Tag Archives: Toan
Đáp án đề thi học kì 1 môn toán lớp 10 trường Phổ thông Năng khiếu năm 2016
Bài 1. Tìm m để phương trình $\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ vô nghiệm
Bài 2. Gọi $(P)$ là đồ thị của hàm số: $y= x^2 + bx + c \, \, (b,c \in \mathbb{R} )$. Biết các điểm $A(1;-4)$, $B(2;-3)$, thuộc $(P)$. \
Tìm tọa độ giao điểm của $(P)$ và $(P’)$, với $(P’)$ là đồ thị của hàm số $y= (2x-1)^2 -4$
Bài 3. Cho hệ phương trình: $\left\{ \begin{array}{l}
x+\dfrac{1}{m} \sqrt{y} =4 \\
\dfrac{1}{m} x + \sqrt{y} = \dfrac{2}{m} + 2
\end{array} \right.$, với m là tham số và $m \ne 0$.
Định m để hệ phương trình có nghiệm duy nhất.
Bài 4. Giải các phương trình sau:
a) $\sqrt{2x+1}+\sqrt{x-3}=4$
b) $x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$
Bài 5. Chứng minh đẳng thức: $\tan^2 a – \tan^2 b = \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$
Bài 6. Cho tam giác $ABC$ có các đỉnh $A(-1;3)$, $B(-3;-3)$, $C(2;2)$. Chứng minh tam giác $ABC$ là tam giác vuông và tìm trực tâm tam giác $ABC$.
Bài 7. Cho hình bình hành $ABCD$ với $AB=6a$, $AD=3a$, $\angle ABC =60^0$. Gọi $M,N$ thỏa: $\overrightarrow{MA}+2 \overrightarrow{MB}=\overrightarrow{0}$, $3 \overrightarrow{ND}+2 \overrightarrow{NC}=\overrightarrow{0}$.
a) Tính $\overrightarrow{AM}. \overrightarrow{AD}$.
b) Tính độ dài cạnh $AN$ theo $a$.
c) Gọi $G$ là trọng tâm tam giác $AMN$. Tìm $x$ và $y$ thỏa: $\overrightarrow{BG}= x \overrightarrow{BA} + y \overrightarrow{BD}$.
Hết
Đáp án
[userview]
[/userview]
Tập san Star Education – Số 3 năm 2019
Tập san Star Education là tập hợp các chuyên đề bài viết về toán do các giáo viên của Star Education biên soạn, ngoài ra còn có sự hợp tác của giáo viên học sinh khác nhằm đem đến cho bạn đọc một nguồn tài liệu mới tham khảo.
Tập san ra định kì mỗi năm hai số, tháng 11 và tháng 05.
Đáp án đề HK1 Toán lớp 10 năm học 2019 – 2020 Trường PTNK
Đáp án đề thi học kì 1 môn toán lớp 10 trường PTNK, do thầy Nguyễn Tấn Phát thực hiện và gửi cho geosiro.com
Cảm ơn thầy Phát. Các em tham khảo nhé.
Sáu đề thi thử vào lớp 10 KC PTNK – Đáp án
Đề ôn thi THPTQG – Đề số 1
[WpProQuiz 3]
Đáp án Toán PTNK 2017
Bài 1. (Toán chung) Tam giác $ABC$ nội tiếp đường tròn $(T)$ tâm $O$, bán kính $R$; $\angle BAC = 120^\circ $, $\angle ABC = 45^\circ $, $H$ là trực tâm. $AH$, $BH$, $CH$ lần lượt cắt $BC$, $CA$, $AB$ tại $M$, $N$, $P$.
a. Tính $AC$ theo $R$. Tính số đo góc $\angle HPN $ và $\dfrac{MP}{MN}$
b. Dựng đường kính $AD$, $HD$ cắt $(T)$ tại $E$ ($E \ne D$) và cắt $BC$ tại $F$. Chứng minh các điểm $A$, $N$, $H$, $P$, $E$ cùng thuộc một đường tròn và $F$ là trung điểm của $HD$.
c. Chứng minh $AD \bot NP$. Tia $OF$ cắt $(T)$ tại $I$, chứng minh $I$ là tâm đường tròn ngoại tiếp tam giác $HBC$ và $AI$ đi qua trung điểm của $MP$
Bài 2. (Toán chuyên) Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ với tâm $O$. Gọi $D$ là điểm thay đổi trên cạnh $BC$ ($D$ khác $B,\,C$). Các đường tròn ngoại tiếp các tam giác $ABD$ và $ACD$ lần lượt cắt $AC$ và $AB$ tại $E$ và $F$ ($E$, $F$ khác $A$). Gọi $K$ là giao điểm của $BE$ và $CF$.
a. Chứng minh rằng tứ giác $AEKF$ nội tiếp.
b. Gọi $H$ là trực tâm tam $ABC$. Chứng minh rằng nếu $A,\,O,\,D$ thẳng hàng thì $HK$ song song với $BC$.
c. Ký hiệu $S$ là diện tích tam giác $KBC$. Chứng minh rằng khi $D$ thay đổi trên cạnh $BC$ ta luôn có $S\le \left(\dfrac{BC}{2}\right)^2 \tan \dfrac{\widehat{BAC}}{2}$.
d. Gọi $I$ là tâm đường tròn ngoại tiếp tam giác $AEF$. Chứng minh rằng $BF.BA-CE.CA=BD^2-CD^2$ và $ID$ vuông góc với $BC$.
Đáp án toán PTNK 2015
Bài 1. (Toán chung) Hình bình hành $ABCD$ có $ \angle ADC =60^0$ và tam giác $ACD$ nhọn. Đường tròn tâm $O$ ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $E$ ($E \ne A$), $AC$ cắt $DE$ tại $I$.
a. Chứng minh tam giác $BCE$ đều và $OI \bot CD$.
b. Gọi $K$ là trung điểm $BD$, $KO$ cắt $DC$ tại $M$. Chứng minh $A$, $D$, $M$, $I$ cùng thuộc một đường tròn.
c. Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\dfrac{OJ}{DE}$.
Bài 2. (Toán chuyên) Cho tam giác $ABC (AB < AC)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $BC$, $E$ là điểm chính giữa của cung nhỏ $BC$, $F$ là điểm đối xứng của $E$ qua $M$.
a. Chứng minh $EB^2 = EF.EO$.
b. Gọi $D$ là giao điểm của $AE$ và $BC$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.
c. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $IBC$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $POF$ đi qua một điểm cố định.
Đáp án toán PTNK 2013
Bài 1. (Toán chung) Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.
a. Tính $BC$ và $CN$ theo $a$.
b. Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$.
Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo a.
c. $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.
Bài 2. (Toán chuyên) Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.
a. Chứng minh rằng các tứ giác IFMK và IMAN nội tiếp .
b. Gọi J là trung điểm cạnh BC.Chứng minh rằng ba điểm A,K,J thẳng hàng.
c. Gọi r là bán kính của dường tròn (I) và S là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).
Đáp án PTNK năm 2012
Bài 1. (Toán chung) Cho hình thang $ABC (AB||CD)$ nội tiếp đường tròn $(C)$ tâm $O$, bán kính $R$ và có $\angle DAB = 105^\circ, \angle ACD =30^\circ$.
a. Tính $\dfrac{DB}{DC}$ và tính $AB$ theo $R$.
b. Tiếp tuyến của $(C)$ tại $B$ cắt đường thẳng $DO$ và $DA$ lần lượt tại $M, N$. Tính $\dfrac{MN}{MD}$.
c. Gọi $E$ là trung điểm của $AB$, tía $DE$ cắt $MN$ tại $F$. Tính $\dfrac{BF}{BC}$.
Bài 2. (Toán Chuyên) Cho hình vuông $ABCD$ cạnh $a$. $M$ và $N$ là hai điểm lần lượt nằm trên các cạnh $AB$ và $BC$ sao cho $\dfrac{AM}{AB} = \dfrac{CN}{CB} = x$ với $0 < x < 1$. Các đường thẳng qua $M , N$ song song với $BD$ lần lượt cắt $AD$ tại $Q$ và $CD$ tại $P$. Tính diện tích tứ giác $MNPQ$ theo $a$ và $x$ và tìm $x$ sao cho diện tích này lớn nhất.
Bài 3 (Toán chuyên) Cho tam giác $ABC$ vuông tại $A$. Trên đường thẳng vuông góc với $AB$ tại $B$ ta lấy điểm $D$ di động nằm cùng phía với $C$ đối với đường thẳng $AB$ .
a. Chứng minh rằng nếu $AC + BD < CD$ thì trên cạnh $AB$ tồn tại hai điểm $M$ và $N$ sao cho $\angle CMD =\angle CND = 90^\circ$
b. Giả sử điều kiện trên được thỏa mãn. Đường thẳng qua $A$ song song với $MD$ cắt đường thẳng qua $B$ song song với $MC$ tại $E$. Chứng minh rằng đường thẳng $DE$ luôn đi qua một điểm cố định .