Tag Archives: ChuyenToan

Đáp án đề ôn thi Chuyên Toán – Đề số 3

Bài 1. 

1) a) a) Ta có $\Delta’ = {\left( {{m^2} + m + 1} \right)^2} – \left( {{m^4} + {m^2} + 1} \right) = \left( {{m^2} + m + 1} \right)2m \ge 0$\\
Mà ${m^2} + m + 1 = {\left( {m + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0 \Rightarrow m \ge 0$\\
Khi đó theo định lý Viete ta có: $\left\{ \begin{array}{l}
{x_1} + {x_2} = 2\left( {{m^2} + m + 1} \right) \\
{x_1}{x_2} = {m^4} + {m^2} + 1 \\
\end{array} \right.$
Suy ra:
$\begin{array}{l}
A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right) = 2\left( {{m^2} + m + 1} \right)\left( {1 + \dfrac{1}{{{m^4} + {m^2} + 1}}} \right) \\
= 2\left( {{m^2} + m + 1 + \dfrac{1}{{{m^2} – m + 1}}} \right) \\
\end{array}$.
Ta có ${m^2} – m + 1 = {\left( {m – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0$. \\
Theo bất đẳng thức Cauchy ta có ${m^2} – m + 1 + \frac{1}{{{m^2} – m + 1}} \ge 2$ và $m \ge 0$.
Do đó $A \geq 4$, đẳng thức xảy ra khi $m =0$. Vậy giá trị nhỏ nhất của A là 4 khi $m = 0$.

b) $B = \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}} = \dfrac{{{{\left( {{m^2} + m + 1} \right)}^2}}}{{{m^4} + {m^2} + 1}} = \dfrac{{{m^2} + m + 1}}{{{m^2} – m + 1}}$;
Ta có $0 < \dfrac{{{m^2} + m + 1}}{{{m^2} – m + 1}} = 1 + \dfrac{{2m}}{{{m^2} – m + 1}} \le 3$\\
B là số tự nhiên nên $B = 1,2,3$.
Với $B = 1$ ta có $m =0$;
Với $B = 2$ (vô nghiệm) ;
Với $B = 3$ ta có $m = 1$.
Vậy các giá trị cần tìm là $m = 0$ và $m = 1$.

2)  Ta có $\left\{ \begin{array}{l}
\left( {x + y} \right)\left( {x + z} \right) = – 4 \\
\left( {y + x} \right)\left( {y + z} \right) = 1 \\
\left( {z + x} \right)\left( {z + y} \right) = – 1 \\
\end{array} \right.$
Nhân 3 phương trình ta có:
${\left[ {\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)} \right]^2} = 4 \Rightarrow \left[ \begin{array}{l}
\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right) = – 2 \\
\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right) = 2 \\
\end{array} \right.$;
Trường hợp 1: $\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) = – 2 \Rightarrow \left\{ \begin{array}{l}
y + z = 1/2 \\
x + z = – 2 \\
x + y = 2 \\
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{ – 1}}{4} \\
y = \frac{9}{4} \\
z = \frac{{ – 7}}{4} \\
\end{array} \right.$
Trường hợp 2: $\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) = 2 \Rightarrow \left\{ \begin{array}{l}
y + z = – 1/2 \\
x + z = 2 \\
x + y = – 2 \\
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 1/4 \\
y = – 9/4 \\
z = 7/4 \\
\end{array} \right.$
Vậy hệ phương trình có hai nghiệm $\left( {x,y,z} \right):\left( {\frac{{ – 1}}{4},\frac{9}{4},\frac{{ – 7}}{4}} \right),\left( {\frac{1}{4},\frac{{ – 9}}{4},\frac{7}{4}} \right)$

Bài 2.  Vì $abc > 1$ nên không thể có 3 số đều nhỏ hơn 1.

Vì $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$ nên không thể cùng lớn hơn 1.
Nếu có một số bằng 1, giả sử $a = 1$ ta có $bc > 1$ và $b + c < \dfrac{1}{b} + \dfrac{1}{c} = \dfrac{b+c}{bc}$ (vô lý).
Nên các số đều khác 1. Giả sử có hai số nhỏ hơn 1 là $a, b$ và $c > 1$.
Khi đó $ab < 1, ac \geq \dfrac{1}{b} > 1, bc \geq \dfrac{1}{a} > 1$.

Do đó: $(ab-1)(bc-1)(ac-1) < 0 \Leftrightarrow a^2b^2c^2 +ab+bc+ac -abc(a+b+c) – 1 < 0 (1)$.
Mặc khác $abc > 1, a+ b+ c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \Leftrightarrow ab+bc+ac > abc(a+b+c) (2)$
Từ (1) và (2) ta có mâu thuẫn.
Vậy chỉ có đúng một số nhỏ hơn 1.

Bài 3.

a) Các ước của 12 là: 1, 2, 3, 4, 6, 12 ta có $1.2.3.4.6.12 = 12^3$. Nên 12 là số lập phương.
Các ước của 32 là $1, 2, 4, 8, 16, 32$, ta có $1.2.4.8.16.32 = 32^3$. Nên 32 là số lập phương.

b) Dễ tìm được $n = 5$.
c) Giả sử $n$ là số lập phương.
Nếu $n = 1$ thì $n$ là số lập phương. \\
Xét $n > 1$. Thì $n$ không là số nguyên tố vì nếu $n$ là số nguyên tố thì $n$ có các ước là $1, n$, mà $1.n \neq n^3$.
Suy ra $n$ là hợp số.
Trường hợp 1. Nếu $n$ có một ước nguyên tố là $p$, tức là: $n = p^k$ với $q$ là số nguyên tố. Khi đó các ước của $n$ là $1, p, p^2, …, p^{k-1}, p^k$. Khi đó $1. p.p^2…p^{k} = n^3 = p^{3k}$, suy ra $1 + 2 + …+ k = 3k$, suy ra $k = 5$. Vậy $n = p^5$ với $p$ nguyên tố. \\
Trường hợp 2. Nếu $n$ có 2 ước nguyên tố là $p, q$. Khi đó $n = p^m.q^k$. Nếu $m, k \geq 2$ thì ta có các ước của $n$ là $1, n, p^m, q^n, p, p.q^k, q, q.p^m$. Khi đó tích các ước sẽ lớn hơn $n^3$. Do đó $m, k$ không cùng lớn hơn hoặc bằng 2.
Nếu $m = k = 1$ thì các ước của $n$ là $1, p, q, n$ khi đó tích các ước là $1.p.q.n = n^2$, cũng không thỏa.
Nếu $m = 2, k = 1$ thì các ước của $n$ là $1, p, q, p^2, qp, n$. Khi đó $1.p.q.p^2.pq.n = n^3$ thỏa đề bài. \\ Vậy $n= p^2q$ với $p, q$ là các số nguyên tố là số lập phương.

Trường hợp 3. $n$ có nhiều hơn ba ước nguyên tố, khi đó số ước của $n$ lớn hơn hoặc bằng 8. Giả sử các ước là $1, d_1, d_2, …, d_k = n$ thì $1.d_1.d_{k-1}.d_2.d_{k-2}.d_3.d_{k-3}.n > n^3$, nên không thể là số lập phương.
Vậy các số lập phương là $1, p^5, p^2.q$ với $p, q$ là các số nguyên tố.
Cách khác: Ta có thể chứng minh số lập phương có đúng 6 ước số trước, rồi suy ra $n$.

Bài 4. 

a) Ta có $ADBE$ là hình chữ nhật $S_{ABDE} = AD.AB$. Ta có $AD. AB \leq \dfrac{1}{2}(AD^2+BD^2) = 2R^2$. Đẳng thức xảy ra khi và chỉ khi $AD = BD$. Khi đó $AC = AB = 2R$.
Vậy diện tích tứ giác $ADBE$ nhỏ nhất bằng $2R^2$ khi $AC = AB = 2R$.
b) Ta có $\Delta MFA \sim \Delta MAD$, suy ra $MA^2 = MF.MD$.(1)
Ta có $BF.BG = BA^2, BD.BC = BA^2$, suy ra $BF.BG = BD.BC$, suy ra tứ giác $DFGC$ nội tiếp. Khi đó $\Delta MFG \sim \Delta MCD$, suy ra $MC.MG = MF.MD$. (2)
Từ (1) và (2) ta có $MA^2 = MC.MG$.
c) Gọi $H$ là giao điểm của $AD$ và $BF$. $CH$ cắt $AB$ tại $O’$.
Ta có $\angle CDG = \angle CFG = \angle BFE = \angle DBA$, suy ra $DG || AB$.
Qua $H$ vẽ đường thẳng song song với $AB$ cắt $AG, BD$ tại $P, Q$. Ta có $\dfrac{HP}{AB} = \dfrac{GH}{GB} = \dfrac{DH}{DA} = \dfrac{QH}{AB}$, suy ra $HP = HQ$.
Ta có $\dfrac{HP}{AO’} = \dfrac{CH}{CO’} = \dfrac{QH}{BO’}$, mà $HP = HQ$, suy ra $AO’ = BO’$, hay $O’ \equiv O$. Vậy các đường thẳng $AD, BF, CO$ đồng quy.

Bài 5.

a) Đặt $r_1 = a + b+ c, r_2 = d+e+f, r_3 = g + h + i$ và $c_1 = a+ d + g, c_2 = b + e + h, c_3 = c + f + i$. Ta có $r_1 + r_2 + r_3 = c_1 + c_2 + c_3$.
Khi đó $a = |r_1 – c_1| = |(r_2 +r_3) – (c_2 + c_3)| = |(r_2-c_2) + (r_3 – c_3)| = \pm (r_2-c_2) \pm (r_3-c_3) = \pm e \pm i$.
Vì các số đều không âm nên không thể xảy ra trường hợp $a = – e- i$. Do đó $a = e +i, e- i$ hoặc $i – e$.
Tương tự cho các trường hợp khác.

b) Tồn tại, xét bảng sau: với $x > 0$.

 

 

 

 

 

 

 

 

 

 

 

Đề thi: ôn vào lớp 10 chuyên toán

Bài 1. (2,5 điểm) 

1) Cho phương trình ${x^2} – 2\left( {{m^2} + m + 1} \right)x + {m^4} + {m^2} + 1 = 0$ ($m$ là tham số).
a) Tìm $m$ đề phương trình có nghiệm $x_1, x_2$. Tìm giá trị nhỏ nhất của biểu thức: $A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right)$
b) Tìm $m$ để $\dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}}$ là một số tự nhiên.

2) Giải hệ phương trình $\left{ \begin{matrix} x(x+y+z)+yz = – 4 \hfill \cr y(x+y+z)+xz=1 \hfill \cr z(x+y+z) + xy = – 1 \end{matrix} \right.$

Bài 2. (1 điểm) Cho các số $a, b, c > 0$ thỏa $abc > 1$ và $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$.

Chứng minh rằng trong 3 số $a, b, c$ có đúng một số nhỏ hơn 1.

Bài 3. (2 điểm) Một số nguyên dương được gọi là số lập phương nếu tích các ước dương của nó bằng lập phương của số đó.
a) Chứng minh rằng 12 và 32 là các số lập phương

b) Tìm số tự nhiên $n$ để $2^n$ là số lập phương.
c) Tìm tất cả các số lập phương.
Bài 4. (3 điểm) Cho đường tròn tâm $O$ đường kính $AB = 2R$. Gọi $C$ là một điểm thay đổi trên tiếp tuyến tại $A$ của $(O)$,$BC$ cắt $(O)$ tại điểm $D$ khác $B$. $E$ là điểm đối xứng của $D$ qua $O$, $CE$ cắt $(O)$ tại $F$ và $BF$ cắt $AC$ tại $G$.
a) Tính $AC$ khi diện tích tứ giác $ADBE$ lớn nhất.
b) $DF$ cắt $AC$ tại $M$. Chứng minh $MA^2 = MG.MC$.
c) Chứng minh rằng các đường thẳng $AD, BF$ và $CO$ đồng quy.
Bài 5. (1, 5 điểm)Cho bảng vuông $3 \times 3$. Người ta điền vào các ô vuông các số không âm sao cho nếu tổng các số ở một dòng là $r$, tổng các số ở một cột là $c$ thì $|r-c|$ là bằng giá trị ô vuông giao giữa dòng và cột đó.
a) Chứng minh rằng với số ở mỗi ô vuông bằng tổng hoặc hiệu các số ở hai ô vuông khác.
b) Có tồn tại hay không một cách điền số mà các số đều là số dương?

Hết.

Đáp án -> Here

 

 

 

 

 

 

 

Đề ôn thi vào lớp 10 Chuyên Toán – Đề số 2

Bài 1. (2 điểm)
a) Cho các số $a$, $b$, $c$ thỏa $2a + 3b + 6c = 0$. Chứng minh rằng phương trình $ax^2 + bx + c = 0$ luôn có nghiệm.
b) Giải hệ phương trình: $\left{ \begin{array}{l}
\left( {{x^4} + 1} \right)\left( {{y^4} + 1} \right) = 4xy\
\sqrt[3]{{x – 1}} – \sqrt {y – 1} = 1 – {x^3}
\end{array} \right.$
Bài 2. (2 điểm) Cho các số $a$, $b$, $c$ thỏa $a^3 + b^3 + c^3 – 3abc = 1$.
a) Chứng minh rằng trong 3 số $a, b, c$ có ít nhất một số dương.
b) Tìm giá trị nhỏ nhất của biểu thức $a^2+b^2+c^2$.
Bài 3. (1,5 điểm) Cho $n$ là số nguyên dương và $d_1$, $d_2$, $d_3$, $d_4$ là các ước nguyên dương nhỏ nhất của $n$ thỏa: $n = d_1^2 + d_2^2 + d_3^2 + d_4^2$
a) Chứng minh rằng $n$ chia hết cho $2$ nhưng không chia hết cho $4$
b) Tìm $n$.
Bài 4. (3 điểm) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ cố định, $A, B$ cố định, $C$ thay đổi trên cung lớn $AB$. Gọi $K$ là trung điểm $AB$; $D$ và $E$ là hình chiếu của $K$ trên $CA, CB$.
a) Tìm vị trí của $C$ để $DE$ lớn nhất.
b) $DE$ cắt $AB$ và $CO$ tại $N, M$. Chứng minh rằng đường tròn ngoại tiếp tam giác $CMN$ đi qua một điểm cố định.
c) $(CDE)$ và $(O)$ cắt nhau tại $F$ khác $A$. $NF$ cắt $(CDE)$ tại $G$. Chứng minh $G$ thuộc một đường thẳng cố định.
Kí hiệu $(CDE)$ là bán kính đường tròn ngoại tiếp tam giác $CDE$.

Bài 5. (1,5 điểm) Cho hình thang cân, người ta tô màu 4 cạnh và 2 đường chéo của hình bằng hai màu đỏ và xanh, trong đó mỗi màu tô 3 đoạn. Chứng minh có 3 đoạn thẳng được tô cùng màu có thể lập được một tam giác.

 

Đáp án chi dành cho các bạn đã đăng kí website tiết tại Đây 

 

 

Đề ôn thi vào lớp 10 chuyên Toán năm 2022

Bài 1. (1,5 điểm)
a) Cho $a, b, c $ là các số thỏa mãn $ a^4 + b^4 + (a-b)^4 = c^4 + d^4 + (c-d)^4$. Chứng minh rằng [ a^2 + b^2 + (a-b)^2 = c^2 + d^2 + (c-d)^2 ]
b) Giải hệ phương trình $\left\{ \begin{matrix} x – \dfrac{1}{(x+1)^2}=\dfrac{y}{x+1}- \dfrac{1+y}{y} \hfill \cr \sqrt{8y+9} = (x+1)\sqrt{y} + 2 \end{matrix} \right.$
Bài 2. (1,5 điểm) Cho phương trình $2(m^2+1)x^2 – 8mx + 3m = 0$. ($m$ là tham số).
a) Tìm $m$ để phương trình có hai nghiệm phân biệt âm.
b) Tìm $m$ để phương trình có hai nghiệm phân biệt $x_1, x_2$ thỏa [2(x_1+x_2) – \sqrt{\dfrac{3}{x_1x_2}} = 2]
Bài 3. (1,5 điểm) Cho các số $x, y, z$ dương thỏa ${x^2} + {y^2} + {z^2} = xyz$. Chứng minh rằng:
a) $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} \le 1\,\,$
b) $xy + yz + xz + 9 \ge 4\left( {x + y + z} \right)\,\,$

Bài 4. (1,5 điểm) Một số nguyên tố $p$ được gọi là số nguyên tố đẹp nếu tồn tại các số nguyên $a, b$ thỏa $a^2b+1$ chia hết cho $p$ thì $a^2+b$ cũng chia hết cho $p$.
a) Chứng minh rằng $5$ là số nguyên tố đẹp.
b) 7 có phải là số nguyên tố đẹp không? Tại sao?

Bài 5. (3 điểm) Cho đường tròn $(O)$ và dây cung BC cố định. $A$ là một điểm thay đổi trên cung lớn BC. Các đường phân giác trong góc $B, C$ cắt nhau tại $I$. Đường thẳng qua $I$ vuông góc với $IA$ cắt các cạnh AB, AC lần lượt tại $M, N$.
a) Tìm vị trí của $A$ để $BM.CN$ đạt giá trị lớn nhất.
b) Đường thẳng qua M song song IC cắt BC tại L; đường thẳng qua N song song IB cắt BC tại K. Chứng minh $MKLN$ nội tiếp. Xác định tâm ngoại tiếp của tứ giác.
c) Gọi $D$ là hình chiếu của $I$ trên $BC$. Chứng minh $\angle DPM = \angle IPN$ và $A, D, P$ thẳng hàng.
Bài 6. (1 điểm) Cho đa giác đều 26 đỉnh. Trên mỗi đỉnh ta viết các số từ tự nhiên từ 1 đến 12. Chứng minh rằng có 4 đỉnh tạo thành hình chữ nhật ABCD sao cho $a+ b= c+ d$ với $a, b, c, d$ là các số ghi trên các đỉnh $A, B, C, D$.

Đáp án dành cho các bạn đăng kí trên website -> here