Author Archives: Hung Nguyen

Hệ phương trình – Phương pháp cộng đại số – Hệ phương trình đối xứng loại hai

 1. Phương pháp cộng đại số – Hệ phương trình đối xứng loại hai

Từ một hệ phương trình gồm có hai hay nhiều phương trình, ví dụ $\left\{\begin{array}{l} f(x,y)=0 (1) \\ g(x,y)=0 (2) \end{array} \right.$, ta tạo ra một hệ mới tương đương với hệ đã cho, bằng cách tạo thêm một phương trình dạng $af(x,y) + bg(x,y) = 0$, việc chọn lựa các hệ số $a, b$ đòi hỏi nhiều kinh nghiệm vì phương trình mới tạo ra phải đơn giản hơn, hoặc có ý để giúp giải được hệ.

Hệ đối xứng loại hai là hệ có dạng $\left\{\begin{array}{l} f(x,y)=0\ \ (1) \\ g(x,y)=0 \ \ (2) \end{array} \right.$ trong đó $f(y, x) = g(x,y)$ và $g(y,x) = f(x,y)$. Để giải hệ này ta lấy $(1)$ trừ $(2)$, sau đó xử lý tiếp.

Ví dụ 1:  Giải hệ phương trình $\begin{cases}x+3y=2x^2&\\ y+3x=2y^2 \end{cases}$ $(*)$

Giải

Ta có $(*) \Leftrightarrow \begin{cases} x+3y=2x^2&\\ -2(x-y)=2(x^2-y^2) \end{cases} \Leftrightarrow \begin{cases}x+3y=2x^2 \ \ (1)&\\ 2(x-y)(x+y+1)=0 \ \ (2) \end{cases}$.

Từ (2) suy ra $y=-x-1$ hoặc $x=y$.

Trường hợp $y=-x-1$ thay vào (1) ta được $x+3(-x-1) =2x^2 $ (vô nghiệm).

Trường hợp $x=y $ thay vào (1) ta được $4x=2x^2 \Leftrightarrow 2x(x-2)=0 \Leftrightarrow x=2$ hoặc $x=0$.

Vậy $(x,y)=(2;2)$ hoặc $(x,y)=(0;0)$.

Ví dụ 2: Giải hệ phương trình $\begin{cases} x^3+1=2y&\\ y^3+1=2x. \end{cases}$ $(*)$

Giải

$(*) \Leftrightarrow \begin{cases} x^3+1=2y&\\(x-y)(x^2+xy+y^2)=-2(x-y) \end{cases}$

$\Leftrightarrow \begin{cases} x^3+1=2y \ \ (1)&\\ (x-y)(x^2+xy+y^2+2)=0 \ \ (2) \end{cases}$

$(2) \Leftrightarrow x=y$ hoặc $x^2+xy+y^2+2=0$.

Trường hợp $x=y $ thay vào (1) ta được $x^3-2x+1=0 \Leftrightarrow (x-1)(x^2+x-1)=0.$

Suy ra $ x=1$ hoặc $x=\dfrac{-1 \pm \sqrt{5}}{2}.$

Trường hợp $x^2+xy+y^2+2=0 \Leftrightarrow (x-\dfrac{y}{2})^2+\dfrac{3y^2}{4}+2=0$ (vô nghiệm)

Vậy hệ có nghiệm $(x,y)=(1,1)$ hoặc $(x,y)=(\dfrac{-1 \pm \sqrt{5}}{2}, \dfrac{-1 \pm \sqrt{5}}{2}).$

Ví dụ 3: Giải hệ phương trình $\begin{cases} 3y=\dfrac{y^2+2}{x^2}&\\ 3x=\dfrac{x^2+2}{y^2} \end{cases} $ $(*)$

Giải

Điều kiện $xy \ne 0$.

$(*) \Leftrightarrow \begin{cases} 3x^2y=y^2+2&\\ 3xy^2=x^2+2 \end{cases} $

$\Leftrightarrow \begin{cases} 3yx^2=y^2+2 \ \ (1) &\\ 3xy(x-y)=-(x-y)(x+y) \ \ (2) \end{cases} $

$(2) \Leftrightarrow (x-y)(x+y+3xy)=0$.

Trường hợp $x=y$, thay vào (1) ta được $3x^3-x^2-2=0\\ \Leftrightarrow (x-1)(3x^2+2x+2)=0$

$\Leftrightarrow x=1$ hoặc $3x^2+2x+2=0$ (vô nghiệm).

Vậy $(x,y)=(1,1)$.

Trường hợp $x+y+3xy=0$ không xảy ra. Thật vậy, để ý rằng từ hệ phương trình đã cho nếu có nghiệm $(x,y)$ thì $x,y>0$ do đó $x+y+3xy>0$.

Vậy hệ có nghiệm $(x,y)=(1,1).$

Trên đây là các hệ phương trình đối xứng loại hai, sau đây ta xét các ví dụ về một số hệ không mẫu mực khác, sử dụng phương pháp cộng đại số. Chú ý, tạo ra phương trình mới thì phương trình mới có thể xuất hiện hằng đẳng thức, phân tích thành nhân tử được…

Ví dụ 4: Giải hệ phương trình $\begin{cases} x^2+6y=6x&\\ y^2+9=2xy \end{cases}$

Giải

Lấy phương trình $(1)$ cộng phương trình $(2)$ ta có $x^2 + y^2 -2xy + 6(y-x) + 9 = 0 \Leftrightarrow (y-x+3)^2 = 0 \Leftrightarrow y = x -3$.

Thế vào $(1)$ ta có: $x^2 + 6(x-3) = 6x \Leftrightarrow x = 3\sqrt{2}, x=-3\sqrt{2}$.

Với $x = 3\sqrt{2} \Rightarrow y = 3\sqrt{2}-3$.

Với $x = -3\sqrt{2} \Rightarrow y = -3\sqrt{2}-3$.

Vậy hệ có hai nghiệm $(x;y)$ là $(3\sqrt{2};3\sqrt{2}-3); (-3\sqrt{2};-3\sqrt{2}-3)$.

Ví dụ 5: Giải hệ phương trình $\begin{cases}x^2+y^2+xy=3&\\ x^2+2xy=7x+5y-9. \end{cases}$

Giải

Cộng vế theo theo vế hai phương trình ta được

$ 2x^2+y^2+3xy-7x-5y+6=0 $

$\Leftrightarrow y^2+(3x-5)y+2x^2-7x+6=0$

$\Leftrightarrow y^2+(3x-5)y+(2x-3)(x-2)=0$

$\Leftrightarrow (y+2x-3)(y+x-2)=0$

$\Leftrightarrow y+2x-3=0 \ \text{hoặc } \ y+x-2=0.$

Trường hợp $\begin{cases} y+2x-3=0&\\ x^2+y^2+xy=3 \end{cases} \Leftrightarrow \begin{cases} y=3-2x&\\ 3x^2-9x+6=0. \end{cases}$.

Ta được $\begin{cases} x=1&\\ y=1 \end{cases}$ hoặc $\begin{cases} x=2&\\ y=-1. \end{cases}$

Trường hợp $\begin{cases} y+x-2=0&\\ x^2+y^2+xy=3 \end{cases} \Leftrightarrow \begin{cases}y=2-x&\\ x^2-2x+1=0 \end{cases} \Leftrightarrow \begin{cases}x=1&\\ y=1. \end{cases}$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1;1); (2;-1)\right\} .$

Ví dụ 6: Giải hệ phương trình $\begin{cases} x^2+y^2+4xy=6&\\ 2x^2+8=3y+7x \end{cases}$ $(*)$

Giải

$(*) \Leftrightarrow \begin{cases} x^2+y^2+4xy=6&\\ 4x^2+16=6y+14x. \end{cases}$

Cộng vế theo vế của hai phương trình ta được

$5x^2+y^2+4xy-6y-14x+10=0$

$\Leftrightarrow (x-1)^2+(2x+y-3)^2=0 $

$\Leftrightarrow \begin{cases}x=1&\\ 2x+y=3 \end{cases}$

$\Leftrightarrow \begin{cases} x=1&\\y=1. \end{cases}$

Ví dụ 7: Giải hệ phương trình $\begin{cases} x^2y+2x+3y=6&\\ 3xy+x+y=5 \end{cases}$.

Giải

Trừ vế theo vế hai phương trình ta được $x^2y-3xy+x+2y-1=0.$

Dễ thấy với $y=0$ thì $(x,0)$ không thể là nghiệm của hệ nên ta chỉ xét $y \ne 0$.

Chia hai vế của phương trình trên cho $y$ ta được

$ x^2-3x+\dfrac{x}{y}+2-\dfrac{1}{y}=0$

$\Leftrightarrow x^2 -(3-\dfrac{1}{y})x+(2-\dfrac{1}{y})=0$

$\Leftrightarrow (x-1)(x+\dfrac{1}{y}-2)=0$

$\Leftrightarrow x=1 \ \text{hoặc} \ x+ \dfrac{1}{y}-2=0.$

Trường hợp $\begin{cases}x=1&\\ 3xy+x+y=5 \end{cases} \Leftrightarrow \begin{cases} x=1&\\y=1. \end{cases}$

Trường hợp $\begin{cases}x+\dfrac{1}{y}-2=0&\\ 3xy+x+y=5 \end{cases} \Leftrightarrow \begin{cases} x+\dfrac{1}{y}=2&\\3x+\dfrac{x}{y}+1=\dfrac{5}{y}. \end{cases}$

Suy ra $\dfrac{1}{y}=2-x$ và $3x+x(2-x)+1=5(2-x) \Leftrightarrow x^2-10x+9=0 \Leftrightarrow x=1 \ \text{hoặc} \ x=9.$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1;1); \left( 9, -\dfrac{1}{7}\right) \right\} $.

Ví dụ 8: Giải hệ phương trình $\begin{cases} x^2+2xy+2y^2+3x=0&\\ xy+y^2+3y+1=0. \end{cases}$

Giải

Lấy phương trình thứ nhất cộng hai lần phương trình thứ hai ta được

$(x+2y)^2+3(x+2y)+2=0$

$\Leftrightarrow (x+2y+1)(x+2y+2)=0.$

Trường hợp $x+2y+1=0 \Leftrightarrow x=-2y-1$ thay vào phương trình thứ hai của hệ ta được

$ y^2-2y-1=0 \Leftrightarrow y=1 \pm \sqrt{2}.$

Với $y=\dfrac{1-\sqrt{5}}{2} \Rightarrow x=-3+\sqrt{5}$.

Với $y=\dfrac{1+\sqrt{5}}{2} \Rightarrow x=-3-\sqrt{5}$.

Trường hợp $x+2y+2=0 \Leftrightarrow x=-2y-2$ thay vào phương trình thứ hai của hệ ta được

$y^2-y+1=0 \Leftrightarrow y=\dfrac{1 \pm \sqrt{5}}{2}.$

Với $y=\dfrac{1-\sqrt{5}}{2} \Rightarrow x=-3+\sqrt{5}$.

Với $y=\dfrac{1+\sqrt{5}}{2} \Rightarrow x=-3-\sqrt{5}$.

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( -3-2\sqrt{2}; 1+\sqrt{2}\right) ; \left( -3+2\sqrt{2}; 1-\sqrt{2}\right) ; \left( -3+\sqrt{5}; \dfrac{1-\sqrt{5}}{2}\right) ;  \left( -3-\sqrt{5}; \dfrac{1+\sqrt{5}}{2}\right) \right\} $.

Ví dụ 9: Giải hệ phương trình $\begin{cases} x^3(2+3y)=1&\\ x(y^3-2)=3. \end{cases}$

Giải

Dễ thấy $x \ne 0.$

Khi đó hệ tương đương $\begin{cases} 2+3y=\dfrac{1}{x^3}&\\ y^3-2=\dfrac{3}{x} \end{cases}$

Cộng vế theo vế của hệ phương trình ta được

$y^3+3y=\dfrac{1}{x^3}+\dfrac{3}{x}$

$\Leftrightarrow y^3-\dfrac{1}{x^3}+3\left( y-\dfrac{1}{x}\right) =0 $

$\Leftrightarrow \left( y-\dfrac{1}{x}\right) \left( y^2+\dfrac{1}{x^2}+\dfrac{y}{x}+3\right) =0$

$\Leftrightarrow \left( y-\dfrac{1}{x}\right) \left[ \left( y+\dfrac{1}{2x}\right) ^2+\dfrac{3}{4x^2}+3\right] =0$

$\Leftrightarrow y=\dfrac{1}{x}.$

Thay vào phương trình thứ hai của hệ ta được

$\dfrac{1}{x^3}-2=\dfrac{3}{x} \Leftrightarrow 2x^3+3x^2-1=0 \Leftrightarrow x=-1 \ \text{hoặc} \ x=\dfrac{1}{2}.$

Với $x=-1$ ta được $y=-1$, với $x=\dfrac{1}{2}$ ta được $y=2$.

Vậy hệ có nghiệm $(x,y)\in \left\{ (-1;-1); \left( \dfrac{1}{2};2\right)\right\}  $.

2. Bài tập rèn luyện

Bài 1: Giải các hệ phương trình sau:

a) $\begin{cases} x^2-2x-y-1=0&\\ y^2-2y-x-1=0 \end{cases}$

b) $\begin{cases} x^3+3x=8y&\\ y^3+3y=8x \end{cases}$

c)  $\begin{cases} x^3=5x+y&\\ y^3=5y+x  \end{cases}$

d) $\begin{cases} x-3y=4\dfrac{y}{x}&\\ y-3x=4\dfrac{x}{y}  \end{cases}$

e) $\begin{cases} xy+x^2=1+y&\\ xy+y^2=1+x \end{cases}$

f) $\begin{cases} 3y=\dfrac{y^2+2}{x^2}&\\ 3x=\dfrac{x^2+2}{y^2} \end{cases}$

g) $\begin{cases} 3x^3=x^2+2y^2&\\ 3y^3=y^2+2x^2 \end{cases}$

h) $\begin{cases} 3x^2y-y^2-2=0&\\ 3y^2x-x^2-2=0 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $\begin{cases} x+\sqrt{y+3} =3&\\ y+\sqrt{x+3}=3 \end{cases}$.

b) $\begin{cases} \sqrt{x+5}+\sqrt{y-2}=7&\\ \sqrt{y+5}+\sqrt{x-2}=7 \end{cases}$

c) $\begin{cases} \sqrt{x}+\sqrt{2-x}=\sqrt{2}&\\ \sqrt{y}+\sqrt{2-x}=\sqrt{2} \end{cases}$

d) $\begin{cases} x \sqrt{1+y^2}+y \sqrt{1+x^2}=2&\\ x \sqrt{1+x^2}+y\sqrt{1+y^2}=2 \end{cases}$

e) $\begin{cases} \sqrt{x^2+3}+2\sqrt{x}=3\sqrt{y}&\\ \sqrt{y^2+3}+2\sqrt{y}=3\sqrt{x} \end{cases}$

f) $\begin{cases} x+\dfrac{2}{y}=\dfrac{3}{x}&\\ y+\dfrac{2}{x}=\dfrac{3}{y} \end{cases}$

g) $\begin{cases} 2x+3\sqrt{5-y}=8&\\ 2y+3\sqrt{5-x}=8 \end{cases}$

h) $\begin{cases} \sqrt[3]{3x+5}=y+1&\\ \sqrt[3]{3y+5}=x+1 \end{cases}$

i) $\begin{cases} x+1=\sqrt{2+\sqrt{y+3}}&\\ y+1=\sqrt{2+\sqrt{x+3}} \end{cases}$

Bài 3: Giải các hệ phương trình sau

a) $\begin{cases} x^2(1-2y)=y^2(4x+2y)&\\ 2x^2+xy-y^2=x \end{cases}$

b) $\begin{cases} x^2(y^2+1)=2&\\ x^2y^2+xy+1=3x^2 \end{cases}$

c) $\begin{cases} x^2+2=x(y-1)&\\ y^2-7=y(x-1) \end{cases}$

d) $\begin{cases} 4x^2+y^4-4xy^3=1&\\ 2x^2+y^2-2xy=1 \end{cases}$

Bài 4: Giải các hệ phương trình sau:

a) $\begin{cases} x^2+2xy+y=4&\\ x^2+xy+2y+x=5 \end{cases}$

b) $\begin{cases} 2x^2+2xy+y=5&\\ y^2+xy+5x=7 \end{cases}$

c) $\begin{cases} x^2+y^2+xy=3&\\ y^2-xy+5x+4y=9 \end{cases}$

d) $\begin{cases} x^2+y^2=2&\\ 4(x+y)-x^2y^2=7 \end{cases}$

e) $\begin{cases} x^2+y^2+x+y=4&\\ x^2+2xy+9=7x+5 \end{cases}$

Bài 5: Giải hệ phương trình $\begin{cases} x^2+7=5y-6z&\\ y^2+7=10z+3x&\\ z^2+7=-x+3y \end{cases}$

Bài 6: Giải hệ phương trình $\begin{cases} x^3+3xy^2+3xz^2-6xyz=1&\\ y^2+3yx^2+3yz^2-6xyz=1&\\ z^3+3zy^2+3zx^2-6xyz=1. \end{cases}$

Bài 7: Giải hệ phương trình $\begin{cases} (x-2y)(x-4z)=3&\\ (y-2z)(y-4x)=5&\\ (z-2x)(z-4y)=-8. \end{cases}$

Bài 8: Giải hệ phương trình $\begin{cases} x(yz-1)=3&\\ y(zx-1)=4&\\ z(xy-1)=5. \end{cases}$

Bài 9: Giải hệ phương trình $\begin{cases}ab+c+d=3&\\ bc+d+a=5&\\ cd+a+b=2&\\ da+b+c=6 \end{cases}$

Bài 10: Cho $a \in \mathbb{R}$. Giải hệ phương trình $\begin{cases} x_1^2+ax_1+(\dfrac{a-1}{2})^2=x_2&\\  x_2^2+ax_2+(\dfrac{a-1}{2})^2=x_3&\\ …&\\ x_n^2+ax_n+(\dfrac{a-1}{2})^2=x_1 \end{cases}$

Hệ phương trình – Phương pháp thế

Trong chương này đề cập đến một số phương pháp giải hệ phương trình cơ bản nhất: Phương pháp thế, phương pháp cộng đại số, phương pháp ẩn phụ, và phương pháp đánh giá. Qua các phương pháp chúng ta cũng đi qua một số dạng phương trình mẫu mực như: hệ phương trình đối xứng loại một, loại hai, hệ đẳng cấp, hệ hoán vị vòng quanh,…Ngoài ra là các hệ không mẫu mực ở mức độ vừa phải, không quá xấu về mặt hình thức, phù hợp với các bạn THCS.

1. Phương pháp thế

Nội dung phương pháp: Từ một trong các phương trình, tính được một hoặc nhiều biến theo một hoặc nhiều biến khác, sau đó thế hết vào các phương trình còn lại để số biến sẽ giảm lại.

Trong các phương pháp giải hệ phương trình thì Phương pháp thế là phương pháp quan trọng và được sử dụng nhiều nhất. Mục tiêu của việc thế là đưa hệ nhiều ẩn thành hệ ít ẩn hơn, hoặc đưa về phương trình một ẩn, từ đó có thể giải được bài toán.

Ví dụ 1: Giải hệ phương trình $ \left\{\begin{array}{l} x + 2y = 3\\ x^2-3y^2 + 4xy=2 \end{array} \right. $

Giải

$\left\{\begin{array}{l} x + 2y = 3 (1) \\x^2-3y^2 + 4xy=2 (2) \end{array} \right.$

Từ (1) ta có $x = 3-2y$, thế vào (2) ta có:

$(3-2y)^2-3y^2 + 4(3-2y)y = 2 \Leftrightarrow y^2 = 1 \Leftrightarrow \left[\begin{array}{l} y = 1\\ y=-1 \end{array} \right.$

Với $y = 1 \Rightarrow x = 1$.

Với $y = -1 \Rightarrow x = 5$.

Vậy hệ có 2 nghiệm $(x;y)$ là $(1;1), (5;-1)$.

Ví dụ 2: Giải hệ phương trình $\left\{ \begin{array}{l} 2x^2+x+y^2=7\\ xy-x+y=3 \end{array} \right.$

Giải

Nếu $x=-1$ thì phương trình thứ hai vô nghiệm.

Xét $x \ne -1.$ Từ phương trình thứ hai ta được

$xy-x+y=3 \Leftrightarrow y=\dfrac{x+3}{x+1}$.

Thay vào phương trình đầu của hệ ta được

$2x^2+x+\left( \dfrac{x+3}{x+1}\right) ^2=7$

$\Leftrightarrow (2x^2+x-6)+\left[ \left( \dfrac{x+3}{x+1}\right)^2 -1\right] =0$

$\Leftrightarrow (x+2)(2x-3)+\dfrac{4}{(x+1)^2}(x+2)=0$

$\Leftrightarrow x=-2 \ \text{hoặc} \ 2x^3+x^2-4x+1=0.$

Trường hợp $x=-2$ thay vào phương trình thứ hai ta được $y=-1$.

Trường hợp $2x^3+x^2-4x+1=0  \Leftrightarrow (x-1)(2x^2+3x-1)=0$

$\Leftrightarrow x=1 \ \text{hoặc} \ x=\dfrac{-3 \pm \sqrt{17}}{4}.$

Với $x=1$ thay vào phương trình thứ hai ta được $y=2.$

Với $x=\dfrac{-3 \pm \sqrt{17}}{4}$ thay vào phương trình thứ hai của hệ ta được $y=\dfrac{9 \pm \sqrt{17}}{1+\sqrt{17}}$.

Vậy hệ có nghiệm $(x,y)\in \left\{ (-2;-1), (1;2), \left(\dfrac{-3\pm \sqrt{17}}{4}; \dfrac{9 \pm \sqrt{17}}{1+\sqrt{17}}\right)\right\} .$

Ví dụ 3: Giải hệ phương trình $\left\{\begin{array}{l} 2x^2y+3xy=4x^2+9y\\ 7y+6=2x^2+9x. \end{array} \right.$

Giải

Từ phương trình thứ hai suy ra $y=\dfrac{2x^2+9x-6}{7}$.

Thay vào phương trình thứ nhất ta được

$2x^2 \left( \dfrac{2x^2+9x-6}{7} \right) +3x \left(  \dfrac{2x^2+9x-6}{7} \right) =\dfrac{7.4x^2}{7}+9 \left( \dfrac{2x^2+9x-6}{7} \right) $

$\Leftrightarrow (2x^2+9x-6)(2x^2+3x-9)=28x^2$

$\Leftrightarrow 4x^4+24x^3-31x^2-99x+54=0$

$\Leftrightarrow \left( x-\dfrac{1}{2}\right) (x+2)(4x^2+18x-54)=0$

$\Leftrightarrow x=\dfrac{1}{2} \ \text{hoặc} \ x=2 \ \text{hoặc} \ x=\dfrac{-9 \pm \sqrt{33}}{4}.$

Trường hợp $x=\dfrac{1}{2}$ thay vào phương trình thứ hai ta được $y=-\dfrac{1}{7}$.

Trường hợp $x=-2$ thay vào phương trình thứ hai ta được $y=-\dfrac{16}{7}$.

Trường hợp $x=\dfrac{-9 \pm \sqrt{33}}{4}$ thay vào phương trình thứ hai ta được $y=3$.

Vậy hệ có nghiệm $(x,y) \in \left\{ \left( \dfrac{1}{2}; – \dfrac{1}{7} \right) ;  \left( -2; -\dfrac{16}{7}\right) ;  \left( \dfrac{-9 \pm \sqrt{33}}{4}; 3\right) \right\} $.

Ví dụ 4: Giải hệ phương trình $\left\{\begin{array}{l} 1+x^3y^3=19x^3\\ y+xy^2=-6x^2. \end{array} \right.$

Giải

Nếu $x=0$ thì hệ vô nghiệm.

Xét $x \ne 0$. Nhân hai vế của phương trình thứ hai cho $x$ ta được $xy+x^2y^2=-6x^3.$

Thay vào phương trình thứ nhất ta được

$-6(1+x^3y^3)=19(xy+x^2y^2)$

$\Leftrightarrow xy=-\dfrac{2}{3} \ \text{hoặc} \ xy=-\dfrac{3}{2} \ \text{hoặc} \ xy=-1.$

Trường hợp $xy=-\dfrac{2}{3}$ thay vào phương trình thứ nhất ta được $\begin{cases} x=\dfrac{1}{3}&\\ y=-2 \end{cases}$.

Trường hợp $xy=-\dfrac{3}{2}$ ta được $\begin{cases}x=-\dfrac{1}{2}&\\y=3. \end{cases}$

Trường hợp $xy=-1$ ta được $x=0$ (loại).

Vậy hệ có nghiệm $(x,y)\in \left\{ \left( \dfrac{1}{3}; -2\right) , \left( \dfrac{-1}{2};3\right) \right\} $.

Một số hệ phương trình nhiều khi phải biến đổi một vài bước thì mới xuất hiện phép thế.

Ví dụ 5:  Giải hệ phương trình $\begin{cases} xy+x+y=x^2-2y^2 &\\ x\sqrt{2y}-y\sqrt{x-1}=2(x-y). \end{cases}$

Giải

Điều kiện $x \ge1, y \ge 0.$

Phương trình thứ nhất tương đương

$(x+y)^2-(x+y)-3y^2-3xy=0$

$\Leftrightarrow (x+y)(x-2y-1)=0$

$\Leftrightarrow x=-y \ \text{hoặc} \ x=2y+1.$

Do $x \ge 1, y \ge 0$ nên trường hợp $x=-y$ không thể xảy ra.

Xét $x=2y+1$ thay vào phương trình thứ hai ta được

$(2y+1)\sqrt{2y}-y\sqrt{2y}=2y+2$

$\Leftrightarrow (y+1)(\sqrt{2y}-2)=0$

$\Leftrightarrow y=2 \ (\text{do} \ y \ge 0)$

Suy ra $x=5$.

Vậy hệ có nghiệm $(x,y)=(5,2).$

Trong ví dụ trên thì từ một phương trình ta phân tích thành thừa số, từ đó có những phương trình đơn giản hơn và sử dụng phương pháp thế.Ta xét tiếp ví dụ sau:

Ví dụ 6: Giải hệ phương trình $\begin{cases} xy+x-2=0&\\ 2x^3-x^2y+x^2+y^2-2xy-y=0. \end{cases}$

Giải

$2x^3-x^2y+x^2+y^2-2xy-y=0$

$\Leftrightarrow (x^2-y)(2x-y+1)=0$

$\Leftrightarrow y=x^2 \ \text{hoặc} \ y=2x+1.$

Vậy hệ có nghiệm $(x,y)\in \left\{ (1,1), \left( \dfrac{-1 \pm \sqrt{5}}{2}, \pm \sqrt{5}\right) \right\} $.

Ví dụ 7:  Giải hệ phương trình $\begin{cases} y^2=(5x+4)(4-x)&\\ y^2-5x^2-4xy+16x-8y+16=0 \end{cases}$

Giải

Viết lại phương trình thứ hai của hệ dưới dạng $ y^2-(4x+8)y-5x^2+16x+16=0.$

Coi đây là phương trình bậc hai theo $y$ ta được $\Delta=(4x+8)^2-4(-5x^2+16x+16)=36x^2.$

Suy ra $y=\dfrac{4x+8+6x}{2}=5x+4$ hoặc $y=\dfrac{4x+8-6x}{2}=4-x.$

Trường hợp $y=5x+4$ thay vào phương trình đầu của hệ ta được $x(5x+4)=0 \Leftrightarrow x=0 \ \text{hoặc} \ x=-\dfrac{4}{5}.$

Trường hợp này hệ có nghiệm $(x,y)\in \left\{ (0,4), \left( -\dfrac{4}{5},0\right) \right\} $.

Trường hợp $y=4-x$ thay vào phương trình thứ nhất của hệ ta được $$x(4-x)=0 \Leftrightarrow x=0 \ \text{hoặc} \ x=4.$$

Trường hợp này hệ có nghiệm $(x,y)\in \left\{ (0,4), (4,0)\right\} $.

Vậy hệ có nghiệm $(x,y)\in \left\{ (0,4), (4,0), \left( -\dfrac{4}{5},0\right) \right\} $.

Ngoài cách phân tích thành nhân tử, ta còn có một số biến đổi khác phức tạp hơn, ta xét các ví dụ sau:

Ví dụ 8: Giải hệ phương trình $\begin{cases} x^2+y^2=x-y&\\ y^3-x^3=y-x^2 \end{cases}$.

Giải

Ta có $\begin{cases} x^2+y^2=x-y\\ y^3-x^3=y-x^2 \end{cases} $

$\Leftrightarrow \begin{cases} x(x-1)=-y(y+1)&\\ y(y-1)(y+1)=x^2(x-1). \end{cases}$

Thay phương trình thứ hai vào phương trình thứ nhất ta được

$ -x(x-1)(y-1)=x^2(x-1)$

$\Leftrightarrow x(x-1)(x+y-1)=0$

$\Leftrightarrow x=0 \ \text{hoặc} \ x=1 \ \text{hoặc} \   x=1-y.$

Trường hợp $x=0$ thay vào phương trình thứ nhất ta được $y=0$ hoặc $y=-1$.

Trường hợp $x=1$ thay vào phương trình thứ nhất ta được $y=0$ hoặc $y=-1$.

Trường hợp $x=1-y$ thay vào phương trình thứ nhất ta được $y=0.$

Ví dụ 9: Giải phương trình $\begin{cases} (x-y)^4=13x-4&\\ \sqrt{x+y}+\sqrt{3x-y}=\sqrt{2}. \end{cases}$

Giải

Điều kiện $\begin{cases} x+y \ge 0&\\ 3x-y \ge 0. \end{cases}$

Khi đó $\sqrt{x+y}+\sqrt{3x-y}=\sqrt{2}$

$\Leftrightarrow x+y+3x-y+2\sqrt{(x+y)(3x-y)}=2$

$\Leftrightarrow 1-2x=\sqrt{(x+y)(3x-y)}$

$\Leftrightarrow \begin{cases} 4x^2-4x+1=3x^2+2xy-y^2&\\ x \le \dfrac{1}{2} \end{cases}$

$\Leftrightarrow \begin{cases} (x-y)^2=4x-1&\\ \dfrac{1}{4} \le x \le \dfrac{1}{2}. \end{cases}$

Thay vào phương trình đầu của hệ ta được

$(4x-1)^2=13x-4$

$\Leftrightarrow 16x^2-21x+5=0$

$\Leftrightarrow x=\dfrac{5}{16} \ \text{hoặc} \ x=1 \ \text{(loại)}.$

Với $x=\dfrac{5}{16}$ thì $y=-\dfrac{3}{16}$.

Vậy hệ có nghiệm $(x;y)$ là $\left(\dfrac{5}{16}; -\dfrac{3}{16}\right).$

2. Bài tập 

Bài 1: Giải các hệ phương trình sau

a) $\begin{cases} \sqrt{x+y}+\sqrt{2x-4}=5&\\ 2x+y=14 \end{cases}$

b) $\begin{cases} x+y=-1&\\ x^3-3x=y^3-3y& \end{cases}$

c) $\begin{cases} x^2y+2(x^2+y)=8&\\ xy+x+y=5 \end{cases}$

d) $\begin{cases} x^2+5x+y=9&\\ 3x^3+x^2y+2xy+6x^2=18 \end{cases}$

Bài 2: Giải các hệ phương trình sau:

a) $\begin{cases} y^2-xy+1=0&\\ x^2+y^2+2x+2y+1=0& \end{cases}$

b) $\begin{cases} x^3-2xy+5y=7&\\ 3x^2-2x+y=3& \end{cases}$

c) $\begin{cases} x-\sqrt{y+1}=\dfrac{5}{2}&\\ y+2(x-3)\sqrt{x+1}=-\dfrac{3}{4}& \end{cases}$

d) $\begin{cases} x^4+2x^3y+x^2y^2=2x+9&\\ x^2+2xy=6x+6& \end{cases}$

e) $\begin{cases} x^2+1+y(y+x)=4y&\\ (x^2+1)(y+x-2)=y& \end{cases}$

f) $\begin{cases} x(x+y+1)-3=0&\\ (x+y)^2-\dfrac{5}{x^2}+1=0& \end{cases}$

Bài 3: Giải các hệ phương trình sau:

a) $\begin{cases}x-2y-\sqrt{xy}=0&\\ \sqrt{x-1}+\sqrt{4y-1}=2 \end{cases}$

b) $\begin{cases} \sqrt{2x-3}=(y^2+2018)(5-y)+\sqrt{y}&\\ y(y-x+2)=3x+3 \end{cases}$

c) $\begin{cases} 2x^2+4xy+2y^2+3x+3y-2=0&\\ x^2+y^2+4xy+2y=0 \end{cases} $

d) $\begin{cases} 2x^2+xy-y^2-5x+y+2=0&\\ x^2+y^2+x+y-4=0 \end{cases}$

e) $\begin{cases} 2x^2-5xy+3y^2=0&\\ x^2-2xy=-1& \end{cases}$

f) $\begin{cases} x^3+3x^2y+3xy^2+2y^3=0&\\ 4x^2+y^2=5& \end{cases}$

Bài 4: Giải các hệ phương trình sau

a) $\begin{cases} x+\dfrac{1}{x}=y+\dfrac{1}{y}&\\ x+2y=3& \end{cases}$

b) $\begin{cases} x^3-4y^3=6x^2y-9xy^2&\\ \sqrt{x+y}+\sqrt{x-y}=2& \end{cases}$

c) $\begin{cases} -x^2y+2xy^2+3y^3-4(x+y)=0&\\ xy(x^2+y^2) -1=3xy-(x+y)^2 \end{cases}$

d) $\begin{cases} \sqrt{x-1}+\sqrt{x}(3\sqrt{x}-y)+x\sqrt{x}=3y+\sqrt{y-1}&\\ 3xy^2+4=4x^2+2y+x \end{cases}$

e) $\begin{cases} x^2+y^2+\dfrac{2xy}{x+y}=1&\\ \sqrt{x+y}=x^2-y \end{cases}$

f) $\begin{cases} y^2-x\sqrt{\dfrac{y^2+2}{x}}=2x-2&\\ \sqrt{y^2+1}+\sqrt[3]{2x-1}=1 \end{cases}$

Bài 5: Giải các hệ phương trình sau:

a) $\begin{cases} 2x^2+y^2-3xy+3x-2y+1=0&\\ 4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}& \end{cases}$

b) $\begin{cases} 6\dfrac{x}{y}-2=\sqrt{3x-y}+3y&\\ 2\sqrt{3x+\sqrt{3x-y}}=6x+3y-4. \end{cases}$

Phương trình bậc nhất

1. Phương trình một ẩn

Định nghĩa: Một phương trình với ẩn $x$ có dạng $A(x)=B(x)$, trong đó vế trái là $A(x)$ và vế phải là $B(x)$ là hai biểu thức của cùng một biến.

Ví dụ: $ 2(x+1)+6 = 4x$ là phương trình ẩn $x$.

Một phương trình có thể có một nghiệm, hai nghiệm, ba nghiệm,… nhưng cũng có thể không có nghiệm nào hoặc có vô số nghiệm. Phương trình không có nghiệm nào được gọi là phương trình vô nghiệm.

2. Phương trình tương đương

Định nghĩa: Hai phương trình tương đương là hai phương trình có cùng một tập nghiệm.

Ví dụ: $ x+3 = 0 \Leftrightarrow x=-3$

3. Phương trình bậc nhất một ẩn

Định nghĩa: Phương trình có dạng $ax+b=0$, với $a$ và $b$ là hai số đã cho và $a \ne 0$, được gọi là phương trình bậc nhất một ẩn.

Ví dụ: $2x+1=0$ là phương trình bậc nhất một ẩn.

4. Hai quy tắc biến đổi phương trình

  • Quy tắc chuyển vế: Trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.
  • Quy tắc nhân với một số:
    • Trong cùng một phương trình, ta có thể nhân cả hai vế với cùng một số khác $0$.
    • Trong cùng một phương trình, ta có thể chia cả hai vế với cùng một số khác $0$.

5. Cách giải phương trình bậc nhất một ẩn $ax+b=0$
Phương trình bậc nhất một ẩn $ax+b=0$, được giải theo các bước sau:

  • Chuyển vế $ax=-b$
  • Chia hai vế cho $a$, ta được: $x=- \dfrac{b}{a}$
  • Kết luận nghiệm $S= \left \{ \dfrac{-b}{a} \right \}$

Tổng quát phương trình $ax+b=0$ $(a \ne 0)$ được giải theo các bước sau:

$ ax+b=0 $
$ \Leftrightarrow ax=-b $
$\Leftrightarrow a= \dfrac{-b}{a} $

Vậy $S= \left \{ \dfrac{-b}{a} \right \}$

6. Ví dụ

Ví dụ 1: Giải các phương trình sau:

a) $2x-1 =1$
b) $x-7 = 4 $
c) $7x-35=0$
d) $ 4x-x -18=0$

Giải

a) $2x-1 =1  \Leftrightarrow 2x=2  \Leftrightarrow x=1 $6
Vậy $ S= \{1 \}$

b) $x-7 = 4  \Leftrightarrow x=11 $
Vậy $ S= \{11 \}$

c) $7x-35=0  \Leftrightarrow 7x = 35  \Leftrightarrow x=5 $
Vậy $ S= \{5 \}$

d) $4x-x -18=0  \Leftrightarrow 3x = 18  \Leftrightarrow x = 6$
Vậy $ S= \{6 \}$

Ví dụ 2: Giải các phương trình sau:

a) $x-6=8-x$
b) $3x-2=2x-3$
c) $7-2x = 22-3x$
d) $x-12-4x=25+3x-1$
e) $2x-1+2(2+x)=1$
f) $2(x+3)=2(4-x)+14$

Giải

a) $x-6=8-x$
$\Leftrightarrow 2x=14$
$\Leftrightarrow x= 7 $
Vậy $ S = \{ 7 \}$

b) $3x-2=2x-3$
$\Leftrightarrow x = -1 $
Vậy $ S = \{ -1 \}$

c) $7-2x = 22-3x$
$\Leftrightarrow x = 15 $
Vậy $ S = \{ 15 \}$

d) $x-12-4x=25+3x-1$
$\Leftrightarrow -6x = 36$
$\Leftrightarrow x= -6 $
Vậy $ S = \{ -6 \}$

e) $2x-1+2(2+x)=-1$
$\Leftrightarrow 2x-1 +4+2x = 1$
$\Leftrightarrow \ 4x = -4$
$\Leftrightarrow x = -1 $
Vậy $ S = \{ -1 \}$

f) $2(x+3)=2(4-x)+14$
$\Leftrightarrow 2x+6 = 8-2x +14$
$\Leftrightarrow 4x = 16$
$\Leftrightarrow x= 4 $
Vậy $ S = \{ 4 \}$

Ví dụ 3:

a) Tìm giá trị của $m$ sao cho phương trình $2x-2m=x+9$ nhận $x=-5$ là nghiệm.
b) Tìm giá trị của $m$ sao cho phương trình $4x+m^2=24 $ nhận $x=5$ là nghiệm.
c) Giải và biện luận nghiệm của phương trình $2(mx+5)+4(x+m)=m$ theo $m$.

Giải

a) Tìm giá trị của $m$ sao cho phương trình $2x-2m=x+9$ nhận $x=-5$ là nghiệm.

Thay $x=-5$ vào phương trình, ta được:
$2(-5) -2m = -5 +9 $
$\Leftrightarrow -2m = 14$
$\Leftrightarrow m = -7 $
Vậy $m=-7$ là giá trị cần tìm.

b) Tìm giá trị của $m$ sao cho phương trình $4x+m^2=24$ nhận $x=5$ là nghiệm.

Thay $x=5$ vào phương trình, ta được:
$ 4 \cdot 5 +m^2 = 24$
$\Leftrightarrow m^2 = 4$
$\Leftrightarrow m = \pm 2 $
Vậy $m=2$ và $m=-2$ là giá trị cần tìm.

c) Giải và biện luận nghiệm của phương trình $2(mx+5)+4(x+m)=m$ theo $m$.

Ta có:
$2(mx+5)+4 (x+m)=m $
$\Leftrightarrow 2mx+10 +4x+4m = m $
$\Leftrightarrow (2m+4)x=-3m -10 $

Biện luận:

  • Nếu $2m+4 \ne 0 \Leftrightarrow m \ne -2 \Rightarrow $ Phương trình có nghiệm $ x=\dfrac{-3m-10}{2m+4}$
  • Nếu $2m+4 =0 \Leftrightarrow m = -2 \Rightarrow $ Phương trình có dạng $ 0x = -4 \Rightarrow $ Phương trình vô nghiệm.

Kết luận:

  • Với $m \ne -2$, phương trình có tập nghiệm $S=\left \{ \dfrac{-3m-10}{2m+4} \right \}$
  • Với $m=-2$, phương trình vô nghiệm hay $S = \{ \varnothing \}$

 

7. Bài tập tự luyện

Bài 1: Giải các phương trình sau:

a) $ 12-6x = 0$
b) $ 3x+3=-3$
c) $ 4x+6 = 14$
d) $ x-7x -18 = 6$
e) $ 3x+ 9 – 6x =27 $
f) $ 2x+x+120 = -3 $

Đ/A:
a) $x = 2$
b) $ =-2$
c) $ x= 2$
d) $x=-4 $
e) $ x= – 6$
f) $x=-41$

Bài 2: Giải các phương trình sau:

a) $x – 5 = 3 – x $
b) $ 7 – 3 x = 9 – x $
c) $ \frac{-5}{9} x + 1 = \frac{2}{3} x – 10 $
d) $ 2 (x + 1) = 6 – 2 x $
e) $ 11 – 8 x – 3 = 5 x – 20 + x $
f) $ 3 – 4 y + 24 + 6 y = y + 27 + 3 y $
g) $ x + 2 x + 3 x = 3 x + 9 $
h) $ 4 – 2 x + 15 = – (9 x + 1 – 2 x) $

Đ/A:
a) $ x = 4 $
b) $ x = -1 $
c) $ x = 9 $
d) $ x = 1 $
e) $ x = 2 $
f) $ x = 0 $
g) $ x = 3 $
h) $ x = -4 $

Bài 3: 

a) Tìm giá trị của $m$, biết rằng phương trình $5x+2m=22 $ nhận $ x = 2$ làm nghiệm.
b) Tìm $m$ để phương trình $(m^2-m)x=2x+m^2-1$ có nghiệm duy nhất.
c) Tìm $m$ để phương trình $m(4mx-3m+2)=x(m+3)$ có nghiệm duy nhất.
d) Tìm $m$ để phương trình $ m^2(x-m)=x-3m+2$ vô nghiệm.

Đ/A:
a) $ m = 6 $
b) $ m \ne -1 $ và $ne m \ne 2 $. Tập nghiệm $ S = \left \{ \dfrac{m-1}{m-2} \right \} $
c) $ m \ne 1 $ và $ m \ne \dfrac{-3}{4} $. Tập nghiệm $ S = \left \{ \dfrac{3m^2-2m}{4m^2-m-3} \right \} $
d) $ m = \pm 1 $

Bài 4: Giải và biện luận phương trình sau, với $m$ là tham số:

a) $ (2m-4)x+2-m=0$
b) $ (m+1)x=(3m^2-1)x+m-1$

Đ/A:
a)
Nếu $m = 2$ thì phương trình có vô số nghiệm
Nếu $ m \ne 2 $ thì phương trình có tập nghiệm $ S = \left \{\dfrac{1}{2} \right \} $
b)
Nếu $ m = 1 $, phương trình vô số nghiệm
Nếu $ m = \dfrac{-2}{3} $, phương trình vô nghiệm
Nếu $ m \ne 1 $ và $ m \ne \dfrac{-2}{3} $, phương trình có nghiệm duy nhất với tập nghiệm $ S = \left \{ \dfrac{-1}{3m+2} \right \} $

Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018

Bài 1. Tìm tất cả các hàm số $f:\mathbb R \rightarrow \mathbb R $ thỏa mãn:
$$f(3f(x)+2y)=10x+f(f(y)+x),\ \forall x,y \in \mathbb R.$$

Bài 2.  Cho tam giác $ABC$ nhọn. Các điểm $D,E$ thay đổi trên cạnh $BC$ sao cho $\angle BAD = \angle CAE$ và $D$ nằm giữa $B,E$. Đường tròn ngoại tiếp các tam giác $ABD,ACE$ cắt nhau tại điểm $M$ khác $A$.
a)  Chứng minh rằng phân giác góc $\angle DME$ luôn đi qua một điểm cố định.
b) Gọi $I$ và $K$ lần lượt là tâm đường tròn nội tiếp của các tam giác $ABM,ACM$. Chứng minh rằng đường thẳng $IK$ luôn đi qua một điểm cố định.

Bài 3.  Cho $n\ge 3$ là số nguyên dương và $2n$ số thực dương $x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n$ thỏa mãn đồng thời các điều kiện sau:
i) $0< x_1y_1<x_2y_2<\ldots< x_ny_n$.
ii) $x_1+x_2+\cdots+x_k \ge y_1+y_2+\cdots+y_k\ \forall k \in {1,2,\ldots,n }$.

Chứng minh rằng $\dfrac{1}{x_1}+\dfrac{1}{x_2}+\ldots+\dfrac{1}{x_n} \le \dfrac{1}{y_1}+\dfrac{1}{y_2}+\ldots+\dfrac{1}{y_n}$.

Bài 4. Cho $S$ là tập hợp khác rỗng có hữu hạn phần tử. Kí hiệu $P(S)$ là tập hợp tất cả các tập con của $S$. Giả sử $f: P(S) \rightarrow P(S)$ là ánh xạ có tính chất sau: với mọi $X,Y \in P(S)$, nếu $X \subset Y$ thì $f(X) \subset f(Y)$.

Chứng minh rằng có tập hợp $T \in P(S)$ để $f(T) = T$.

Giải

Bài 1. 

Thay $y=-\frac{2f(x)}{3}$, ta có
$$f(0)=10x+f\left( f\left( -\frac{2f(x)}{3} \right)+x \right)$$
nên dễ thấy rằng $f$ toàn ánh vì $f(0)-10x$ nhận giá trị trên $\mathbb{R}.$
Giả sử tồn tại $a,b\in \mathbb{R}$ sao cho $f(a)=f(b).$ Thay $y$ lần lượt bởi $a,b,$ ta có
$$f(3f(x)+2a)=f(3f(y)+2b).$$
Vì tính toàn ánh nên có thể thay $3f(x)\to x$, tức là $f(x+2a)=f(x+2b)$ nên $f$ tuần hoàn chu kỳ $T=2(a-b).$ Khi đó, ta có $f(x)=f(x+T),\forall x\in \mathbb{R}.$

Trong đề bài, thay $x\to x+T$ thì
$f(3f(x)+2y)=10x+10T+f(2f(y)-x)$ nên $T=0.$ Suy ra $f$ đơn ánh. Cuối cùng, cho $x=0$ thì
$f(3f(0)+2y)=f(f(y))$ nên
$$3f(0)+2y=f(y)\Leftrightarrow f(y)=2y+\frac{3}{2}f(0),\forall y.$$
Thay $y=0,$ ta có ngay $f(0)=0$ nên $f(y)=2y.$ Thử lại ta thấy thỏa.

Vậy hàm số $f(x)$ cần tìm là $f(x)=2x,\forall x.$

Bài 2.

(a) Do tứ giác $ABDM,ACEM$ nội tiếp nên $\angle DAB=\angle DMB,\angle EAC=\angle EMC$, mà $\angle DAB=\angle EAC$ nên ta có $\angle DMB=\angle EMC.$ Ta sẽ chứng minh bổ đề sau

Bổ đề (hệ thức Steiner) $\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{A{{B}^{2}}}{A{{C}^{2}}}$.

Thật vậy, kẻ đường tròn$(ADE)$ cắt $AB,AC$ tại $X,Y.$ Khi đó, ta có $DX=EY$ (vì cùng chắn các cung bằng nhau), suy ra $XY\parallel DE$.
Áp dụng phương tích từ các điểm $B,C$ đến đường tròn $(ADE)$ thì
$$BD\cdot BE=BX\cdot BA \text{ và } CE\cdot CD=CY\cdot CA$$
nên suy ra $$\frac{BD\cdot BE}{CE\cdot CD}=\frac{AB}{AC}\cdot \frac{BX}{CY}=\frac{A{{B}^{2}}}{A{{C}^{2}}}.$$
Áp dụng bổ đề này vào tam giác $BMC$ với hai điểm $D,E.$ Ta cũng có $$\frac{DB}{DC}\cdot \frac{EB}{EC}=\frac{M{{B}^{2}}}{M{{C}^{2}}}.$$ Từ đó suy ra $\frac{MB}{MC}=\frac{AB}{AC}$. Gọi $MS$ là phân giác của $\angle DME$ với $S\in BC.$ Suy ra $MS$ cũng là phân giác của góc $\angle BMC.$ Do đó $$\frac{SB}{SC}=\frac{MB}{MC}=\frac{AB}{AC}$$ nên $S$ chính là chân đường phân giác góc $A$ của tam giác $ABC,$ là điểm cố định.

(b) Gọi $J$ là tâm nội tiếp tam giác $ABC$ thì rõ ràng $I\in BJ,K\in CJ.$
Đặt $\angle DAB=\angle EAC=2\alpha ,\angle DAE=2\beta $ thì
$$\frac{IB}{IJ}=\frac{{{S}_{IAB}}}{{{S}_{IAJ}}}=\frac{AI\cdot AB\cdot \sin \alpha }{AI\cdot AJ\cdot \sin \beta }=\frac{AB}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }.$$
Tương tự thì $$\frac{KC}{JC}=\frac{AC}{AJ}\cdot \frac{\sin \alpha }{\sin \beta }$$ nên $\frac{IB}{IJ}:\frac{KC}{KJ}=\frac{AB}{AC}$. Từ đây gọi $T$ là giao điểm của $IK,BC$ thì theo định lý Menelaus cho tam giác $JBC,$ ta có $\frac{TB}{TC}=\frac{AB}{AC}$ nên $T$ là chân phân giác ngoài góc $A$ của tam giác $ABC,$ là điểm cố định.

 

Bài 3. 

Nhắc lại về khai triển Abel, xem như bổ đề:

Bổ đề. Xét 2 dãy số thực ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n}}$ và ${{b}_{1}},{{b}_{2}},\ldots ,{{b}_{n}}$. Đặt ${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}$. Khi đó
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}=({{a}_{1}}-{{a}_{2}}){{S}_{1}}+({{a}_{2}}-{{a}_{3}}){{S}_{2}}+\cdots +({{a}_{n-1}}-{{a}_{n}}){{S}_{n}}+{{a}_{n}}{{S}_{n}}.$$
Trở lại bài toán đã cho, chuyển vế và quy đồng, ta cần có
$$\frac{{{x}_{1}}-{{y}_{1}}}{{{x}_{1}}{{y}_{1}}}+\frac{{{x}_{2}}-{{y}_{2}}}{{{x}_{2}}{{y}_{2}}}+\cdots +\frac{{{x}_{n}}-{{y}_{n}}}{{{x}_{n}}{{y}_{n}}}>0.$$
Đặt ${{b}_{k}}={{x}_{k}}-{{y}_{k}}$ và ${{a}_{k}}=\frac{1}{{{x}_{k}}{{y}_{k}}}$ với $1\le k\le n$, ta cần chứng minh
$${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+\cdots +{{a}_{n}}{{b}_{n}}>0.$$
Chú ý rằng $${{S}_{k}}={{b}_{1}}+{{b}_{2}}+\cdots +{{b}_{k}}=({{x}_{1}}+{{x}_{2}}+\cdots +{{x}_{k}})-({{y}_{1}}+{{y}_{2}}+\cdots +{{y}_{k}})>0$$ đúng theo ii).
Ngoài ra, dãy ${{a}_{k}}$ là dãy giảm nên ${{a}_{1}}-{{a}_{2}},{{a}_{2}}-{{a}_{3}},\ldots ,{{a}_{n-1}}-{{a}_{n}}>0$. Từ đó, áp dụng khai triển Abel ở trên, ta có ngay đpcm.

 

Bài 4.

Nếu như $f(S)=S$ thì ta có đpcm.

Giả sử rằng $f(S)\ne S$. Ta đặt $f(S)={{S}_{1}}$ là một tập con thực sự của $S.$ Khi đó vì ${{S}_{1}}\subset S$ nên ta phải có $f({{S}_{1}})\subset f(S)\Rightarrow f({{S}_{1}})\subset {{S}_{1}}$.

Nếu $f({{S}_{1}})={{S}_{1}}$ thì ta cũng có đpcm nên giả sử $f({{S}_{1}})={{S}_{2}}\ne {{S}_{1}}$ và ${{S}_{2}}\subset {{S}_{1}}.$

Tiếp tục như thế, ta thấy rằng với mỗi số nguyên dương $k$ thì hoặc là $f({{S}_{k}})={{S}_{k}}$ hoặc $f({{S}_{k}})={{S}_{k+1}}$ là tập con thực sự của ${{S}_{k}}.$ Và nếu như không có trường hợp thứ nhất xảy ra thì quá trình này lặp lại vô hạn lần, và sinh ra vô hạn tập con thực sự của tập hữu hạn $S$ ban đầu. Đây là điều vô lý.

Vậy nên luôn tồn tại $T \in P(S)$ để cho $f(T)=T.$

Đề và lời giải thi chọn đội dự tuyển năm học 2018-2019

Bài 1. Tìm tất cả các hàm số $f:\mathbb R\rightarrow \mathbb R$ thoả mãn:
i) $f(-x)=-f(x)\ \forall x\in \mathbb R$.
ii) $f(f(x)-y)=2x+f(f(y+x))\ \forall x,y\in \mathbb R$.

Bài 2. Tìm tất cả các bộ số tự nhiên $(a,b,c)$ để $a^2+2b+c,b^2+2c+a,c^2+2a+b$ đều là các số chính phương.

Bài 3. Cho tập hợp $X={1,2,\ldots,396}$. Gọi $S_1,S_2,\ldots,S_k$ là $k$ tập con khác nhau của $X$ thoả mãn đồng thời hai điều kiện sau:

i)$|S_1|=|S_2|=\ldots=|S_k|=198$.
ii) $|S_i\cap S_j|\le 99\ \forall i,j\in \mathbb N^*, 1\le i<j\le k$.

Chứng minh rằng $k\le 6^{50}$.

Bài 4. Cho tam giác $ABC$ nhọn. Đường tròn thay đổi qua $B,C$ cắt các cạnh $AB,AC$ lần lượt tại $D,E$.

a) Gọi $H,K$ lần lượt là hình chiếu của $B$ trên $CD$ và $DE$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.
b) Gọi $Q$ là hình chiếu của $C$ trên $DE$. Đường tròn ngoại tiếp tam giác $BDK$ cắt $BC$ tại $M$, đường tròn ngoại tiếp tam giác $CEQ$ cắt $BC$ tại $N$. $KM,QN$ cắt nhau tại $X$. Chứng minh rằng $X$ thuộc một đường thẳng cố định.

Lời giải

Bài 1.

Trong điều kiện $(ii),$ thay $x$ bởi $-x,$ ta được
$$
f(f(-x)-y)=-2x+f(f(y)-x)),
$$
hay
$$-f(f(x)+y)=-2x+f(f(y)-x),\text{ với mọi } x,y\in\mathbb{R}. (*) $$

Thay vai trò của $x$ và $y$ trong $(ii)$, ta có
$
f(f(y)-x)=2y+f(f(x)+y),\text{ với mọi }x,y\in\mathbb{R}.
$
Thay vào $(*)$, ta có
$$
-f(f(x)+y)=-2x+2y+f(f(x)+y),
$$
hay
$$
f(f(x)+y)=x-y,\text{ với mọi }x,y\in\mathbb{R}.
$$
Thay $y$ bởi $f(y),$ ta có
$$
f(f(x)+f(y))=x-f(y),\text{ với mọi }x,y\in\mathbb{R}.
$$
Đổi vai trò của $x,y$, ta thu được
$$
x-f(y)=y-f(x), \text{ tức là } f(x)=-x+c,\text{ với mọi }x\in\mathbb{R}.
$$
Thay vào đề bài, ta suy ra $c=0.$ Vậy hàm số cần tìm là $f(x)=-x.$

Bài 2.

Không mất tính tổng quát, ta giả sử $a=\min (a,b,c).$ Nếu $a=0$ thì ta có $2b+c,b^2+2c,c^2+b$ đều là các số chính phương.
Nếu như $b \le c$ thì $c^2 \le c^2+b \le c^2+c <(c+1)^2$ là số chính phương, kéo theo $c^2+b=c^2$ nên $b=0$. Từ đây dễ dàng có $c=0$. Tương tự nếu $c \le b$ cũng có $b=c=0$. \medskip

Do đó, trong trường hợp này, ta có bộ nghiệm $(a,b,c)=(0,0,0)$.
Ta xét các trường hợp sau ứng với $a>0.$

  • Nếu $a\le b\le c.$ Khi đó $c^2< c^2+2a+b\le c^2+3c<(c+2)^2$. Do đó $c^2+2a+b=(c+1)^2,$ hay $2a+b=2c+1.$ Ta cũng có
    $$
    b^2 < b^2+2c+a = b^2+2a+b-1+a \leq b^2+4b – 1 < (b+2)^2,
    $$
    tức là
    $$
    b^2+2c+a=(b+1)^2,\ 2c+a=2b+1.
    $$
    Đẳng thức xảy ra khi $a=1,b=c$, từ đây dễ dàng tìm được $a=b=c=1$. Thử lại ta thấy bộ số này thỏa mãn.
  • Nếu $a \leq c \leq b$. Khi đó $b^2 < b^2+2c+a \leq b^2 + 3b < (b+2)^2$, tức $b^2+2c+a=(b+1)^2$ và $2c+a=2b+1$. Ta suy ra
    $$4a+2b = 4a+2c+a-1 \leq 7c – 1 < 8c+8.
    $$
    Do đó $2a+b < 4c+4$ và $c^2 < c^2+2a+b < (c+2)^2$. Do đó $2a+b=2c+1$. Kết hợp với $2c+a=2b+1$, ta suy ra
    $$
    (a,b,c)=(a,3a-2,\frac{5a-3}{2}).
    $$
    Do đó $a$ lẻ và trường hợp $a=1$ đã xét nên ở đây ta đặt $a=2t+1$, với $t \geq 1$. Khi đó $(a,b,c)=(2t+1,6t+1,5t+1)$. Vì $b^2+2c+a$ và $c^2+2a+b$ là các số chính phương nên ta xét điều kiện để $a^2+2b+c=4t^2+21t+4$ là số chính phương. Với $t \geq 3$, ta có
    $$
    (2t+4)^2 < 4t^2+21t+4<(2t+6)^2
    $$

Do đó $4t^2+21t+4 = (2t+5)^2$ và $t=21$. Như vậy $t \in {1,2,21}$. Thử trực tiếp, ta thấy chỉ có $t=21$ là thỏa mãn ứng với $(a,b,c)=(43,127,106)$.

Vậy tất cả bộ ba số thỏa mãn đề bài là $$(a,b,c)=(0,0,0),(1,1,1),(43,127,106).$$

Bài 3.

Vì $|S_i\cap S_j|\le 99$ với mọi $1\le i<j\le k$ nên mỗi bộ $100$ phần tử chỉ có thể được chứa tối đa trong $1$ tập hợp. Ta đếm các bộ $\{x_1,x_2,\ldots,x_{100},M \}$, trong đó $x_i\in X$ với mọi $i$ và $M$ là một trong các tập $S_i$, $M$ chứa $x_1,x_2,\ldots,x_{100}$.

  • Số cách chọn tập $M$ là $k$. Số cách chọn $100$ phần tử trong $M$ là $C^{100}_{198}.$
  • Số cách chọn $x_1,x_2,\ldots,x_{100}$ từ $X$ là $C^{100}_{396}.$ Với mỗi bộ $100$ phần tử như vậy, có tối đa $1$ tập $S_i$ thỏa mãn $S_i$ chứa $x_1,x_2,\ldots,x_{100}.$

Do đó ta có bất đẳng thức
$ kC^{100}{198} \le C^{100}{396} $
hay

$k \le \dfrac{C^{100}{396}}{C^{100}{198}}$

$=\dfrac{396!100!98!}{100!296!198!}$

$=\dfrac{396!98!}{198!296!} $

$=\dfrac{297\cdot 298 \ldots 396}{99\cdot 100\ldots 198}$
$=\dfrac{297\cdot 299\ldots 395}{99\cdot 100\ldots 148}\cdot\dfrac{298}{149}\cdot \dfrac{300}{150}\ldots \dfrac{396}{198}$
$\le 3^{50}\cdot 2^{50}=6^{50}.$

Ta có đpcm.

Bài 4.

(a) Gọi $F$ là giao điểm của $KH$ và $AC.$ Ta chứng minh $F$ cố định. Ta có tứ giác $BDEC$ nội tiếp nên $\angle BDC=\angle BEC.$ Tứ giác $KDHB$ cũng nội tiếp nên ta suy ra $\angle BDC=\angle BKF.$ \medskip

Do đó $\angle BEC=\angle BKF,$ tức là tứ giác $KEFB$ nội tiếp. Khi đó ta có $$\angle EFB=180^{\circ}-\angle BKE =90^{\circ}.$$ Do đó $BF\perp AC,$ tức là điểm $F$ cố định.

(b) Tứ giác $DKMB$ nội tiếp nên $\angle BMK=\angle KDB$. Ta suy ra
$$\angle NMX=\angle EDA.$$
Ta có $EQCN$ nội tiếp nên $$\angle QNC=\angle QEC, \text{ hay } \angle MNX=\angle AED.$$
Từ đó, ta suy ra $\triangle MNX\sim \triangle DEA.$ Gọi $G$ là chân đường cao từ $A$ đến $BC$ và $AG$ cắt $DE$ tại $P$. Khi đó $BC\perp AG$. Mà $BC\perp DM$ và $BC\perp EN$ nên
$$
AC \parallel DM \parallel EN.
$$

Do đó $\dfrac{DP}{PE}=\dfrac{MG}{GN}$. Mà $\triangle ADE\sim \triangle XMN$ nên $\angle XMN=\angle EPA.$ Mà $$\angle EPA=180^{\circ}-\angle PAC-\angle PEA$$ nên ta có
$$
\angle EPA=180^{\circ}-(90^{\circ}-\angle C)-B={\rm const}.
$$
Do đó $\angle XGN$ không đổi. Mà $G$ là điểm cố định nên $GX$ cố định. Như vậy $X$ di chuyển trên đường cố định.

 

Phương trình vô tỉ – Phương pháp đặt ẩn phụ

1. Phương pháp đặt ẩn phụ

Phương pháp đặt ẩn phụ sử dụng khi phương trình chứa một biểu thức lặp đi lặp lại nhiều lần, việc đặt ẩn phụ đưa phương trình về một phương trình đơn giản hơn, hoặc là đưa về dạng phương trình đã biết cách giải. Có rất nhiều dạng đặt ẩn phụ với nhiều dạng toán khác nhau, ở đây chúng tôi chỉ trình bày những dạng bài tập phù hợp nhất với chương trình trung học cơ sở, không đi sâu quá vào các ẩn phụ mẹo mực khác.

Chú ý. Khi đặt ẩn phụ thì nhớ đặt điều kiện cho ẩn phụ để giảm được các trường hợp cần xét.

Ví dụ 1: Giải phương trình $\sqrt{x^2-x+3}-\sqrt{-x^2+x+2}=1$.

Giải

Đặt $t=\sqrt{-x^2+x+2}, t \ge 0$. Khi đó $t^2=-x^2+x+2 \Leftrightarrow x^2-x+3=5-t^2.$

Phương trình trở thành

$ \sqrt{5-t^2}-t=1$

$\Leftrightarrow \sqrt{5-t^2}=t+1$

$\Leftrightarrow 5-t^2 = (t+1)^2$

$\Leftrightarrow t^2+t-2=0$

$\Leftrightarrow t=1 \ \text{hoặc} \ t=-2(l)$

$\Leftrightarrow \sqrt{-x^2+x+2}=1$

$\Leftrightarrow x^2-x-1=0$

$\Leftrightarrow x=\dfrac{1 \pm \sqrt{5}}{2}.$

Vậy phương trình có nghiệm $x=\dfrac{1 \pm \sqrt{5}}{2}.$

Ví dụ 2: Giải phương trình $2x^2-6x+7=5\sqrt{x^2-3x+5}$.

Giải

Đặt $t=\sqrt{x^2-3x+5}, t \ge 0$.

Khi đó phương trình trở thành

$2t^2-3=5t$

$\Leftrightarrow 2t^2-5t-3=0$

$\Leftrightarrow t=3 \ \text{hoặc}\   t=-\dfrac{1}{2}(l)$

$\Leftrightarrow \sqrt{x^2-3x+5}=3$

$\Leftrightarrow x^2-3x-4=0$

$\Leftrightarrow x=-1 \ \text{hoặc} \ x=4. $

Vậy phương trình có hai nghiệm $x=-1$ hoặc $x=4.$

Ví dụ 3: Giải phương trình $(x-1)^2+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=12$.

Giải

Điều kiện $\dfrac{x-3}{x+1} \ge 0 \Leftrightarrow x<-1$ hoặc $x \ge 3.$

Khi đó phương trình tương đương

$(x^2-2x-3)+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=8$

$\Leftrightarrow (x+1)(x-3)+2(x+1)\sqrt{\dfrac{x-3}{x+1}}=8.$

Đặt $t=(x+1) \sqrt{\dfrac{x-3}{x+1}} \Rightarrow t^2=(x+1)(x-3)$.

Khi đó phương trình trở thành $t^2+2t-8=0 \Leftrightarrow t=2 \ \text{hoặc} \ t=-4.$

Trường hợp $t=2 \Leftrightarrow (x+1)\sqrt{\dfrac{x-3}{x+1}}=2$

$\Leftrightarrow \begin{cases} x \ge -1\\ (x+1)(x-3) =4 \end{cases}$

$\Leftrightarrow \begin{cases} x \ge -1\\ x^2-2x-7=0 \end{cases}$

$\Leftrightarrow x=1+2\sqrt{2}.$

Trường hợp $t=-4 \Leftrightarrow (x+1)\sqrt{\dfrac{x-3}{x+1}}=-4$

$\Leftrightarrow \begin{cases} x \le -1\\ (x+1)(x-3) =16 \end{cases}$

$\Leftrightarrow \begin{cases} x \le -1\\ x^2-2x-19=0 \end{cases}$

$\Leftrightarrow x=1-2\sqrt{5}.$

Thử lại ta nhận $x=1+2\sqrt{2}$ và $x=1-2\sqrt{5}$ là hai nghiệm của phương trình.

Trên đây là các phương trình mà ta thấy rõ được biểu thức $f(x)$ lặp đi lặp lại, trong một số trường hợp khác $f(x)$ không xuất hiện một cách tường mình, mà phải thông qua một số biến đổi thì mới xuất hiện. Ta xem các ví dụ sau:

Ví du 4: Giải phương trình $x^2+3x\sqrt{x-\dfrac{4}{x}}=10x+4$.

Giải

Điều kiện $x-\dfrac{4}{x} \ge 0 \Leftrightarrow -2 \le x <0 $ hoặc $x \ge 2.$

Khi đó phương trình

$x^2+3x\sqrt{x-\dfrac{4}{x}}=10x+4$

$\Leftrightarrow x+3\sqrt{x-\dfrac{4}{x}}=10+\dfrac{4}{x}$

$\Leftrightarrow x-\dfrac{4}{x}+3\sqrt{x-\dfrac{4}{x}}-10=0.$

Đặt $t=\sqrt{x-\dfrac{4}{x}}, t \ge 0$. Phương trình trở thành:

$ t^2+3t-10=0$

$\Leftrightarrow t=2 \ \text{hoặc} \ t=-5(l)$

$\Leftrightarrow \sqrt{x-\dfrac{4}{x}}=2$

$\Leftrightarrow x-\dfrac{4}{x}=4$

$\Leftrightarrow x^2-4x-4=0$

$\Leftrightarrow x=2\pm 2\sqrt{2}.$

So sánh với điều kiện ta được phương trình có hai nghiệm $x=2 \pm 2\sqrt{2}.$

Ví dụ 5: Giải phương trình $\sqrt{1+x}+2\sqrt{1-x}=3\sqrt[4]{1-x^2}$

Giải

Điều kiện $-1 \le x \le 1.$

Dễ thấy $x=1$ không là nghiệm của phương trình. Xét $x \ne 1.$

Khi đó phương trình tương đương $\sqrt{\dfrac{1+x}{1-x}}+2=3\sqrt[4]{\dfrac{1+x}{1-x}}.$

Đặt $t=\sqrt[4]{\dfrac{1+x}{1-x}}$, phương trình trở thành

$t^2-3t+2=0$

$\Leftrightarrow t=1 \ \text{hoặc} \ t=2.$

  • Trường hợp $t=1 \Leftrightarrow \sqrt[4]{\dfrac{1+x}{1-x}}=1 \Leftrightarrow \dfrac{1+x}{1-x}=1 \Leftrightarrow x=0.$
  • Trường hợp $t=2  \Leftrightarrow \sqrt[4]{\dfrac{1+x}{1-x}}=2 \Leftrightarrow \dfrac{1+x}{1-x}=16  \Leftrightarrow x=\dfrac{15}{17}.$

Vậy phương trình có nghiệm $x=0$ hoặc $x=\dfrac{15}{17}.$

Trong một số trường hợp phức tạp hơn, ta đặt ẩn phụ một biểu thức, và tính các biểu thức còn lại theo ẩn phụ. Ta xem ví dụ sau:

Ví dụ 6: Giải phương trình $\sqrt{11-x}+\sqrt{x+2}+2\sqrt{22+9x-x^2}=17$.

Giải

Điều kiện $-2 \le x \le 11.$

Đặt $t=\sqrt{11-x}+\sqrt{x+2}, t \ge 0$. Khi đó

$t^2=13+2\sqrt{(11-x)(x+2)}$

$\Rightarrow 2\sqrt{22+9x-x^2}=t^2-13.$

Phương trình trở thành

$t+t^2-13=17$

$\Leftrightarrow t^2+t-30=0$

$\Leftrightarrow t=5 \ \text{hoặc} \ t=-6(l).$

$\Leftrightarrow \sqrt{11-x}+\sqrt{x+2}=5$

$\Leftrightarrow \sqrt{22+9x-x^2}=6$

$\Leftrightarrow x^2-9x+14=0$

$\Leftrightarrow x=2 \ \text{hoặc} \ x=7.$

Vậy phương trình có nghiệm $x=2$ hoặc $x=7.$

Sau đây là cách đặt ẩn phụ để đưa phương trình thành một phương trình hai ẩn, từ đó giải ẩn này theo ẩn kia để thiết lập một phương trình đơn giản hơn phương trình đã cho.

Ví dụ 7: Giải phương trình $x^2+16x-16=(2x+1)\sqrt{3x^2+4}$.

Giải

Ta có $x^2+16x-16=(2x+1)\sqrt{3x^2+4}$

$\Leftrightarrow 4(2x+1)^2-5(3x^2+4)=(2x+1)\sqrt{3x^2+4}$

Đặt $\begin{cases} a=2x+1&\\ b=\sqrt{3x^2+4}, b \ge 2. \end{cases}$

Phương trình trở thành

$4a^2-5b^2=ab$

$\Leftrightarrow 4a^2-ab-5b^2=0$

$\Leftrightarrow a=-b \ \text{hoặc} \ a=\dfrac{5}{4}b.$

  • Trường hợp $a=-b$ ta có:

$ \sqrt{3x^2+4}=-(2x+1)$

$\Leftrightarrow \begin{cases} x \le -\dfrac{1}{2}&\\ x^2+4x-3=0 \end{cases}$

$\Leftrightarrow x=-2-\sqrt{7}$

  • Trường hợp $a=\dfrac{5}{4}b$ ta có:

$5\sqrt{3x^2+4}=4(2x+1)$

$\Leftrightarrow \begin{cases} x \ge -\dfrac{1}{2}&\\ 11x^2-64x+84=0 \end{cases}$

$\Leftrightarrow x=\dfrac{42}{11} \ \text{hoặc} \ x=2.$

Vậy phương trình có các nghiệm $x=-2-\sqrt{7}, x=\dfrac{42}{11}$ hoặc $x=2.$

Ví dụ 8: Giải phương trình $\sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{x^2+4x+5}$.

Giải

Ta có  $\sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{x^2+4x+5}$

$\Leftrightarrow \sqrt{x^2+1}+2\sqrt{x^2+2x+3}=3\sqrt{-(x^2+1)+2(x^2+2x+3)}.$

Đặt $\begin{cases} a=\sqrt{x^2+1}, a \ge 1&\\ b=\sqrt{x^2+2x+3}, b \ge \sqrt{2}. \end{cases}$.

Phương trình trở thành:

$a+2b=3\sqrt{-a^2+2b^2}$

$\Leftrightarrow (a+2b)^2=9(-a^2+2b^2)$

$\Leftrightarrow 5a^2+2ab-7b^2=0$

$\Leftrightarrow (a-b)(5a+7b)=0$

$\Leftrightarrow a=b$.

Khi đó ta có

$\sqrt{x^2+1}=\sqrt{x^2+2x+3}$

$\Leftrightarrow x^2+1=x^2+2x+3$

$\Leftrightarrow x=-1$.$

Vậy nghiệm của phương trình là $x=-1.$

Ví dụ 9: Giải phương trình $\sqrt{1+x}-2\sqrt{1-x}-3\sqrt{1-x^2}=x-3$.

Giải

Điều kiện $-1 \le x \le 1$.

Đặt $\begin{cases} a=\sqrt{x+1}, a \ge 1&\\b=\sqrt{1-x}, b \ge 0 \end{cases}$.

Khi đó $x-3=-a^2-2b^2$ và phương trình trở thành

$a-2b-3ab=-a^2-2b^2$

$\Leftrightarrow (a^2-3ab+2b^2)+(a-2b)=0$

$\Leftrightarrow (a-2b)(a-b)+(a-2b)=0$

$\Leftrightarrow (a-2b)(a-b+1)=0$

$\Leftrightarrow a=2b \ \text{hoặc} \ b=a+1.$

  • Trường hợp $a=2b$ ta có:

$\sqrt{1+x}=2\sqrt{1-x}$

$\Leftrightarrow \begin{cases} -1 \le x \le 1&\\ 1+x=4(1-x) \end{cases}$

$\Leftrightarrow x=\dfrac{3}{5}.$

  • Trường hợp $b=a+1$ ta có:

$ \sqrt{1-x}=\sqrt{1+x}+1$

$\Leftrightarrow 1-x=x+2+2\sqrt{1+x}$

$\Leftrightarrow 2\sqrt{1+x}=-2x-1$

$\Leftrightarrow \begin{cases} -1 \le x \le -\dfrac{1}{2}&\\ 4(1+x)=(2x+1)^2 \end{cases}$

$\Leftrightarrow \begin{cases} -1 \le x \le \dfrac{1}{2}&\\ x^2=\dfrac{3}{4} \end{cases}$

$\Leftrightarrow x=-\dfrac{\sqrt{3}}{2}.$

Vậy phương trình có hai nghiệm $x=\dfrac{3}{5}$ hoặc $x=-\dfrac{\sqrt{3}}{2}.$

Ví dụ 10: Giải phươg trình $x^2+5x-3=2(2x+3)\sqrt{x-1}$.

Giải

Điều kiện $x \ge 1.$

Khi đó $x^2+5x-3=2(2x+3)\sqrt{x-1}$

$\Leftrightarrow 3(x-1)-2(2x+3)\sqrt{x-1}+x^2+2x=0$

Đặt $t=\sqrt{x-1}, t \ge 0$. Ta được $3t^2-2(2x+3)t+x^2+2x=0.$

Đặt $\Delta’=(2x+3)^2-3(x^2+2x)=(x+3)^2.$

Do đó phương trình trên có hai nghiệm $t=x+2$ hoặc $t=\dfrac{x}{3}$.

  • Trường hợp $t=x+2$

$\Leftrightarrow \sqrt{x-1}=x+2$

$\Leftrightarrow \begin{cases} x \ge 1&\\ x^2+3x+5=0 \end{cases} \ \text{(vô nghiệm)}.$

  • Trường hợp $t=\dfrac{x}{3}$

$\Leftrightarrow 3\sqrt{x-1}=x$

$\Leftrightarrow \begin{cases} x \ge 1&\\ x^2-9x+9=0 \end{cases}$

$\Leftrightarrow x=\dfrac{9 \pm 3\sqrt{5}}{2}.$

Vậy phương trình có nghiệm $x=\dfrac{9 \pm 3\sqrt{5}}{3}.$

Ngoài ra còn có cách đặt ẩn phụ đưa về hệ phương trình, ta xét ví dụ sau:

Ví dụ 11: Giải phương trình: $\sqrt[3]{7+x} – \sqrt{2-x}=1$

Giải

Phương trình có nhiều dấu căn bậc khác nhau, và biểu thức trong căn lại có mối liên hệ khá rõ ràng.

Ta đặt $u = \sqrt[3]{7+x}, v = \sqrt{2-x}$ ta có hệ $\left\{ \begin{array}{l} u – v = 1\\ u^3 + v^2 = 9 \end{array} \right. $.

Sử dụng phương pháp thế ta có $\left\{ \begin{array}{l} v = u-1\\ u^3 + (u-1)^2 – 9 = 0 \end{array}\right.  \Leftrightarrow \left\{ \begin{array}{l} v=u-1\\ u^3+u^2-2u-8 = 0 \end{array}\right.  \Leftrightarrow \left\{ \begin{array}{l} u = 2\\ v = 1\end{array}\right. $.

Từ đó giải ra $x = 1$ là nghiệm.

2. Bài tập rèn luyện

Bài 1: Giải các phương trình sau

a) $\sqrt{2x^2-4x+8} + \sqrt{2x^2-4x+3} = 5$

b) $(x+5)(2-x)=3 \sqrt{x^2+3x}$

c) $(x+4)(x+1)-3\sqrt{x^2+5x+2}=6$

d) $4x^2+10x+9=5\sqrt{2x^2+5x+3}$

Bài 2: Giải các phương trình sau:

a) $1+\dfrac{2}{3} \sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}$

b) $\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16$

c) $\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}$

d)$\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16$.

Bài 3: Giải các phương trình sau

a) $\sqrt{3x^2-2x+15}+\sqrt{3x^2-2x+8}=7$

b) $\dfrac{4x-1}{\sqrt{4x-3}}+\dfrac{11-2x}{\sqrt{5-x}}=\dfrac{15}{2}$

c) $\dfrac{3-x}{\sqrt{13-6x}}+\dfrac{3+x}{\sqrt{13+6x}}=2$

Bài 4: Giải các phương trình sau:

a) $2x^2+5x-1=7 \sqrt{x^3-1}$

b) $2(x^2+2)=5 \sqrt{x^3+1}$

c) $\sqrt{5x^2+14x+9}-\sqrt{x^2-x+20}=5 \sqrt{x+1}$

d) $(x^2-6x+11) \sqrt{x^2-x+1}=2(x^2-4x+7) \sqrt{x-2}$

Bài 5: Giải các phương trình sau:

a) $2 \sqrt{\dfrac{3x-1}{x}}=\dfrac{x}{3x-1}+1$

b) $(x+5)(2-x)=3 \sqrt{x^2+3x}$

c) $2(1-x)\sqrt{x^2+2x-1}=x^2-2x-1$

d) $(x+4)(x+1)-3 \sqrt{x^2+5x+6}+4=0$

e) $(x-1)(x+2)+2(x-1) \sqrt{\dfrac{x+2}{x-1}}=8$

f) $\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2$.

Đáp án kì thi chọn đội dự tuyển PTNK năm học 2019 – 2020

Đề bài

Bài 1. Tìm giá trị nhỏ nhất của biểu thức
$$ P=\dfrac{a^4+b^4+2}{\left(a^2-a+1\right)\left(b^2-b+1\right)}, \text{ với } a,b \in \mathbb{R}. $$

Bài 2. Cho $\mathbb{Q^+}$ là tập hợp số hữu tỉ dương. Tìm tất cả các hàm $f:\mathbb{Q^+} \to \mathbb{Q^+}$ thỏa mãn
$$ f\left( {{x^2}f{{\left( y \right)}^2}} \right) = f{\left( x \right)^2}f\left( y \right), \text{ với mọi } x,y \in \mathbb{Q^+}. $$

Bài 3. Cho $x_1$, $x_2$, $x_3$, \dots là dãy số nguyên thỏa mãn đồng thời hai điều kiện
$$ 1=x_1<x_2<x_3 \dots \text{ và } x_{n+1}\leq 2n \text{ với } n=1,2,3 \dots $$
Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$

Bài 4. Cho tam giác $ABC$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $AB$ sao cho $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}.$ Đường tròn tâm $M$ bán kính $MB$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $AD$ cắt $AC$ tại $N$. Chứng minh rằng $\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}$.

Giải

Lời giải của nhóm các bạn NGUYỄN TĂNG VU, LÊ PHÚC LỮ, NGUYỄN TIẾN HOÀNG

Bài 1. 

Với mọi $x \in \mathbb{R}$, ta có
\[{x^4} + 1 – \frac{2}{9}{\left( {{x^2} – x + 1} \right)^2} = \frac{1}{9}{\left( {x + 1} \right)^2}\left( {7{x^2} – 10x + 7} \right) \geq 0. \] Vì thế nên ta có
\[ P \ge \frac{2}{9}\frac{{{{\left( {{a^2} – a + 1} \right)}^2} + {{\left( {{b^2} – b + 1} \right)}^2}}}{{\left( {{a^2} – a + 1} \right)\left( {{b^2} – b + 1} \right)}} = \frac{2}{9}\left( {\frac{{{a^2} – a + 1}}{{{b^2} – b + 1}} + \frac{{{b^2} – b + 1}}{{{a^2} – a + 1}}} \right) \ge \frac{4}{9}. \] Suy ra giá trị nhỏ nhất của $P$ là $\dfrac{4}{9}$, đạt được khi $a=b=-1.$

Bài 2.

Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán.
Đặt $f(1)=a>0$, trong phương trình đề cho, thay $x=y=1$ ta có $f(a^2)=a^3$. \medskip

Từ đó, tiếp tục lần lượt thay $x$ bởi $a^2$, $y$ bởi $1$ và $x$ bởi $1$, $y$ bởi $c^2$ vào phương trình ấy, ta thu được
\[ a^7 = f(a^6) = a^5. \] Chú ý $a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi $1$ vào phương trình đề cho, ta có
\[ f\left( {f{{\left( y \right)}^2}} \right) = f\left( y \right), \text{ với mọi } y \in \mathbb{Q^+}. \] Lại thay $y$ bởi $1$ vào phương trình đề cho, ta có
\[ f{\left( x \right)^2} = f\left( {{x^2}} \right), \text{ với mọi } x \in \mathbb{Q^+}. \] Suy ra
\[ f\left( x \right) = f\left( {f{{\left( x \right)}^2}} \right) = f{\left( {f\left( x \right)} \right)^2} = \ldots = {f^{n + 1}}{\left( x \right)^{{2^n}}}, \text{ với mọi } x \in \mathbb{Q^+}, \] trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q^+}$ sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_p(f(q)) \ne 0$ thì ta có
\[ {v_p}\left( {f\left( q \right)} \right) = {v_p}\left( {{f^{n + 1}}{{\left( q \right)}^{{2^n}}}} \right) = {2^n}{v_p}\left( {{f^{n + 1}}\left( q \right)} \right) \ne 0. \] Trong đẳng thức trên, cho $n \to + \infty$ ta thấy điều vô lý. Suy ra $v_p(f(q)) = 0$ với mọi $q \in \mathbb{Q^+}$, $p \in \mathbb{P}$, hay $f(x) \equiv 1.$ \medskip

Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.
\end{giai}

Bài 3. 

Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_1$, $x_2$, \dots, $x_{k+1}$. Ta có $x_1=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_q \leq k$ thì ta có $q<k+1$ và
\[ 1 \leq x_1 < x_1 < \dots < x_q \leq k < x_{q+1}<\dots<x_{k+1}<2k. \]

Nếu tồn tại $1 \leq j < i \leq k+1 $ sao cho $x_i – x_j = k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số $$x_1+k,x_2+k, \dots x_q+k, x_{q+1}, \dots, x_{k+1}$$ là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2k$, vô lí! \medskip

Từ đó suy ra với mọi $k$ nguyên dương,luôn tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$

Bài 4. 

Ta có $OB=OD$, $MB=MD$ nên dễ thấy $OM$ là phân giác ngoài của góc $AMD$, mà $OA=OD$ nên suy ra $O \in \left(AMD\right).$

Gọi $N’$ là giao điểm khác $A$ của $\left(AMD\right)$ và $AC$. Ta chứng minh $N$ trùng $N’$. \medskip

Thật vậy, ta có $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}$ nên $\angle{AMO}$ tù, do đó nếu $N’$ nằm ngoài tia $AC$ thì $N’$ nằm khác phía $O$ so với $AM$ nên $$\angle{AMO}=\angle{AN’O}=\angle{CAO}-\angle{AON’}<\angle{CAO}<90^\circ,$$ vô lý. Suy ra $N’$ nằm trên tia $AC$, kéo theo $AO$ là phân giác trong góc $MAN’$ nên $OM=ON’$, mà $OA=OD$ nên $MN’$ song song $AD$, suy ra $N$ trùng $N’$. \medskip

Từ đó, dễ thấy $AMND$ là hình thang cân nên $AN=MD=MB$, hơn nữa $N$ nằm trên tia $AC$ nên ta thu được $$\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}.$$ Ta có điều cần chứng minh.

 

Góc trong đường tròn (tt)

 

 

 

 

 

 

 

 

Ví dụ 1.
Tính số đo góc $\angle BAC$ và $\angle BDC$ như hình vẽ.

Giải
  •  Ta có $\angle BAC = \dfrac{1}{2} \angle BOC = 60^\circ$.
  • Và $\angle BDC 180^\circ – \angle BAC = 180^\circ – 60^\circ = 120^\circ$.

Ví dụ 2.
Trên đường tròn $(O;R)$ lấy các điểm $A, B$ sao cho $\text{sđ} \arc{AB} = 120^\circ$ và $C$ thuộc cung nhỏ cung ${AB}$ và $\text{sđ} \text{cung}{AC} = 30^\circ$.
a) Tính số đo cung $BC$.
b) Tính độ dài $AB, BC$ theo $R$.

Giải
  • Nếu $C$ thuộc cung nhỏ $AB$ thì $\text{sđ} \arc{AB} = \text{sđ} \arc{AC}+\text{sđ} \arc{CB}$, suy ra $\text{sđ} \arc{BC} = 120^\circ – 30^\circ = 90^\circ$.
    Gọi $\arc{AmB}$ là cung lớn $AB$. Suy ra $\text{sđ} \arc{AmB} = 240^\circ$.
  • Gọi $M$ là trung điểm $AB$ ta có $OM \bot AB$ và $OM$ là phân giác $\angle AOB$.\\
    $\angle AOB = \text{sđ} \arc{AOB} = 120^\circ$, suy ra $\angle AOM = 60^\circ$. Suy ra $AM = OA.\sin AOM = \dfrac{R\sqrt{3}}{2}$. Do đó $AB = 2AM = R\sqrt{3}$.
  • Tam giác $OBC$ vuông cân tại O nên $BC=\sqrt{OB^2+OC^2} = R\sqrt{2}$.

Ví dụ 3. Cho tam giác ABC nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Chứng minh $DB = DC$ và $OD \bot BC$.

Giải


Ta có $\text{sđ} \text{cung} {DB} = 2\angle DAB$, $\text{sđ} \text{cung} {DC} = 2\angle DAC$. Mà $\angle DAB = \angle DAC$(gt) nên $\text{sđ} {DB}= \text{sđ} {CD}$, suy ra $DB = DC$. \\
Ta có $OB = OC, DB = DC$ nên $OD$ là trung trực của $BC$, do đó $OD \bot BC$.

Ví dụ 4. Cho đường tròn tâm $O$ đường kính $AB$. Hai điểm $C, D$ khác phía đối với $AB$ sao cho $\angle CAB = 60^\circ, \angle DAB = 45^\circ$.
a) Tính $\angle ACB, \angle ADB$.
b) Tính $\angle DCB$ và $\angle CDB$.
c) Tính $\angle COD$.

Giải

a) Ta có $\angle ACB = 90^\circ$ (góc nội tiếp nửa đường tròn)\\
$\angle ADB = 90^\circ$ (góc nội tiếp nửa đường tròn).
b) Ta có $\angle DCB = \angle DAB$ (góc nội tiếp cùng chắn cung DB), mà $\angle DAB = 60^\circ$ nên $\angle DCB = 60^\circ$.\\
Ta có $\angle ADC = \angle ABC$(góc nội tiếp cùng chắc cung AC).\\
Mà $\angle ABC = 90^\circ – \angle CAB = 45^\circ$, nên $\angle ADC =45^\circ$.
b) Ta có $\angle ABD = 90^\circ – \angle DAB = 30^\circ$, suy ra $\angle CBD = \angle ABC + \angle ABD = 75^\circ$.\\
Khi đó $\angle COD = 2\angle CBD = 150^\circ$.

Ví dụ 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $\angle A = 60^\circ, \angle B = 75^\circ$. Tiếp tuyến tại $A$ cắt $BC$ tại $D$.
a) Tính $\angle DAB$.
b) Phân giác góc $BAC$ cắt $BC$ tại $E$. Chứng minh tam giác $DAE$ cân.
c) Chứng minh $DA^2 = DB\cdot DC$.

Giải

a) Ta có $\angle ACB = 180^\circ – \angle ABC – \angle BAC = 45^\circ$. \\
Suy ra $\angle DAB = \angle ACB$ (góc giữa tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung đó). Suy ra $\angle DAB = 45^\circ$.
b) Ta có $\angle DEA = \angle ACB + \angle EAC = 45^\circ + 30^\circ = 75^\circ$.\\
Và $\angle DAE = \angle DAB + \angle BAE = 75^\circ$.\\
Do đó $\angle DAE = \angle DEA$, suy ra tam giác $DAE$ cân tại $D$.
c)  Xét tam giác $DAB$ và tam giác $DCA$ có $\angle DAB$ chung và $\angle DAB = \angle DCA$, suy ra $\triangle DAB \backsim \triangle DCA \Rightarrow \dfrac{DA}{DC} = \dfrac{DB}{DA} \Rightarrow DB\cdot DC = DA^2$.

Bài tập rèn luyện

Bài 1. Hai tiếp tuyến của đường tròn $(O)$ tại $A$ và $B$ cắt nhau tại điểm $M$. Biết $\angle AMB = 60^\circ$.
a) Tính số đo góc ở tâm tạo bởi hai bán kính $OA, OB$.
b) Tính số đo mỗi cung $AB$ (cung lớn và cung nhỏ).

Bài 2. Cho tứ giác $ABCE$ nội tiếp đường tròn $(O)$. $BE$ và $AC$ cắt nhau tại $I$. Cho $\angle ABE = 40^\circ, \angle BAE = 100^o$.

a)Tính $\angle AOE$ và $\angle OAE$.
b)Tính $\angle ACE$.
c) Tính $\angle BCE$.
d) Chứng minh $IA\cdot IC = IB\cdot IE$.

Bài 3. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ bán kính $R$, thỏa $\widehat {BAC} = {75^0},\widehat {ACB} = {45^0}$.
a) Tính $\widehat {AOB}$ và $AB$.
b) Tính $AC$.
c) Tính diện tích tam giác $ABC$.

Bài 4. Cho tam giác $ABC$ có $\angle BAC = 60^\circ$ nội tiếp đường tròn tâm $O$ bán kính $R$. Vẽ đường kính $BD$.
a) Tính các góc của tam giác $BCD$.
b) Tính $BC$ theo $R$.
c) Gọi $H$ là trực tâm tam giác $ABC$. Chứng minh $AH = R$.

Bài 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $D$ là điểm
chính giữa cung $AC$ không chứa $B$. Ta kẻ dây $DE$ song
song với cạnh $AB$, cắt $BC$ tại $I$. Chứng tỏ các tam giác
$ICE$ và $IBD$ cân.

Đề thi HK1 môn toán lớp 10 (không chuyên) trường Phổ Thông Năng Khiếu năm học 2020-2021

Bài 1. (2 điểm). Giải các phương trình:

a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0$

b) $x\sqrt {{x^2} – x + 3} = x\left( {x – 6} \right)$

Bài 2 (1 điểm). Tìm $m$ để phương trình $\dfrac{1}{x} + \dfrac{{m + x}}{{x – 1}} = 1$ có nghiệm duy nhất.

Bài 3 (1 điểm). Chứng minh $\left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] = \dfrac{1}{{1 + \cos x}}$

Bài 4 (1 điểm). Cho hệ phương trình $\left\{ \begin{array}{l} mx – \left( {m + 1} \right)y = 1\\ \left( {2 – m} \right)x + \left( {m – 3} \right)y = 3 – 2m \end{array} \right.$ ($m$ là tham số).

a) Tìm $m$ để hệ có nghiệm duy nhất $\left( x_0; y_0 \right) $.

b) Chứng minh $x_0^2 – y_0^2 – 2{x_0} = – 1$

Bài 5 (1 điểm). Gọi $(P)$ là đồ thị của hàm số $y = {x^2} + 2x – m$. Biết $(P)$ cắt trục tung tại điểm có tung độ là $4$. Tìm $m$ và tọa độ đỉnh của $(P)$.

Bài 6 (2 điểm). Cho hình bình hành ABCD có $AD = a$, $AB = 2a$ và $\widehat {DAB} = 120^\circ $.

a) Tính $\overrightarrow{DA} \cdot \overrightarrow{AB}$. Chứng minh $AB^2 – AD^2 = \overrightarrow {AC} \cdot \overrightarrow {DB} $

b) Gọi $H$ là hình chiếu vuông góc của $A$ trên $DB$. Tính $\overrightarrow{DH} \cdot \overrightarrow{DA}$.

Bài 7 (2 điểm). Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;6)$, $B(6;5)$, $C(6;1)$.

a) Tìm tọa độ $M$ sao cho $\overrightarrow {CM} = \overrightarrow {CA} – \overrightarrow {CB} $

b) Đường tròn ngoại tiếp tam giác $ABC$ cắt trục tung tại hai điểm phân biệt $E$, $F$. Tìm tọa độ tâm đường tròn ngoại tiếp tam giác $ABC$. Tìm toạ độ $E$ và $F$.

Giải

Bài 1.

a) $\dfrac{{{x^4} – 10{x^2} + 9}}{{\sqrt {x – 2} }} = 0 \quad (1) $

Điều kiện: $x>2$

$(1) \Leftrightarrow {x^4} – 10{x^2} + 9 =0 \Leftrightarrow \left[ \begin{array}{l} x=1 \quad (l) \\ x=-1 \quad (l) \\ x=3 \quad (n) \\ x=-3 \quad (l) \end{array} \right. $

Vậy $S=\left\{ 3 \right\} $

b) $x\sqrt{x^2-x+3} = x(x-6)$ (NX: $x^2 -x+3 >0$, $\forall x\in \mathbb{R}$)

$\Leftrightarrow \left[ \begin{array}{l} x=0\\ \sqrt{x^2 -x +3 } = x-6 \ (*) \end{array}\right. $

$(*)\Leftrightarrow \left\{ \begin{array}{l} x-6\ge 0\\ x^2 -x +3 = (x-6)^2 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l}  x\ge 6\\ x=3\end{array}\right. $

$\Leftrightarrow x\in \emptyset$

Vậy $S=\left\{ 0\right\} $

Bài 2. ĐKXĐ: $x\ne 0$, $x\ne 1$

Phương trình trở thành: $(m+2)x=1$

Phương trình có nghiệm duy nhất khi và chỉ khi $\left\{ \begin{array}{l} m+2\ne 0\\\\ \dfrac{1}{m+2}\ne 0\\\\ \dfrac{1}{m+2}\ne 1 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} m\ne -2\\ m\ne -1 \end{array}\right. $

Vậy $m\ne -2$ và $m\ne -1$ thì phương trình có nghiệm duy nhất $x=\dfrac{1}{m+2}$

Bài 3.

$VT= \left[ {\cos 2\pi – \cos \left( {2\pi + x} \right)} \right]\left[ {1 + {{\tan }^2}\left( {\dfrac{\pi }{2} – x} \right)} \right] $

$= (1-\cos x) (1+\cot^2 x)$

$ = (1-\cos x) \cdot \dfrac{1}{\sin^2 x}$

$= (1-\cos x )\cdot \dfrac{1}{1-\cos^2 x}$

$=\dfrac{1}{1+\cos x}=VP$

Bài 4.

a) Ta có: $D=\left| \begin{array}{*{20}{c}} {m}&{-(m+1)}\\ {2-m}&{m-3} \end{array}\right| = 2(1-m)$

$D_x = \left| \begin{array}{*{20}{c}} {1} & {-(m+1)}\\ {3-2m} & {m-3} \end{array}\right| = 2m(1-m)$

$D_y=\left| \begin{array}{*{20}{c}} {m} & {1}\\ {2-m} & {3-2m} \end{array}\right| = -2(m-1)^2$

Hệ phương trình có nghiệm duy nhất khi và chỉ khi $D\ne 0 \Leftrightarrow m\ne 1$

b) Ta có: $\left\{ \begin{array}{l} x_0 = \dfrac{D_x}{D} = m\\\\ y_0= \dfrac{D_y}{D} = m-1 \end{array}\right. $

Ta có: $x_0^2 – y_0^2 -2x_0 = m^2 – (m-1)^2 -2m =-1$

Bài 5. Thay $M(0;4)$ vào $(P)$, ta có: $4=-m \Leftrightarrow m=-4$

Tọa độ đỉnh $I( -1;3)$

 

Bài 6.

a) Ta có: $\overrightarrow{DA} \cdot \overrightarrow{AB} = -\overrightarrow{AD} \cdot \overrightarrow{AB} = – AD \cdot AB \cdot \cos 120^\circ = a^2$

Ta có: $AB^2 – AD^2 = \left( \overrightarrow{AB}\right) ^2 – \left( \overrightarrow{ AD}\right) ^2 $

$= \left( \overrightarrow{AB} – \overrightarrow{AD}\right) \left( \overrightarrow{AB} + \overrightarrow{AD} \right) = \overrightarrow{DB} \cdot \overrightarrow{AC}$

b) Đặt $\overrightarrow{DH} =x\overrightarrow{DB}$

Ta có: $\overrightarrow{AH} = x\overrightarrow{AB} + (1-x)\overrightarrow{AD}$

Ta có: $\overrightarrow{AH} \cdot \overrightarrow{BD} = 0$

$\Leftrightarrow \left( x\overrightarrow{AB} + (1-x)\overrightarrow{AD}\right) \cdot \left( \overrightarrow{AD} – \overrightarrow{AB}\right) =0$

$\Leftrightarrow x (-a^2) -4xa^2 + (1-x)a^2 -(1-x)(-a^2) =0$

$\Leftrightarrow x=\dfrac{2}{7}$

Ta có: $\overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DB}$

$\Rightarrow \overrightarrow{DA} \cdot \overrightarrow{DH} = \dfrac{2}{7} \overrightarrow{DA} \cdot \overrightarrow{DB}$

$=\dfrac{2}{7} \overrightarrow{DA} \left( \overrightarrow{DA} + \overrightarrow{AB}\right) $

$=\dfrac{2}{7} \left( DA^2 + \overrightarrow{DA} \cdot \overrightarrow{AB}\right) $

$=\dfrac{4}{7}a^2$

 

Bài 7.

a) Gọi $M(x;y)$

Ta có: $\overrightarrow{CM} = \overrightarrow{CA} – \overrightarrow {CB}$

$\Leftrightarrow \overrightarrow{CM} = \overrightarrow{BA}$

$\Leftrightarrow \left\{ \begin{array}{l} x-6 = -5\\ y-1=1 \end{array}\right. $

$\Leftrightarrow \left\{ \begin{array}{l} x=1\\ y=2 \end{array}\right. $

Vậy $M(1;2)$

b) Gọi $I(x_I;y_I)$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Ta có: $\left\{ \begin{array}{l} IA = IB\\ IA = IC \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} 5x_I -y_I =12\\ (5-y_I)^2 = (1-y_I)^2 \end{array}\right. $

$\Rightarrow \left\{ \begin{array}{l} x_I=3\\ y_I=3 \end{array}\right. $

Gọi $E(0;y_E)\in Oy$.

Ta có: $IA = IE \Rightarrow (3-y_E)^2 =4 \Rightarrow \left[ \begin{array}{l} y_E =1\\ y_E =5 \end{array}\right. $

Vậy $E(0;1)$, $F(0;5)$ hoặc ngược lại.

Đề thi HK1 môn toán lớp 11 (không chuyên) trường Phổ Thông Năng Khiếu năm học 2020-2021

Bài 1 (2 điểm). Giải các phương trình sau:

a) $\cos 2x – 6\sin x + 7=0$

b) $1+\tan x = 2\sqrt{2} \sin x$.

Bài 2 (2 điểm).

a) Có bao nhiêu cách sắp xếp một đội kéo co có $10$ học sinh gồm $5$ học sinh nam và $5$ học sinh nữ trong đó có $3$ bạn nữ Lan, Mai, Hồng sao cho bạn Mai luôn đứng giữa hai bạn Lan và Hồng?

b) Gọi $X$ là tập hợp các số tự nhiên có $5$ chữ số khác nhau được lập từ các chữ số $0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$. Lấy ngẫu nhiên một phần tử từ tập $X$. Tính xác suất chọn được số chẵn?

Bài 3 (1 điểm).

a) Biết tập $A$ có đúng $128$ tập con. Hỏi $A$ có bao nhiêu tập con có $3$ phần tử?

b) Tìm số hạng chứa $x^8$ trong khai triển của $\left( x+ \dfrac{1}{x^3}\right) ^{24}$

Bài 4 (1 điểm). Tam giác $ABC$ có số đo các góc $\angle BAC$, $\angle CBA$, $\angle ACB$ theo thứ tự lập thành một cấp số cộng và $\cos \left( \angle CBA + \angle ACB\right) =-\dfrac{\sqrt{3}}{2}$. Tính số đo góc $\angle CBA$ và $\sin \angle BAC$.

Bài 5 (1 điểm). Trong mặt phẳng $Oxy$, cho đường tròn $(C)$ có tâm $I(2;3)$, bán kính $R=1$ và các điểm $K(-1;2)$, $H(-3;1)$. Gọi $(C’)$ là ảnh của đường tròn $(C)$ qua phép đối xứng tâm $K$. Điểm $H$ thuộc đường tròn $(C’)$ không? Vì sao?

Bài 6 (3 điểm). Cho hình chóp $S.ABCD$ có $O$ là tâm hình bình hành $ABCD$. Gọi $G$, $I$ lần lượt là trọng tâm của tam giác $SCD$, tam giác $ACD$ và $H$ là trung điểm $CD$.

a) Tìm giao tuyến của $(SAH)$ và $(SBD)$. Tìm giao điểm $K$ của $AG$ và $(SBD)$.

b) Chứng minh $GI//(SAB)$ và $OH//d$ với $d$ là giao tuyến của $(SAD)$ và $(SBC)$.

c) Mặt phẳng $(P)$ chứa $SB$ và song song với $DG$, $(P)$ cắt $CD$ tại $E$. Tính $\dfrac{DE}{CE}$.

 

Giải

Bài 1 (2 điểm).

a) $\cos 2x – 6\sin x +7 =0$

$\Leftrightarrow 1-2\sin^2 x -6\sin x +7=0$

$\Leftrightarrow \sin^2 x + 3\sin x -4 =0$

$\Leftrightarrow \left[ \begin{array}{l} \sin x = 1\\ \sin x =-4 \text{ (loại) } \end{array} \right. $

$\Leftrightarrow x= \dfrac{\pi}{2} + 2k\pi$ ($k\in \mathbb{Z}$)

Vậy $S=\left\{ \dfrac{\pi}{2} + 2k\pi \ | \ k\in \mathbb{Z}\right\} $.

b) $1+ \tan x = 2\sqrt{2} \sin x$ (1)

ĐKXĐ: $x\ne \dfrac{\pi}{2} + k\pi$

$(1) \Leftrightarrow \sin x + \cos x = \sqrt{2} \sin 2x$

$\Leftrightarrow \sin \left( x+ \dfrac{\pi}{4}\right) = \sin 2x$

$\Leftrightarrow \left[ \begin{array}{l} x+ \dfrac{\pi}{4} = 2x + 2k\pi\\ x+ \dfrac{\pi}{4} = \pi -2x + 2k\pi \end{array} \right. (k\in \mathbb{Z})$

$\Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi}{4} – 2k\pi\\ x= \dfrac{\pi}{4} + \dfrac{2k\pi}{3} \end{array} \right. (k\in \mathbb{Z}) $

$\Leftrightarrow x=\dfrac{\pi}{4} + \dfrac{2k\pi}{3} \text{ (nhận) }  (k\in \mathbb{Z})$

Vậy $S=\left\{ \dfrac{\pi}{4} + \dfrac{2k\pi}{3}\ | \ k\in \mathbb{Z}\right\} $

 

Bài 2 (2 điểm).

a) Số cách chọn vị trí cho Lan, Mai, Hồng là: $ 2!. C^{3}_{10}$

Số cách chọn vị trí còn lại là $ 7!$

Vậy số cách chọn thỏa mãn đề ra là: $ 2!. C^{3}_{10}. 7!$

b) Gọi $\overline{abcde}$ là số có 5 chữ số khác nhau từ $ 0;1;2;3;4;5;6;7$ cần lập.

Số các số có 5 chữ số khác nhau được lập từ các chữ số $ 0;1;2;3;4;5;6;7$ là : $A^{5}_{8} – A^{4}_{7}$

Đếm các chữ số chẵn:

$ e = 0 \Rightarrow$ có $A^{4}_{7}$ số.

$ e \neq 0 \Rightarrow e \in \left\lbrace 2;4;6 \right\rbrace $ khi đó có $ 3. ( A^{4} _{7} – A^{3}_{6})$ số.

Suy ra số các số chẵn là: $A^{4}_{7} + 3. ( A^{4} _{7} – A^{3}_{6})$

Xác suất để lấy được số chẵn là: $\dfrac{A^{4}_{7} + 3. ( A^{4} _{7} – A^{3}_{6})}{A^{5}_{8} – A^{4}_{7}} = \dfrac{25}{49}$

 

Bài 3 (1 điểm).

a) Gọi $n$ là số phần tử của $A$. Khi đó ta có số tập con của $A$ là $ 2^n = 128 \Rightarrow n =7$

Suy ra số tập con có ba phần tử của $A$ là $ C^{3} _{7} =35$

b) $ P (x) = ( x + \dfrac{1}{x^3})^{24} = \displaystyle \sum_{k =1}^ {24} C^{k}_{24} x^{k}(\dfrac{1}{x^3})^{24-k} = \displaystyle \sum_{k =1}^ {24} C^{k}_{24}. x^{4k -72}$

Khi đó ta có: $ 4k -72 =8 \Rightarrow k =20 $ ( nhận).

Vậy số hạng cần tìm là: $ C^{20}_{24}x^8$

 

Bài 4 (1 điểm).

  • Do số đo ba góc $ \widehat{BAC} , \widehat{CBA} , \widehat{ACB}$ theo thứ tự tạo thành cấp số cộng nên:

$\widehat{BAC} + \widehat{ACB} = 2 \widehat{CBA}$. (1)

Mặt khác ta lại có: $\widehat{BAC} + \widehat{CBA} + \widehat{ACB} =180^\circ$ (2)

Từ (1) và (2) ta có: $ \widehat{CBA} = 60^\circ$.

  •  $ \cos ( \widehat{ACB} + \widehat{CBA}) = \dfrac{-\sqrt{3}}{2} \Rightarrow \widehat{ACB} + \widehat{CBA} = 150^\circ $

Khi đó: $\widehat{ACB} = 90^\circ \Rightarrow \widehat{BAC} = 30^\circ $.

Vậy $\widehat{CBA}= 60^\circ $ và $ \sin \widehat{BAC} = \sin 30^\circ = \dfrac{1}{2}$

 

Bài 5 (1 điểm). $ Đ_{k}: ( I, R) \mapsto ( I’, R)$

Theo bài ra ta có: $ \left\lbrace \begin{array}{l} x_{I’} + x_{I} = 2 x_{K} \\ y_{I’} + y_{I} = 2y _{K} \end{array} \right. \Rightarrow \left\lbrace \begin{array}{l} x_{I’} = -4 \\ y_{I’} = 1 \end{array} \right. \Rightarrow I(-4;1)$

Ta có: $ R’ = R =1$

$ I’H = \sqrt{( -3 +4)^2+ ( 1 -1)^2} =1 = R’ \Rightarrow H \in ( I; R’)$

 

Bài 6 (3 điểm).

a) Ta có: $ \left\lbrace \begin{array}{l} AH \cap BD = I \Rightarrow I \in ( SAH) \cap (SBD) \\ S \in ( SAH) \cap (SBD) \end{array} \right. \Rightarrow SI = ( SAH) \cap ( SBD)$

Trong $(SAH) $: $ AG \cap SI = K \Rightarrow K \in SI \Rightarrow K \in ( SBD)$

Suy ra: $ K = AG \cap ( SBD)$

b) Xét $ \bigtriangleup SAH$ ta có: $ \dfrac{HI}{HA} = \dfrac{HG}{HS} \Rightarrow GI \parallel SA$.

Mà $ SA \in (SAB) \Rightarrow GI \parallel (SAB)$

$ AD \parallel BC \Rightarrow (SAD) \cap (SBC) = d \parallel AD \parallel BC$

MÀ $ OH \parallel AD$

Suy ra ta có: $ OH \parallel d$.

c) $M$ là trung điểm $SC$.

Ta có: $\left\lbrace \begin{array}{l} SE = (SCD) \cap (SBE) \\ DG \parallel ( P) \end{array} \right. \Rightarrow DG \parallel SE$.

Suy ra $D$ là trung điểm $CE \Rightarrow \dfrac{DE}{CE} = \dfrac{1}{2}$