}} \leq \sqrt{9-(x+y+z)^{2}}
$$
Bài 3. Cho tam giác $A B C$ nhọn có $A B=b, A C=c . M$ là một điểm thay đổi trên cạnh $A B$. Đường tròn ngoại tiếp tam giác $B C M$ cắt $A C$ tại $N$.
(a) Chứng minh rằng tam giác $A M N$ đồng dạng với tam giác $A C B$. Tính tỉ số $\frac{M A}{M B}$ để diện tích tam giác $A M N$ bằng $\frac{1}{2}$ diện tích tam giác $A C B$.
(b) Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $A M N$. Chứng minh rằng $I$ luôn thuộc một đường cố định.
(c) Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $M B C$. Chứng minh rằng đoạn thẳng $I J$ có độ dài không đổi.
Bài 4. Cho các số nguyên $a, b, c$ sao cho $2 a+b, 2 b+c, 2 c+a$ đều là các số chính phương.
(a) Biết rằng có ít nhất một trong 3 số chính phương trên chia hết cho $3 .$ Chứng minh rằng $(a-b)(b-c)(c-a)$ chia hết cho 27 .
(b) Tồn tại hay không các số $a, b, c$ thỏa điều kiện $\left(^{*}\right)$ mà $(a-b)(b-c)(c-a)$ không chia hết cho 27 ?
Bài 5. Cho hình chữ nhật $A B C D$ có $A B=3, A D=4$.
(a) Chứng minh rằng từ 7 điểm bất kì trong hình chữ nhật $A B C D$ luôn tìm được hai điểm mà khoảng cách giữa chúng không lớn hơn $\sqrt{5}$
(b) Chứng minh khẳng định ở câu $\mathrm{a}$ ) vẫn còn đúng với 6 điểm bất kì nằm trong hình chữ nhật $A B C D$.

Đáp án

 

Tứ giác nội tiếp – Phần 3

Bài 1. Cho tam giác $ABC$. Gọi $M$ là trung điểm $BC$. Gọi $D, E, F$ lần lượt là tâm đường tròn nội tiếp các tam giác
$ABM, ACM, ABC$. Gọi $H$ là hình chiếu vuông góc của $F$ trên BC. Chứng minh $D, H, M, E$ cùng thuộc một đường tròn.

Lời giải
  Gọi $P, Q$ là hình chiếu của $D, E$ trên BC.

Ta có $\triangle MDP \backsim \triangle EMQ$, suy ra $MQ\cdot MP = EQ\cdot PD$.

Ta có $BP = \dfrac{1}{2}(AB+BM-AM), BH = \dfrac{1}{2}(AB+BC-AC)$

Suy ra $PH = BH – BP = \dfrac{1}{2}(BC – AC – BM + AM ) = \dfrac{1}{2}(MC + AM – AC) = MQ$

Suy ra $PM = HQ$. Suy ra $PH\cdot HQ = MQ\cdot MP = DP\cdot EQ$, suy ra $\triangle DPH \backsim \triangle HQE$

Từ đó ta có $\angle DHE = 90^\circ$.

Bài 2. Cho đường tròn tâm $O$ bán kính $R$ và dây $BC =R \sqrt{3}$ cố định. $A$ là một điểm thay đổi trên cung lớn $BC$ sao cho tam giác $ABC$ nhọn. Các đường cao $BD$ và $CE$ cắt nhau tại $H$. Phân giác trong góc $A$ cắt $(O)$ tại $G$ và cắt $DE$ tại $F$.

a) Chứng minh tứ giác $BEGF$ nội tiếp.
b) Gọi $I$ là giao điểm của $AH$ và $BC$. Chứng minh $FIHG$ nội tiếp.

Lời giải

(a) Ta có $BEFC$ nội tiếp nên $\angle AED = \angle ACB$
Và $\angle ACB = \angle AFB$ (cùng chắn cung AB).
Suy ra $\angle AED = \angle AFB$, do đó tứ giác $BEGF$ nội tiếp.
(b) Tứ giác $BEGF$ nội tiếp, suy ra $AG\cdot AF = AE\cdot AB$.
Mặt khác ta có $AE\cdot AB = AH \cdot AI$
Suy ra $AG\cdot AF = AH\cdot AI$, từ đó ta có $\triangle AHF \backsim AGI$, suy ra $\angle AFH = \angle AIG$.

Bài 3. Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Lời giải

Gọi $Q$ là giao điểm của $(PDE)$ và $(PAB)$.

Ta có $\triangle QAD \backsim \triangle QBE$, suy ra $QD/QE = AD/EB = CD/CE$. Khi đó $QC$ là phân giác $\angle DQE$.

Ta có $QO$ cũng là phân giác $\angle AQB$ và $\angle AQB = \angle DQE$. Suy ra $\angle DQC = \angle OQB$.

Mà $\angle QDC = \angle QOB$ nên $\angle QCD =\angle QBO = \angle QPF$.  Vậy tứ giác $QPFC$ nội tiếp.

Bài 4. Gọi $O$ là giao điểm của hai đường chéo hình thang $ABCD$ có đáy là $AB, CD$. Lấy $M, N$ là điểm thuộc $OA$, $N$ là điểm thuộc $OD$ sao cho $\angle BMD = \angle AMC$. Chứng minh rằng BMNC là tứ giác nội tiếp.

Lời giải
  Cho đường tròn ngoại tiếp tam giác $ABM$ cắt $OC$ tại $N’$. Chứng minh $\angle AN’C = \angle BMD = \angle ANC$.

Bài 5. Cho $(O)$ và $(O_1)$ cắt nhau tại $M, N$. Tiếp tuyến tại $M$ của $(O)$ cắt $(O_1)$ tại $B$. Tiếp tuyến tại $M$ của $(O_1)$ cắt $(O)$ tại $A$. Gọi $P$ là điểm đối xứng của $M$ qua $N$. Chứng minh rằng tứ giác $MAPB$ nội tiếp.

Lời giải

Chứng minh $NM^2 = NA \cdot NB = NP^2$. Suy ra $\angle A + \angle B = \angle M + \angle N$.

Bài 6. Cho tứ giác $ABCD$ có các cạnh đối diện $AD$ và $BC$ cắt nhau tại $E$, $AB$ và $CD$ cắt nhau tại $F$. Chứng minh rằng tứ giác $ABCD$ nội tiếp khi và chỉ khi $EA.ED + FA.FB = EF^2$.

Lời giải

Gọi $K$ là giao điểm của đường tròn ngoại tiếp tam giác $ADF$ và $EF$. Ta có $EK \cdot EF = EA \cdot ED$, suy ra $FK \cdot FE = FA \cdot FB$, suy ra $EKAB$ nội tiếp. \\
Khi đó $\angle EBA = \angle FKA = \angle ADC$ nên $ABCD$ nội tiếp.

Bài 7. Cho tứ giác $ABCD$ có hai đường chéo vuông góc nhau tại $I$. Gọi $E, F, G, H$ lần lượt là hình chiếu vuông góc của $I$ trên $AB, BC, CD$ và $DA$. $IE$ cắt $CD$ tại $M$.

a) Chứng minh $EFGH$ và $HGMF$ nội tiếp.
b) $BH$ cắt đường tròn ngoại tiếp tam giác $IEH$ tại $J$, $BG$ cắt đường tròn ngoại tiếp tam giác $IFG$ tại $K$. Chứng minh $E, J, K, F$ cùng thuộc một đường tròn.

Lời giải

(a) Ta có $BD$ là tiếp tuyến chung của $(IHE)$ và $(IFG)$. \\ $\angle BEF = \angle BIF = \angle IGF, \angle AEH = \angle EIH = \angle HGI$. \\ Suy ra $\angle FEF + \angle HGF = 180^\circ $. Suy ra $HEFG$ nội tiếp. \\ Ta có $\angle IMG = \angle ICM + \angle MIC = \angle DIG + \angle AIE = \angle DHG + \angle AHE = 180^\circ – \angle EHG$. \\ Suy ra $EHGM$ nội tiếp. \\ Do đó $EGMF$ nội tiếp. \\ (b) Ta có $BJ\cdot BH = BE\cdot BA = BI^2 = BK\cdot BG$. \\ Suy ra $GHJK$ nội tiếp. \\ Ta có $\angle EFK = \angle EFI – \angle KFI = \angle EBI – \angle IGB$. \\ Và $\angle EJK = \angle EJB + \angle BJK = \angle DAB + \angle HGB$. \\ Suy ra $\angle EFK + \angle EJK = \angle DAB + \angle HGB – \angle IBG + \angle EBI = \angle DAB + \angle HGI + \angle EBI = 180^\circ $. \\ Do đó $EJKF$ nội tiếp.

Bài 8. (Thi HSGQG THPT Việt Nam năm 2010) Cho tam giác $ABC$ không cân có $\angle ABC$ và $\angle ACB$ nhọn. $D$ là điểm di chuyển trên cạnh $BC$ sao cho $AD$ không vuông góc $BC$. Đường thẳng qua $D$ vuông góc với $BC$ cắt các đường thẳng $AB, AC$ tại $E$ và $F$. Gọi $M, N, P$ là tâm đường tròn nội tiếp các tam giác $AEF, BDE, CDF$. Chứng minh rằng $A, M, N, P$ cùng thuộc một đường tròn khi và chỉ khi $d$ đi qua tâm nội tiếp của tam giác $ABC$.

Lời giải

Gọi $I$ là tâm nội tiếp của tam giác $ABC$.
Gọi $J$ là giao điểm của $AI$ và $EN$, suy ra $FJ$ là phân giác góc $AFD$.
Ta có $FKC = 90^o + \dfrac{1}{2}\angle ACB = \angle JIN$.
Tứ giác $AMFJ$ nội tiếp, suy ra $\angle NJI =\angle AJM = \angle AFM = \angle KFP$ ($K$ là giao điểm của $d$ và $IC$).
Từ đó $\triangle NIJ \backsim \triangle PFK$.
Suy ra $IJ/FK = JN/FP$.
Ta có $A, M, P, N$ đồng viên khi và chỉ khi $\angle ANJ = \angle APF \Leftrightarrow \triangle AJN \backsim \triangle AFP \Leftrightarrow AF/AJ = FP/JN$.
Mà $AF/AJ = FS/JS$ (Với $S$ là giao điểm của $AI$ và $d$)
Vậy $A, M, P, N$ đồng viên khi và chỉ khi $IJ/KF = FS/JS$.
Điều này chỉ đúng khi $I$ trùng $S$. Vì nếu $I$ khác $S$ thì $IK//FJ$ (!)

Bài tập rèn luyện

Bài 9. Cho tam giác $ABC$ nhọn và khác tam giác cân. Phân giác góc nhọn tạo bởi hai đường cao hạ từ $B$ và $C$ của tam giác cắt các cạnh $AB$ và $AC$ lần lượt tại $P$ và $Q$. Phân giác của góc $BAC$ cắt đoạn thẳng nối trực tâm của tam giác $ABC$ và trung điểm $BC$ tại $R$. Chứng minh rằng $P, A, Q, R$ cùng thuộc một đường tròn.

Bài 10. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, phân giác góc $A$ cắt $BC$ tại $D$, $M$ là trung điểm $BC$, $E$ là điểm đối xứng của $D$ qua $M$. Trên các đường thẳng $AO$ và $AD$ lấy điểm $P$ và $Q$ sao cho $PD$ và $EQ$ vuông góc $BC$. Chứng minh 4 điểm $B, C, P, Q$ cùng thuộc một đường tròn.

Bài 11. (Đề đề nghị thi Toán Quốc Tế 2010) Cho tam giác $ABC$ nội tiếp $w$, các đường cao là $AD, BE, CF$. Tia $EF$ cắt $w$ tại $P$. $BP$ cắt $DF$ tại $Q$. Chứng minh 4 điểm $A, P, Q, F$ cùng thuộc một đường tròn và $AQ = AP$.

Bài tập số học ôn thi vào lớp 10 chuyên toán – Phần 1

Bài 1. Cho $m, n$ là các số nguyên. Chứng minh rằng nếu $mn+1$ chia hết cho 24 thì $m+n$ cũng chia hết cho 24.

Giải

Ta có $mn+1$ chia hết cho 24, suy ra $mn+1$ chia hết cho 3 và 8. Ta cũng chứng minh $m+n$ chia hết cho 3 và 8.

Nếu $m \equiv p (\mod 3), n \equiv q (\mod 3)$, suy ra $pq + 1 \equiv 0 (\mod 3)$. Suy ra $pq = 2$. Do đó $p = 1, q = 2$ hoặc $p=2, q=1$. Suy ra $p+q \equiv 0 (\mod 3)$ hay $m+n \equiv (\mod 3)$.
Tương tự $m \equiv q (\mod 8), n \equiv p (\mod 8)$, suy ra $pq \equiv 7 (\mod 8)$ và $p, q \in \{1, 2, 3, 4, 5, 6, 7\}$, suy ra $p=1, q=7$ hoặc $p=7, q=1$. Do đó $m+n$ chia hết cho 8.
Vậy $m + n$ chia hết cho 24.5

Bài 2. Tìm tất cả các số $n$ sao cho:

a) $1^n + 2^n + 3^n + 4^n$ chia hết cho 5.
b) $2^{2n} + 2^n + 1$ chia hết cho 21.

Giải

Đặt $A_n = 1^n + 2^n + 3^n + 4^n$.
Nếu $n$ lẻ ta có $1^n + 4^n$ chia hết cho 5, $2^n + 3^n$ chia hết cho 5. Suy ra $1^n + 2^n + 3^n + 4^n$ chia hết cho 5.
Nếu $n$ chẵn, đặt $n = 2k$. Ta có $1 + 2^n + 3^n + 4^n = 1 + 4^k + 9^k + 16^k \equiv 1 + (-1)^k + (-1)^k + 1 (\mod 5)$.
Do đó $A_n \vdots 5 \Leftrightarrow k$ lẻ.
Vậy $A_n$ chia hết cho 5 khi và chỉ khi $n$ lẻ hoặc $n$ chia 4 dư 2.

Đặt $B_n = 2^{2n} + 2^n + 1$.
Ta tìm $n$ để $B_n$ chia hết cho 3 và 7.

Nếu $n = 2k$ ta có $B_n = 16^k + 4^k + 1 \equiv 0 (\mod 3)$.\\
Nếu $n = 2k + 1$ ta có $B_n = 4\cdot 16^k + 2\cdot 4^k + 1 \equiv 7 (\mod 3)$ (loại)\\
Vậy $B_n \vdots 3 \Leftrightarrow n = 2k$.

Nếu $n = 3k$ ta có $B_n = 64^k + 8^k + 1 \equiv 3 (\mod 7)$. (loại)\\
Nếu $n = 3k+ 1$ ta có $B_n = 4 \cdot 64^k + 2 \cdot 8^k + 1 \equiv 0 (\mod 7)$ (nhận)
Nếu $n = 3k + 2 $ ta có $B_n = 16\cdot 64^k + 4\cdot 8^k + 1 \equiv 0 (\mod 7)$.

Vậy $B_n$ chia hết cho 7 khi và chỉ khi $n = 6k+4$ hoặc $n = 6k+2$.

Bài 3. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)

a) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n$ chia hết cho 5.
b) Tìm tất cả các số nguyên dương $n$ sao cho $n2^n + 3^n $ chia hết cho 25.

Giải

a) Nếu $n$ ta có $2^n + 3^n$ chia hết cho 5.
Xét $n=2k + 1$ ta có $n.2^n + 3^n = (n-1)2^n+ 2^n + 3^n$ chia hết cho 5 khi và chỉ khi $n-1$ chia hết cho 5, hay $k$ chia hết cho 5,suy ra $k = 5q$. Vậy $n = 10q + 1$.
Xét $n = 2k$ ta có $n.2^n + 3^n = 2k.4^k + 9^k = 2k.4^k + 4^k + 9^k – 4^k = (2k+1).4^k + 9^k – 4^k $ chia hết cho 5 khi $2k+1$ chia hết cho 5. Khi đó $k = 5q + 2$, suy ra $n = 10q + 4$.
Vậy với $n = 10q + 1, 10q + 4$ thì $n.2^n + 3^n$ chia hết cho 5.

b) Theo câu a để $A=n.2^n + 3^n$ chia hết cho 5 thì $n = 10q+1, 10q + 4$. Ta tìm $q$ để $n.2^n + 3^n$ chia hết cho 25.
+Với $n = 10q + 1$ ta có $A = (10q+1)2^{10q+1} + 3^{10q+1} = (20q+2).1024^q + 3.3^{10q}$\\
Ta có $1024 \equiv -1 (\mod 25), 3^10 \equiv -1 (\mod 25)$. Suy ra $A \equiv (20q + 2)(-1)^q + 3.(-1)^q (\mod 25)$ hay $A = (-)^q (20q+5) (\mod 25)$.
Suy ra $A$ chia hết cho 25 khi và chỉ khi $20q +5$ chia hết cho 25 hay $4q+1$ chia hết cho 5. Suy ra $q = 5k + 1$. Vậy $n = 10(5k+1)+1 = 50k + 11$.
+Với $n = 10q + 4$. Ta có $A = (10q+4)2^{10q+4} + 3^{10q+4} = (160q+64)2^{10q} + 81.3^{10q} \equiv (10q+14)(-1)^q + 6(-1)^q (\mod 25) \equiv (-1)^q(10q+20) (\mod 25)$.
Do đó $A$ chia hết cho 25 khi và chỉ khi $10q+20$ chia hết cho 25 hay $q+2$ chia hết cho 5, suy ra $q = 5k + 3$. Suy ra $n = 10(5k+3) + 4 = 50k + 34$.
Vậy $n = 50k+11, 50k+34$.

Bài 4. (Tuyển sinh vào lớp 10 Chuyên Toán trường PTNK 1997)

a) Tìm tất cả các số nguyên dương sao cho $2^n – 1$ chia hết 7.
b) Cho số nguyên tố $p \geq 5$. Đặt $A = 3^p – 2^p – 1$. Chứng minh $A$ chia hết cho $42p$.

Giải

a)
TH1: $n = 3k$ ta có $2^n – 1 = 2^{3k}-1 = 8^k – 1$ chia hết cho 7.
TH2: $n = 3k + 1$ ta có $2^n- 1= 2.8^k – 1$ chia 7 dư 1.
TH3: $n = 3k + 2$ ta có $2^n – 1= 4.8^k – 1$ chia 7 dư 3.
Vậy $2^n- 1$ chia hết cho 7 khi và chỉ khi $n$ chia hết cho 3.

b)
$42p = 2.3.7.p$.
TH1: $p = 7$ ta có $3^7 – 2^7 – 1$ chia hết cho $42.7$.
TH2: $p > 7$ khi đó các số $2, 3, 7, p$ đôi một nguyên tố cùng nhau.
+ Ta có $3^p – 1 – 2^p$ chia hết cho 2.
+ $2^p + 1$ chia hết cho 3 vì $p$ lẻ, suy ra $3^p -2^p-1$ chia hết cho 3.
+ $p$ nguyên tố lớn hơn hoặc bằng 5, suy ra $p = 6k + 1$ hoặc $p = 6k+5$. Nếu $p = 6k + 1$ ta có $3^p – 2^p – 1 = 3^{6k+1} – 2^{6k+1} – 1 = 3.3^{6k} – 2.2^{6k} – 1$.
Ta có $3^6 \equiv 1 (\mod 7)$, suy ra $3^{6k} \equiv 1 (\mod 7)$, tương tự thì $2^{6k} \equiv 1 (\mod 7)$. Do đó $3.3^{6k} – 2.2^{6k} – 1 \equiv 0 (\mod 7)$.
Nếu $p = 6k + 5$ ta có $3^p – 2^p – 1 \equiv 3^5 – 2^5 – 1 \equiv 0 (\mod 7)$.
Do đó $3^p – 2^p – 1$ chia hết cho 7.
+ Theo định lý Fermat nhỏ, ta có $3^p \equiv 3 (\mod p), 2^p \equiv 2 (\mod 7)$. Suy ra $3^p – 2^p – 1$ chia hết cho $p$.
Vậy $3^p – 2^p – 1$ chia hết cho $42p$.

Bài 5. Cho a,b là hai số nguyên dương thỏa mãn $4{a^2} – 1$ chia hết cho $4ab – 1$. Chứng minh rằng $a = b$.

Giải

$4a^2-1$ chia hết cho $4ab-1$ suy ra $4a^2\geq 4ab \Rightarrow a\geq b$.
Ta có $4a^2 – 1 \vdots 4ab-1 \Rightarrow 4b^2(4a^2-1) \vdots 4ab – 1 \Rightarrow 16a^2b^2-1-(4b^2-1) \vdots 4ab-1$, suy ra $4b^2-1 \vdots 4ab-1$. Tương tự trên ta có $b \geq a$.
Do đó $a = b$.

Bài 6. Cho các số nguyên $x, y, z$ thỏa $(x-y)(y-z)(z-x) = x+ y + z$. Chứng minh rằng $x + y + z$ chia hết cho 27.

Giải

Nếu $x, y, z$ khi chia cho 3 có số dư khác nhau thì $x+y+z \vdots 3$ nhưng $(x-y)(y-z)(z-x)$ không chia hết cho 3 (mẫu thuẫn).
Nếu 2 trong 3 số $x, y,z$ có số dư giống nhau, giả sử là $x, y$. Khi đó $x-y \vdots 3$, suy ra $(x-y)(y-z)(z-x)$ chia hết cho 3, nhưng $x+y + z$ không chia hết cho 3 (mâu thuẫn).
Vậy $x, y, z$ có cùng số dư khi chia cho 3, suy ra $x-y, y-z, z-x$ đều chia hết cho 3. Do đó $x+y+z = (x-y)(y-z)(z-x)$ chia hết cho 27.

Bài 7. Cho $a_n = 2^{2n+1} + 2^{n+1} + 1$ và $b_n = 2^{2n+1} – 2^{n+1} + 1$. Chứng minh rằng với mỗi số tự nhiên $n$, có một và chỉ một trong hai số $a_n, b_n$ chia hết cho 5.

Giải

$a_nb^n = (2^{2n+1}-2^{n+1}+1)(2^{2n+1}+2^{n+1}+1) = (2^{2n+1}+1)^2 – (2^{n+1})^2 = 4^{2n+1} +2.2^{2n+1} + 1 – 2^{2n+2} = 4^{2n+1} + 1$.
Ta có $4 \equiv -1(\mod 5)$, suy ra $4^{2n+1} \equiv -1 (\mod 5)$. Suy ra $4^{2n+1} + 1 \equiv 0(\mod 5)$.
Vậy $a_nb_n$ chia hết cho 5 với mọi $n$.
Ta có $a_n + b_n = 2.2^{2n+1} + 2 = 4^{n+1} + 2$.
Ta có $4^{n+1} \equiv -1, 1 (\mod 5)$. Suy ra $4^{n+1} +2 \equiv 1, 3 (\mod 5)$. Vậy $a_n + b_n$ không chia hết cho 5 với mọi $n$.
Do đó chỉ có một trong 2 số $a_n, b_n$ chia hết cho 5.

Bài 8. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Giải

Nếu $3^nn^3 + 1$ chia hết cho 7. Suy ra $n$ không chia hết cho 7, suy ra $n^6-1$ chia hết cho 7.\\
Ta có $n^3 (3^n + n^3 ) = n^33^n + n^6 = n^33^n +1 + n^6 – 1$ chia hết cho 7. \\
Mà $(n,7) = 1$. Suy ra $3^n + n^3$ chia hết cho 7.
Nếu $3^n + n^3$ chia hết cho 7. Làm tương tự ta cũng có $n^33^n + 1$ chia hết cho 7.

Bài 9. Chứng minh rằng nếu $2^n-1$ là số nguyên tố thì $n$ cũng là số nguyên tố.

Giải

Giả sử $n$ không là số nguyên tố.
Nếu $n = 1$ thì $2^1 – 1$ không nguyên tố.
Nếu $n$ là hợp số, ta có $n = pq$ với $1 < p < n$.
Khi đó $2^n – 1= (2^p)^q -1$ chia hết cho $2^p-1$. Mà $1< 2^p-1 < 2^n-1$ nên $2^n-1$ không là số nguyên tố. (Vô lý).

Bài 10. Ta điền các số từ 1 đến 9 vào bảng vuông $3\times 3$ sao cho mỗi số điền một lần, tổng các số cùng một hàng, một cột và đường chéo chia hết cho 9. Chứng minh rằng ô chính giữa bảng luôn là một số chia hết cho 3.

Giải

Giả sử các số là $a, b, c, d, e, f, g, h,i$ trong đó $e$ là ô chính giữa.

a  b  c
d  e  f
g  h  i

Ta có $a+e+i + d+e+f + c+e+g + b+e+h = (a+b+c+d+e+f+g+h+i) +3e \vdots 9$, mà $a +b+c+d+e+f+g+h+i = 1+2+\cdots + 9 = 45$ chia hết cho 9.
Suy ra $3e\, \, \vdots 9$, do đó $e \,\vdots \, 3$.

Ánh xạ – Bài tập

Bài giảng ánh xạ

Bài 1 Trong các quy tắc sau, quy tắc nào là ánh xạ?

a) Xét quy tắc $f$ từ tập các số nguyên $\mathbb{Z}$ vào $X = \{-1, 0 , 1\}$ sao cho với mỗi $x\in \mathbb{Z}$ thì:
$f\left( x \right) = \left\{ \begin{gathered}
– 1 \,\, khi\,\,\,x < 0 \hfill \\
0 \,\, khi\,\,\,x = 0 \hfill \\
1 \,\, khi\,\,\,x > 0 \hfill \\
\end{gathered} \right.$

a)Xét quy tắc cho tương ứng mỗi số thực dương $x$ với số thực $y$ sao cho $y^2 = x$.
b)Cho tương ứng các điểm $M$ thuộc mặt phẳng với các điểm $M’$ thuộc mặt phẳng sao cho $\overrightarrow{MM’} = \overrightarrow{u}$ cho trước.
c)Trong mặt phẳng cho tương ứng điểm $M$ với điểm $M’$ sao cho $MM’ = r > 0$ cho trước.
d)Trong mặt phẳng cho đường thẳng $d$. Quy tắc cho tương ứng $M$ thuộc $d$ ứng với $M$, $M$ không thuộc $d$ ứng với $M’$ sao cho $MM’ \bot d$.
e)Quy tắc cho tương ứng mỗi số hữu tỷ ứng với 1, mỗi số vô tỷ ứng với 0.

Bài 2 Trong các ánh xạ ở bài trên, ánh xạ nào là đơn ánh, song ánh, toàn ánh?

Bài 3 Trong các ánh xạ sau, ánh xạ nào là đơn ánh, toàn ánh, song ánh?

a)Ánh xạ $f: \mathbb{R} \to \mathbb{R}$ thỏa $f(x) = x^3$.
b)Ánh xạ $f: \mathbb{Z} \to \mathbb{N}$ thỏa $f(x) = |x|$.
c)Cho tương ứng mỗi số thực với phần nguyên của nó.

Bài 4 Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}: f(x) = x^2+3x+1$.

a)$f$ có là đơn ánh?
b)$f$ có là toàn ánh không?

Bài 5 Cho $f: (0;1) \to (0;+\infty) $ thỏa $f(x) = \dfrac{x}{1-x}$.

a)Tìm $f(f(x))$.
b)Chứng minh $f$ là song ánh.
c)Tìm ánh xạ ngược của $f$.

Bài 6 Cho $A, B, C, D$ là các tập con của $X$. Đặt ${\chi _D}\left( x \right) = \left\{ \begin{gathered}
1\,\,\,\,\,khi\,\,\,x \in D \hfill \\
0\,\,\,\,khi\,\,\,x \notin D \hfill \\
\end{gathered} \right.$.
Chứng minh rằng:

a)Quy tắc trên là ánh xạ từ $X$ vào ${0, 1}$.
b)$\chi A\cdot \chi _A = \chi_A,\chi{X\backslash A} = 1 – \chi_A$
c)$\chi {A \cap B} = \chi_A.\chi _B,\chi{A \cup B} = \chi_A+ \chi_B – \chi_A\cdot \chi_B$
d)$\chi_A \geqslant \chi _B \Leftrightarrow B \subset A,\chi_A \equiv 0 \Leftrightarrow A = \emptyset $

Bài 7 Cho $f: X \to Y$. $A, B$ là các tập con của $X$; $C, D$ là các tập con của $Y$. Đặt $f(A) = {f(x)|x \in A}$ là tập ảnh của $A$; $f^{-1}(C) = {x \in X|f(x) \in X}$ là tạo ảnh của $C$.

a)Chứng minh nếu $A \subset B$ thì $f(A) \subset f(B)$.
b)Nếu $C \subset D$ thì $f^{-1}(C) \subset f^{-1}(D)$.
c)$f(A\cup B) = f(A) \cup f(B)$.
c)$f(A \cap B) \subset f(A) \cap f(B)$. Và $f(A \cap B) = f(A) \cap f(b)$ khi $f$ là đơn ánh.
d)$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ và $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
e)$A \subset f^{-1}(f(A))$.

Bài 8 Cho $h: A \to B$, $g:B \to C$ và $f: C \to D$.

a)Chứng minh rằng nếu $f\circ g$ là đơn ánh và $f$ toàn ánh thì $g$ đơn ánh.
b)Nếu $f \circ g$ là toàn ánh thì $f$ cũng là toàn ánh.
c)Nếu $f, g$ là đơn ánh(toàn ánh, song ánh) thì $f \circ g$ cũng là đơn ánh (toàn ánh, song ánh).
d)Nếu $h$ là song ánh thì $h^{-1}$ cũng là song ánh.
e)Nếu $f \circ g$ và $g \circ h$ là song ánh thì $f, h, g$ cũng là song ánh.

Bài 9 Cho ánh xạ$f:\mathbb{R} \mapsto \left\{ {0,1} \right\}$

$f\left( x \right) = \left\{ \begin{gathered}
1\,\,\,khi\,\,x \in \mathbb{Q} \hfill \\
0\,\,khi\,\,x \notin \mathbb{Q} \hfill \\
\end{gathered} \right.$

a) Tìm tập ảnh của $f$.
b)Tìm ${f^{ – 1}}\left( 1 \right),{f^{ – 1}}\left( 0 \right)$
c)$f$ có là song ánh không? Vì sao?

Bài 10 Cho $A$ và $B$ là hai tập hợp sao cho có một đơn ánh từ $A$ vào $B$. Chứng minh rằng có một toàn ánh từ $B$ vào $A$.

Bài 11 Cho $A$ và $B$ là hai tập hợp sao cho có một toàn ánh từ $A$ vào $B$. Chứng minh rằng có một đơn ánh từ $B$ vào $A$.

Bài 12 Tìm một song ánh từ tập tập các số tự nhiên chẵn đến tập các số tự nhiên lẻ.

Bài 13 Tìm một đơn ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 14 Tìm một song ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 15 Tìm một song ánh từ tập $\mathbb{N} \times \mathbb{N}$ đến $\mathbb{N}^*$.

Bài 16 Gọi tập X là tập gồm các khoảng có dạng $\left( {a,b} \right)$ thỏa $0 \leqslant a < b \leqslant 1$.
Xét ánh xạ $X \to \left( {0,1} \right),f\left( {\left( {a,b} \right)} \right) = \frac{{a + b}}{2}$

a)$f$ có phải đơn ánh không? Vì sao?
b)$f$ có phải toàn ánh không? Vì sao?

Bài 17 Cho $X$ là tập khác rỗng, $P(X)$ là tập tất cả các tập con của $X$. Có tồn tại hay không một song ánh đi từ $X$ đến $P(X)$?

Bài 18 Tìm một song ánh từ tập $(0;1)$ đến tập các số thực.

Bài 19 Cho $m$ là số nguyên dương và tập $X = \{-m, -m+1, …, -1, 0, 1, …,m\}$. \Ánh xạ $f: X \to X$ thỏa $f(f(n)) = -n$ với mọi $n \in X$.\
Chứng minh $m$ là số chẵn.

Đáp án đề thi chuyên Toán thi vào trường Phổ thông Năng khiếu năm 2021

ĐỀ BÀI

Bài 1. (1.5 điểm) Cho hệ phương trình: $\left\{ \begin{array}{l}
\sqrt{x-2}+\sqrt{y-1}=2 \\
x+y=m
\end{array} \right. $

a) Giải hệ với $m=7$
b) Tìm $m$ sao cho hệ có nghiệm $(x,y)$

Bài 2. (1.5 điểm) Cho $M=\dfrac{1}{a}+ \dfrac{1}{b} + \dfrac{1}{c}$, $N=\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}$, $K=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}$

a) Chứng minh nếu $MK=\dfrac{a^2+b^2+c^2}{abc}$ thì $N=0$
b) Cho $M=K=4$, $N=1$. Tính tích $abc$.

Bài 3. (1.5 điểm) Cho dãy $n$ số thực $x_1; x_2; \ldots ; x_n$ ($n \ge 5$) thỏa: $x_1 \le x_2 \le \ldots \le x_n$ và $x_1 + x_2 + \ldots x_n =1$

a) Chứng minh nếu $x_n \ge \dfrac{1}{3}$ thì $x_1 + x_2 \le x_n$
b) Chứng minh nếu $x_n \le \dfrac{2}{3}$ thì tìm được số nguyên dương $k <n$ sao cho

$$\dfrac{1}{3}\le x_1 + x_2 + \ldots + x_k \le \dfrac{2}{3}$$

Bài 4. (1.5 điểm)

a) Tìm tất cả các số tự nhiên $n$ sao cho $(2n+1)^3 + 1 $ chia hết cho $2^{2021}$
b) Tìm tất cả số tự nhiên $n$ và số nguyên tố $p$ sao cho $\dfrac{2n+2}{p}$ và $\dfrac{4n^2+2n+1}{p}$ là các số nguyên. Chứng minh với $n$ và $p$ tìm được, các số nguyên trên không thể đồng thời là số chính phương.

Bài 5. (3 điểm)  Cho tam giác $ABC$ vuông tại $A$. Các điểm $E$, $F$ lần lượt thay đổi trên các cạnh $AB$, $AC$ sao cho $EF\parallel BC$. Gọi $D$ là giao điểm của $BF$ và $CE$, $H$ là hình chiếu của $D$ lên $EF$. Đường tròn $(I)$ đường kính $EF$ cắt $BF$, $CE$ tại $M$, $N$. ($M$ khác $F$, $N$ khác $E$)

a) Chứng minh $AD$ và đường tròn ngoại tiếp $\triangle HMN$ cùng đi qua tâm $I$ của đường tròn tâm $I$.
b) Gọi $K$, $L$ lần lượt là hình chiếu vuông góc của $E$, $F$ lên $BC$ và $P$, $Q$ tương ứng là giao điểm của $EM$, $FN$ với $BC$. Chứng minh tứ giác $AEPL$, $AFQK$ nội tiếp và $\dfrac{BP \cdot BL}{CQ \cdot CK}$ không đổi khi $E$, $F$ thay đổi.
c) Chứng minh nếu $EL$ và $FK$ cắt nhau trên đường tròn $(I)$ thì $EM$ và $FN$ cắt nhau trên đường thẳng $BC$.

Bài 6. (1 điểm) Cho $N$ tập hợp ($N \ge 6$), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái $a$, $b$, $c$, $\ldots$, $x$, $y$, $z$.

a) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 1 chữ cái, và không có chữ cái nào có mặt trong tất cả $N$ tập hợp này.  Chứng minh không có chữ cái nào có mặt trong 6 tập hợp từ $N$ tập đã cho.
b) Biết rằng trong $N$ tập hợp đã cho, hai tập hợp bất kỳ có chung đúng 2 chữ cái, và không có hai chữ cái nào cùng xuất hiện trong $N$ tập hợp này.  Hỏi trong số $N$ tập hợp đã cho, có nhiều nhất bao nhiêu tập hợp có chung đúng 2 chữ cái?

HẾT

Bình luận chung Đề bài nhìn chung vừa dài và khó, có nhiều ý, đầy đủ các phần đại số, số học, hình học và tổ hợp. Có 3 bài đại số, 1 bài số học, 1 bài hình và 1 bài tổ hợp. Đại số chiếm $50\%$ tổng số bài.

  •  Các bài học sinh chuyên toán có thể lấy điểm được ở bài 1, 2 và bài 5a.
    Các câu mức phân loại là 3a, 4a, 5b. Nếu làm chắc các câu trên nhiều khả năng sẽ đậu.
  • Những câu khó là 3b, 4b 5c, 6b, các kĩ thuật khó đối với học sinh cấp 2, đặc biệt là 3b và 4b.
  •  Đề năm nay nhìn chung khó, các bạn làm được từ 5 điểm trở lên có hy vọng đậu vào chuyên toán, còn điểm cao tầm 9, 10 tôi nghĩ là rất khó đạt, phải thực sự có năng khiếu và làm bài chắc tay mới đạt được.

Bài 1.

a) (0.75 điểm) $\left\{ \begin{array}{l}
\sqrt{x-2}+\sqrt{y-1}=2 \\
x+y=m
\end{array} \right. \quad (1) $

ĐKXĐ: $x \ge 2$, $y\ge 1$

Đặt $u = \sqrt{x-2}, v = \sqrt{y-1}$ ta có $u, v \geq 0$ và $u+v = 2, u^2+v^2=4$.

Giải ra được $u = 2, v=0$ hoặc $u = 0, v=2$. Từ đó có nghiệm $(x;y)$ là $(2;5), (6;1)$.

b) (0.75 điểm)

Đặt $u=\sqrt{x-2}$, $v= \sqrt{y-1}$ ($u, v \ge 0)$

Hệ phương trình trở thành: $\left\{ \begin{array}{l}
u+v=2 \\
u^2 + v^2 =m-3
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
u+v=2 \\
2u^2 – 4u +7-m=0 \quad (2)
\end{array} \right. $

Để hệ $(1)$ có nghiệm khi và chỉ khi $(2)$ phải có 2 nghiệm không âm, nhỏ hơn hoặc bằng 2, khi và chỉ khi:

$\left\{ \begin{array}{l}
\Delta ‘ \ge 0 \\
S \geq 0 \\
\left( x_1 -2 \right) \left( x_2 -2 \right) \geq 0 \\
S \le 4
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
m \ge 5 \\
m \le 7
\end{array} \right. $

Vậy $5 \le m \le 7$ thì hệ đã cho có nghiệm $(x,y)$

 

Bài 2.

a) $MK=\dfrac{a^{2}+b^{2}+c^{2}}{a b c} \Rightarrow N=0 .$

$M K =\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$

$+\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}$
$=\dfrac{1}{b+c}+\dfrac{b}{a(c+a)}+\dfrac{c}{a(a+b)}$

$+\dfrac{a}{b(b+c)}+\dfrac{1}{c+a}+\dfrac{c}{b(a+b)}+$

$+\dfrac{a}{c(b+c)}+\dfrac{b}{c(c+a)}+\dfrac{1}{a+b}$
$=N+\dfrac{b}{c+a}(\dfrac{1}{a}+\dfrac{1}{c})$

$+\dfrac{c}{a+b}(\dfrac{1}{a}+\dfrac{1}{b})+\dfrac{a}{b+c}(\dfrac{1}{b}+\dfrac{1}{c})$
$= N+\dfrac{b}{ac}+\dfrac{c}{ab}+\dfrac{a}{bc}= N+\dfrac{a^2+b^2+c^2}{abc}$

Mà $M K=\dfrac{a^{2}+b^{2}+c^{2}}{a b c} $

$\Rightarrow N+\dfrac{a^2+b^2+c^2}{abc}=\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$

$\Rightarrow N=0$

b) Ta có $M=K=4 ; N=1$

Theo câu a) ta được:

$MK=N+\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$
$\Rightarrow 16=1+\dfrac{a^{2}+b^{2}+c^{2}}{a b c}$
$\Rightarrow a^{2}+b^{2}+c^{2}=15abc$
$\Rightarrow(a+b+c)^{2}-2(a b+b c+c a)=15 a b c (*)$

Ta có:

$K+3=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1=(a+b+c)N \Rightarrow 7=a+b+c$

$M=4 \Rightarrow a b+b c+c a=4 a b c$.

Thay vào $ (*) $
$\Rightarrow 7^{2}-2.4 a b c=15 a b c$
$\Rightarrow a b c=\dfrac{49}{23} .$

 

Bài 3. 

a) Có nhận xét: nếu $x_1 + x_2 +\cdots x_k > 0$ thì có ít nhất $i \in \overline{1,k}$ để $x_i > 0$ suy ra $x_{k+1}>0$.

(0.75 điểm) Giả sử rằng $ x_1+x_2>x_n\geq \dfrac{1}{3}>0 $, khi đó $x_i > 0$ với mọi $2 \leq i \leq n$.

Do $n \geq 5$ nên $x_1+\cdots x_{n-1} \geq x_1 +x_2+x_3+x_4 \leq 2(x_1+x_2) >\dfrac{2}{3} \Rightarrow x_n < \dfrac{1}{3}$ (Vô lý).

b)

  • Nếu $x_n \geq \dfrac{1}{3}$, khi đó $\dfrac{2}{3}\geq x_n \geq \dfrac{1}{3}$, Từ $x_1+x_2+\cdots x_n=1$, suy ra $$\dfrac{1}{3} \leq x_1+x_2 +\cdots +x_{n-1} = 1-x_n \geq \dfrac{2}{3}$$
  • Nếu $x_n < \dfrac{1}{3}$. Suy ra $x_i < \dfrac{1}{3}$ với mọi $i$.

    Giả sử không tồn tại $k$ thỏa đề bài, tức là không có $k$ để $$\dfrac{1}{3}\le x_1 + x_2 + \ldots + x_k \le \dfrac{2}{3} (*)$$

Ta chứng minh tồn tại $l\leq n-2$ sao cho $x_1+\cdots x_l < \dfrac{1}{3}$ và $x_1+\cdots x_{l+1} > \dfrac{2}{3}$. (**)

Thật vậy nếu không tồn tại $l$ thì $x_1 < \dfrac{1}{3}$, suy ra $x_1+x_2 < \dfrac{1}{3}$, vì ngược lại thì do (**) nên $\dfrac{1}{3} \leq x_1+x_2 \leq \dfrac{2}{3}$.(mâu thuẫn do (*)

Lý luận tương tự thì $x_1+x_2+\cdots x_{n-1} <\dfrac{1}{3}$(Mâu thuẫn).

Do đó nếu tồn tại $l$ thỏa $(**)$ thì suy ra $x_{l+1} > \dfrac{1}{3} > x_n$ (vô lý).

Vậy điều giả sử sai. Do đó tồn tại $k$ thỏa đề bài.

 

Bài 4. 

a) (0.5 điểm) ${{\left(2n+1\right)}^3+1}\; \vdots\; {{2}^{2021}}$
$\Leftrightarrow {(2n+2)(4n^{2}+2n+1)}\;\vdots\;{{2}^{2021}}$
$\Leftrightarrow {2(n+1)(4n^{2}+2n+1)}\;\vdots\;{{2}^{2021}}$
$\Leftrightarrow {(n+1)(4n^{2}+2n+1)}\; \vdots\; {{2}^{2020}}$
$\Leftrightarrow n+1\; \vdots \; 2^{2020} \quad\text{(do$ \; 4n^{2}+2n+1 \equiv 1 \; $ (mod$ \; 2$))}$
$\Leftrightarrow n=2^{2020}k-1\ (k\in \mathbb Z^+)$

b)  (1 điểm)Từ $p\mid 2n+2$ và $p\mid 4n^2+2n+1$ thì $p$ phải là số lẻ, dẫn đến $p\mid n+1$.

Do $4n+2+2n+1=4(n-1)(n+1)+2(n+1)+3$ nên $p\mid 3$, từ đó $p=3$. Kết hợp với điều kiện $p\mid n+1$ thì $n=3k-1$ với $k\in \mathbb Z^+$.
(0.5 điểm)
Ta chứng minh rằng $\dfrac{2n+2}{3}$ và $\dfrac{4n+2+2n+1}{3}$ không cùng là số chính phương.

Thật vậy, giả sử rằng ta có điều ngược lại, vì chúng đều là số nguyên dương nên:
$$\dfrac{2n+2}{3}\cdot \dfrac{4n^2+2n+1}{3}=s^2\ (s\in \mathbb Z^+)$$
Viết lại thành $(2n+1)^3=(3s-1)(3s+1)$.

Do $s$ là số chẵn nên $(3s-1,3s+1)=1$, dẫn đến việc tồn tại các số nguyên $a,b$ để $ab=2n+1$, $(a,b)=1$ và:
$$\begin{cases}
3s-1=a^3\\
3s+1=b^3
\end{cases}$$

Từ đây $2=(b-a)(b^2+ba+a^2)$.

Do $b>a$ nên $b-a\in{1,2}$.

Xét từng trường hợp và giải ra cụ thể, ta được $(a,b)=(-1,1)$.

Tuy nhiên điều này dẫn đến $s=0$, trái với việc $s>0$ từ điều đã giả sử.

Vậy giả sử ban đầu là sai hay hai số đã cho không thể cùng là số chính phương.
(0.5 điểm)

Bài 5.

a) (1 điểm) Qua $D$ vẽ đường thẳng song song $BC$ cắt $AB, AC$ tại $X, Y$.

Ta có $\dfrac{DY}{BC} = \dfrac{DF}{BF} = \dfrac{DE}{EC} = \dfrac{DX}{BC}$.

Suy ra $DX = DY$. Suy ra $D$ là trung điểm của $XY$.

Do đó $AD$ qua trung điểm $I$ của $EF$.

Ta có $DHFN, DHEM$ nội tiếp. Suy ra $\widehat{DHN} = \widehat {DFN} = \widehat {MAN}$ và
$\widehat {DHM} = \widehat {NEM} = \widehat {NAM}$.

Suy ra $\widehat {MHN} = 2 \widehat {MAN} = \widehat {MIN}$.

Suy ra tứ giác $MIHN$ nội tiếp. Ta có điều cần chứng minh.
b) (1 điểm) Ta có $\triangle BMP \backsim \triangle BLF$.
Suy ra $BM \cdot BF = BP \cdot BL$.

Mặt khác $\triangle BAF \backsim \triangle BEM$, suy ra $BE \cdot BA = BM \cdot BE$.

Do đó $BA \cdot BE = BP \cdot BL$.

Từ đó ta có tứ giác $AEPL$ nội tiếp.

Chứng minh tương tự thì tứ giác $AFQK$ nội tiếp.

Và $\dfrac{BP\cdot BL}{CQ\cdot CK} = \dfrac{BE\cdot BA}{CF \cdot CA} = \dfrac{AB^2}{AC^2}$.
c) (1 điểm) Giả sử $EL, FK$ cắt nhau tại $S$ thuộc $(I)$.

Khi đó $\angle ESF =90^\circ$ và $EFLK$ là hình vuông.

Vẽ $PU \bot AB, QV \bot AC$.

Ta có $\dfrac{BP}{BC} = \dfrac{BU}{BA} = \dfrac{BK}{BL}$
và $\dfrac{CQ}{BC} = \dfrac{CV}{CA} = \dfrac{CL}{CK}$

Đặt $x = EF = KL$

Ta cần chứng minh $\dfrac{BK}{BL} + \dfrac{CL}{CK} = 1$.

$ \Leftrightarrow BK \cdot CK + BL \cdot CL = BL \cdot CK$
$\Leftrightarrow BK(CL+x)+(BK+x)CL = (BK+x)(CL+x)\Leftrightarrow x^2= BK\cdot CL$.

Đúng vì tam giác $BEK$ và $CFL$ đồng dạng.

 

Bài 6. 

a) Giả sử có chữ cái $S$ sao cho $S$ có mặt trong 6 tập hợp từ $N$ tập đã cho, chẳng hạn 6 tập $A_1$, $A_2$, $\ldots$, $A_6$.

Vì hai tập hợp bất kỳ có chung đúng một chữ cái nên hai tập hợp bất kỳ trong 6 tập trên bao giờ cũng chỉ có chữ cái chung duy nhất là $S$.

Do đó, tổng số chữ cái có mặt trong 6 tập trên là: $1+6(5-1)=25$.

  • Nếu $N=6$ thì vô lý do $S$ không xuất hiện trong tất cả $N$ tập hợp. Do đó $N \ge 7$.
  •  Với $N \ge 7$, lấy tập $A_7$, có 2 khả năng:

    + $A_7$ chứa $S$: Vì $A_7$ và những tập $A_1$, $A_2$, $\ldots$,$A_6$ có chung đúng một chữ cái $\sigma$ nên $A_7$ còn chứa 4 phần tử không nằm trong bất kỳ tập nào thuộc $A_1$, $A_2$, $\ldots$, $A_6$.

    Suy ra tổng số chữ cái trong 7 tập trên là: $1+ 7(5-1)=29 >26$ (vô lý)
    + $A_7$ không chứa $S$.

    Khi đó $A_7$ sẽ có chung đúng 1 phần tử với mỗi tập $A_1$, $A_2$, $\ldots$, $A_6$ và 6 phần tử này phải khác nhau. (vì 6 tập $A_1$, $A_2$, $\ldots$, $A_6$ đã có chung $S$)

    Do đó $A_7$ có ít nhất 6 phần tử. (vô lý).
    Vậy không có chữ cái nào nằm trong 6 tập hợp từ $N$ tập hợp đã cho.

b)

Giả sử có nhiều nhất $k$ tập hợp có chung đúng 2 chữ cái, chẳng hạn $S$ và $T$.

Khi đó dễ thấy $k \ge N-1$ nên tồn tại một tập hợp khác chưa được kể tên trong $k$ tập hợp trên, đặt là tập hợp $X$, $X$ không chứa $\left\{ S, T \right\} $.

  •  Nếu $X$ không chứa cả $S$ lẫn $T$. $X$ giao mỗi tập trong $k$ tập kia ở 2 phần tử khác nhau nên $2k \le 5 \Rightarrow k \le 2$
  •  Nếu $X$ chỉ chứa $S$, không chứa $T$.
    Khi đó 4 phần tử còn lại giao với $k$ tập kia ở các phần tử khác nhau, mà $X$ có 5 phần tử nên $k \le 4$.
    Vậy có nhiều nhất 4 tập hợp có chung đúng 2 chữ cái.

    Để chỉ ra một ví dụ về khả năng có $4$ tập hợp, xét $N=6$. Để thuận tiện, thay các chữ cái bằng các con số từ $1$ đến $26$. Khi đó chọn bộ $N$ tập hợp như sau:
    $$\begin{cases}
    A_1=\{1,2,3,4,5\}\\\\
    A_2=\{1,2,6,7,8\}\\\\
    A_3=\{1,2,9,10,11\}\\\\
    A_4=\{1,2,12,13,14\}\\\\
    A_5=\{1,3,6,10,13\}\\\\
    A_6=\{2,3,6,9,12\}
    \end{cases}$$
    Bộ $6$ tập hợp này thỏa mãn tất cả các điều kiện của bài toán.

Lời giải được thực hiện bởi nhóm giáo viên Star Education: thầy Nguyễn Tăng Vũ, thầy Lê Phúc Lữ, thầy Nguyễn Tấn Phát, Nguyễn Tiến Hoàng, Nguyễn Công Thành, Trần Tín Nhiệm, Châu Cẩm Triều, Lê Quốc Anh.