Category Archives: Hình học

Một số bài đường tròn và tiếp tuyến

Bài 1. Cho đường tròn tâm $O$ đường kính $A B$. $C$ là một điểm thuộc đường tròn. $d_1$ và $d_2$ lần lượt là tiếp tuyến tại $A$ và $B$ của $(O)$. Tiếp tuyến tại $C$ cắt $d_1, d_2$ lần lượt tại $D$ và $E$. $B C$ cắt $d_1$ tại $F$.
a) Chứng minh $d_1 | d_2$ và $D$ là trung điểm của $A F$.
b) Vẽ đường cao $C H$. Chứng minh rằng $A E, B D$ và $C H$ dồng quy tại trung điểm của $C H$.
c) Chứng minh $O F \perp A E$.

Lời giải.

a) $d_1$ là tiếp tuyến tại $A$ nên $O A \perp d_1, d_2$ là tiếp tuyến tại $B$ nên $d_2 \perp O B$, mà $O, A, B$ thẳng hàng, suy ra $d_1 / / d_2$.
Ta có $\angle A C B=90^{\circ}$, suy ra $\angle D C F+$ $\angle D C A=\angle D F C+\angle D A C=90^{\circ}$. (1)
Hơn nữa $D A=D C$ (t/c tiếp tuyến), tam giác $D A C$ cân tại $D$, suy ra $\angle D C A=$ $\angle D A C$. (2)
Từ (1) và (2) ta có $\angle D C F=\angle D F C$, tam giác $D C F$ cân tại $D$.
Vậy $D F=D C=D A$, hay $D$ là trung điểm của $A F$.
b) Gọi $I$ là giao điểm của $B D$ và $A E$. Ta có $A D / / B E$ nên $\frac{B I}{I D}=\frac{E B}{A D}(3)$.
Mặt khác do $A D=D C$ và $E B=E C$, suy ra $\frac{E B}{A D}=\frac{E C}{D C}$ (4).

Từ (3) và (4) ta có $\frac{B I}{I D}=\frac{E C}{D C}$, suy ra $I C / / A D$ (Thalet đảo).

Mà $A D \perp A B$ nên $C I \perp A B$, vậy $C, I, H$ thẳng hàng.

Do đó $A E, B E, C H$ đồng quy tại $I$.
Ta có $\frac{C I}{A D}=\frac{E I}{E A}, \frac{I H}{A D}=\frac{B I}{B D}$ và $\frac{E I}{E A}=$ $\frac{B I}{B D}$, nên $\frac{C I}{A D}=\frac{I H}{A D}$, suy ra $I C=I H$ hay
$I$ là trung điểm của $C H$.
c) Ta có $E B \cdot A D=E C \cdot C D=O C^2=R^2$, mà $A F=2 A D$ nên $E B \cdot A F=2 R^2$.

Suy ra $E B \cdot A F=A O \cdot A B$, suy ra $\frac{E B}{A B}=\frac{O A}{A F}$, do đó $\tan E A B=\tan A F O$, suy ra $\angle E A B=$ $\angle A F O$.
Mà $\angle E A B+\angle E A F=90^{\circ}$ nên $\angle E A B+$ $\angle A F O=90^{\circ}$. Do đó $O F \perp A E$.

Bài 2. Cho đường tròn tâm $O$ bán kính $R$. $A$ là một điểm nằm ngoài đường tròn, từ $A$ dựng các tiếp tuyến $A B, A C$ dến $(O)$ với $B, C$ là các tiếp điểm. Một cát tuyết qua $A$ cắt $(O)$ tại $D$ và $E$ trong đó $D$ nằm giữa $A$ và $E$.Gọi $H$ là giao điểm của $O A$ và $B C$.
a) Chứng minh $O H \cdot O A=R^2$.
b) Gọi $M$ là trung điểm của $D E$. Chứng minh 4 điểm $O, M, B, C$ cùng thuộc đường tròn.
c) Tiếp tuyến tại $D$ và $E$ của $(O)$ cắt nhau tại điểm $P$. Chứng minh $P, B, C$ thẳng hàng.

Lời giải.

a) Ta có $A B, A C$ là tiếp tuyến nên $A B=A C$, và $O B=O C=R$, suy ra $O A$ là trung trực của $B C$, suy ra $O A \perp B C$ tại $H$.
Tam giác $O A B$ có $\angle O B A=90^{\circ}$ (t/c tiệp tuyến) và $B H \perp O A$ nên $O H \cdot O A=O B^2=$ $R^2$.
b) $M$ là trung điểm $D E$, suy ra $O M \perp D E$.
Ta có $\angle O B A=\angle O M A=\angle O C A=90^{\circ}$, suy ra 5 diểm $O, M, B, A, C$ cùng thuộc đường tròn đường kính $O A$.
c) Ta chứng minh được $O P \perp D E$, suy ra $O, M, P$ thẳng hàng và $O M . O P=O D^2=$ $R^2$.
Suy ra $O M \cdot O P=O H \cdot O A$, suy ra $\frac{O M}{O H}=$ $\frac{O P}{O A}$.
Xét tam giác $O M A$ và tam giác $O H P$ có:
$\angle A O P$ chung $\frac{O M}{O H}=\frac{O P}{O A}$ $\angle O H P=\angle O M A=90^{\circ}$.
Ta có $B C, P H$ vuông góc với $O A$ tại $H$ nên $P, B, C$ thẳng hàng.

Bài 3. Cho tam giác $A B C$ vuông tại $A(A B<A C)$. Vẽ đường tròn tâm $O$ đường kính $A C$ cắt cạnh $B C$ tại $D$. Gọi $H$ và $K$ lần lượt là trung điểm của hai cạnh $A D$ và $C D$. Tia $O H$ cắt cạnh $A B$ tại $E$. Tia $O K$ cắt đường thẳng $E D$ tại $N$ và cắt đường tròn tâm $O$ tại $I$.
(a) Chứng minh $D E$ là tiếp tuyến của $(O)$.
(b) Chứng minh $O H D K$ là hình chữ nhật.
(c) Chứng minh tia $D I$ là tia phân giác của $\angle N D C$.
(d) Gọi $S$ là giao điểm của $O B$ với $A D$. Từ $S$ vẽ đường thẳng vuông góc với $A O$ và cắt tia $O H$ tại $Q$. Chứng minh 3 điểm $A, Q, N$ thẳng hàng.

Lời giải.

Hình 1

a) $OH$ là trung trực của $AD$, suy ra $EA = ED$. Từ đó $\triangle EDO = \triangle EAO (ccc)$, suy ra $\angle EDO = \angle EAO = 90^\circ$. Do đó $ED$ là tiếp tuyến của $(O)$.

b) Do $K$ là trung điểm $CD$ nên $OK \bot CD$, tứ giác $OHDK$ có $\angle D = \angle H = \angle K = 90^\circ$ nên là hình chữ nhật.

c) Ta có tam giác $ODI$ cân tại $O$ nên $\angle ODI = \angle OID$ (1)
Mà $\angle ODI = \angle ODK + \angle KDI, \angle OID = \angle OND + \angle NDI$ (2)
Và $\angle OND = \angle ODK$ (vì cùng phụ $\angle DON$) (3)
Từ (1), (2), (3) ta có $\angle KDI = \angle NDI$

d) Gọi $L$ là giao điểm $AQ$ và $OS$.
Trong tam giác $ASO$ có $AQ, SQ$ là các đường cao, nên $Q$ là trực tâm, suy ra $AQ \bot OS$ tại $L$. (4)
Ta có $OL \cdot OB = OA^2$
và $OK \cdot ON = OD^2 = OA^2$
Suy ra $\angle OK \cdot ON = OL \cdot OB$
Suy ra $\triangle OLN \backsim \triangle OKB$, suy ra $\angle OLN = \angle OKB = 90^\circ$ (5)
Từ (4), (5) ta có $A, L, N$ thẳng hàng, hay $A, Q, N$ thẳng hàng.

Bài 4. Cho đường tròn $(O ; R)$ và một điểm $S$ nằm ngoài đường tròn $(O)$. Vẽ hai tiếp tuyến $S B, S C$ đến $(O)$ với $B, C$ là hai tiếp điểm. Gọi $H$ là giao điểm của $S O$ với $B C$.
(a) Vẽ đường kính $B A$ của $(O)$. Chứng minh $A C || S O$ và $H B \cdot H C=H O \cdot H S$.
(b) Vẽ đường thẳng $d$ vuông góc vớ $A B$ tại $O$, đường thẳng $d$ cắt đường thẳng $A C$ tại $E$. Chứng minh $S E=R$.
(c) Vẽ $C K$ vuông góc với $A B$ tại $K$. Gọi $I$ là trung điểm của cạnh $C K$. Chứng minh 3 điểm $S, I, A$ thẳng hàng.

Lời giải.

a) Do $AB$ là đường kính của $(O)$ nên $\angle ACB = 90^\circ$. (1)

Ta có $SB = SC$ và $SO$ phân giác $\angle BSC$ nên $SO$ là trung trực của $BC$, do đó $OS \bot BC$ tại $H$.

Từ đó ta có $AC ||OS$ vì cùng vuông góc $BC$.

b) $\triangle AOE = \triangle OBS (gcg)$, suy ra $OE = BS$.

Tứ giác $OESB$ có $OE||BS$ (Cùng vuông góc $AB$), và $OE = BS$ nên $OESB$ là hình bình hành, hơn nữa có $\angle OBS= 90^\circ$ nên là hình chữ nhật, do đó $SE = OB = R$.

c) Ta có $OASE$ là hình bình hành, suy ra $AS$ cắt $OE$ tại trung điểm $T$ của mỗi đoạn.
$CK ||OE$
Gọi $I’$ là giao điểm của $AS$ và $CK$
Ta có $\dfrac{I’K}{OT} = \dfrac{AI’}{AT} = \dfrac{CI’}{ET}$
Mà $OT = ET$ nên $KI’ = CI’$, hay $I’ \equiv I$
Vậy $A, I, S$ thẳng hàng

Bài 5. Cho đường tròn $(O ; R)$ và điểm $M$ ở ngoài đường tròn $(O)$. Kẻ tiếp tuyến $M A, M B$ đến $(O)$ với $A, B$ là hai tiếp điểm. Đường thẳng $A B$ cắt $(O)$ tại $K$.
(a) Kẻ đường kính $A N$ của $(O), B H \perp A N$ tại $H$. Chứng $\operatorname{minh} M B \cdot B N=B H \cdot M O$.
(b) Đường thẳng $M O$ cắt đường tròn $(O)$ tại $C$ và $D(C$ nằm giữa $O$ và $M)$. Chứng minh $O K \cdot M K=C K \cdot D K$.
(c) $E$ đối xứng với $C$ qua $K$. Chứng minh $E$ là trực tâm của tam giác $A B D$.
(d) Chứng minh $\sin \angle M^{\circ} A B=\frac{C K}{A K}+\frac{C K}{A M}$

Lời giải.

a) Chứng minh tam giác $OMB$ và $NBH$ đồng dạng.
b) $OK \cdot MK = AK^2 = KC \cdot KD$
c) $ACBE$ là hình thoi, suy ra $BE||AC$, mà $AC \bot AD$ suy ra $BE \bot AD$
$DE \bot AB$
Do đó $E$ là trực tâm tam giác $ABD$.

d) $\angle CAK = \angle CAM$ (chứng minh ở bài trên)
Do đó $\dfrac{CK}{CM} = \dfrac{AK}{AM}$, suy ra $\dfrac{CK}{AK} = \dfrac{CM}{AM}$
Từ đó $VP = \dfrac{CK}{AK} + \dfrac{CK}{AM} = \dfrac{CM}{AM} + \dfrac{CK}{AM} = \dfrac{KM}{AM} = \sin MAB$

Bài 6. Cho hình vuông $A B C D$ cạnh $a, E$ là cung thuộc cung nhỏ $B D$ của đường tròn tâm tâm $A$ bán kính $a$. Tiếp tuyến tại $E$ cắt $C D$ tại $F$ và $B C$ tại $G$.
(a) Chứng minh chu vi tam giác $C F G$ bằng $2 a$.
(b) $A F, A G$ cắt $B D$ tại $I$ và $H$. Chứng minh $H E=$ $H B, I E=I D$

và $H I^2=D I^2+B H^2$
(c) Chứng minh $F H, G I$ và $A E$ đồng quy.

Lời giải.

a) $CD, CB, FG$ là tiếp tuyến của $(A;a)$
Suy ra $FE = FD, GE = GB$
$P_{CFG} = CF + FG + CG = CF + EF +EG+CG = CF+DF +GB+CG = CD+ CB = 2a$

b) $AF$ là trung trực $DE$, và $AG$ là trung trực $BE$
Suy ra $IE = ID, HB = HE$
$\triangle IEF = \triangle IDF \Rightarrow \angle IEF =\angle IDF = 45^\circ$
Tương tự cũng có $\angle HEG = 45^\circ$
Suy ra $\angle IEH = 90^\circ$
Áp dụng pitago cho tam giác $EIH$ ta có $IH^2 = IE^2 + HE^2 = ID^2 + HB^2$

c) Ta có $AF$ là phân giác $\angle DAE$, $AG$ là phân giác của $\angle BAE$
Suy ra $\angle FAG = \dfrac{1}{2} \angle BAD = 45^\circ$.
$\triangle AIH \backsim \triangle DIF (gg)$, suy ra $IA \cdot IF = ID \cdot IH$
Suy ra $\triangle IFH \backsim \triangle IDA \Rightarrow \angle IFH = \angle IDA = 45^\circ$
Suy $\angle AHF = 90^\circ$ hay $FH \bot AG$.
Chứng minh tương tự $GI \bot AF$.
Tam giác $FG$ có $AE, FH, GI$ là các đường cao nên đồng quy.

Bài 7. (Cuối khóa 1 – Star Education 2018) Cho đường tròn $(O ; R)$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ các tiếp tuyến $A B, A C$ dến $(O)$ ( $B, C$ là các tiếp điểm). $O A$ cắt $B C$ tại $H$.
a) Chứng minh $O H \cdot O A=R^2$ và 4 điểm $O, A, B, C$ cùng thuộc một đường tròn.
b) Đường tròn tâm $I$ đường kính $A B$ cắt $(O)$ tại điểm $D$ khác $B$. Chứng minh $I D$ là tiếp tuyến của $(O)$.
c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.

d) Tiếp tuyến tại $H$ của $(I)$ cắt $O B$ tại $M$; gọi $N$ là trung điểm $P M$, đường thẳng qua $P$ song song $B N$ cắt $A B$ tại $K$. Chứng minh $H K, A M$ và $B D$ đồng quy.

Lời giải.

a)

Xét $\triangle A B O$ vuông tại $B$ có:

$B H$ là đường cao $\Rightarrow O H \cdot O A=O B^2=R^2$ (Hệ thức lượng)

Ta có: $\triangle A B O$ vuông tại $B \Rightarrow A, B, O$ thuộc đường tròn đường kính $A O$. (1)

Lại có $\triangle A C O$ vuông tại $C \Rightarrow A, C, O$ thuộc đường tròn đường kính $A O$. (2)

Từ (1) và (2) suy ra $A, B, O, C$ thuộc đường tròn đường kính $A O$.

b)

Ta có: $\triangle A B D$ nội tiếp đường tròn đường kính $A B \Rightarrow \triangle A B D$ vuông tại $D$

Mà $I$ là trung điểm cạnh huyền $A B \Rightarrow I B=I D$
Ta có: $I B=I D, O B=O D$ nên $I O$ là trung trực của $B D$ $\Rightarrow \angle I B O=\angle I D O=90^{\circ}$ nên $I D$ là tiếp tuyến của $(O)$.

c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.

Gọi $E=I P \cap A H$ và $F=I O \cap B D$.
Sử dụng tính chất hai tiếp tuyến cắt nhau và hệ thức lượng, ta chứng minh được
$$
I E \cdot I P=I A^2=I D^2=I F \cdot I O \Rightarrow \frac{I F}{I P}=\frac{I E}{I O}
$$

Từ đó, chứng minh được $\triangle I F P \backsim \triangle I E O$ (c.g.c)
$$
\Rightarrow \angle I E O=\angle I F P=90^{\circ} \text {. }
$$

Ta có: $B D$ đi qua $F$ và vuông góc $I O, F P$ đi qua $F$ và vuông góc $I O$ nên hai đường thẳng này trùng nhau. $\Rightarrow B, D, P$ thẳng hàng.

d)

Chứng minh $I H$ là đường trung bình của $\triangle A B C \Rightarrow I H || A C$. Mà $I H \perp P M$ và $A C \perp O C$.

Suy ra: $H M || O C$. Lại có $H$ là trung điểm $B C$ nên $M$ là trung điểm $O B$.

Gọi $Q$ là giao điểm của $P K$ và $B O$.
Ta có: $B N || P Q$ và $N$ là trung điểm của $P M$ nên suy ra $B$ là trung điểm của $Q M$.

Gọi $J=B P \cap A M$.
Ta có :
$ B Q ||A P \Rightarrow \frac{B K}{K A}=\frac{B Q}{P A}=\frac{B M}{P A} . $
$B M || A P \Rightarrow \frac{B M}{P A}=\frac{B J}{J P}$
Suy ra: $\frac{B K}{K A}=\frac{B J}{J P}$ nên $K J || A P$. Chứng minh tương tự $J H ||A P$. Từ đó ta có $K, J, H$ thẳng hàng.

Vậy $H K, B P, A M$ dồng quy tại $J$.

Bài tập luyện tập.

Bài 6. Cho tam giác $A B C$ nhọn. Các đường cao $A D, B E$ và $C F$ cắt nhau tại $H$. Gọi $M, N$ lần lượt là trung điểm của $B C$ và $A H$.
(a) Chứng minh $N E, N F$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $B C E$.
(b) Chứng minh 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn.
(c) Gọi $G$ là giao điểm của $A D$ và $E F$. Chứng minh $N G \cdot N D=N A^2$.

Bài 7. Cho nửa đường tròn tâm $O$ đường kính $A B=2 R$. Trên tiếp tuyến tại $A$ của $(O)$ lấy điểm $C$ sao cho $A C=A B$. Từ $C$ vẽ tiếp tuyến $C D$ dến $(O)$ cắt tiếp tuyến tại $B$ ở điểm E.
(a) Tính $B E$.
(b) Đường cao $D F$ của tam giác $A B D$ cắt $B C$ tại $G$. Chứng minh rằng $A, G, E$ thẳng hàng.
(c) Gọi $H$ là giao điểm của $O C$ và $A D$. Tính $\angle D H B$.
(d) Gọi $I$ là giao điểm của $B C$ và $(O)$. Tứ giác $I D B H$ là hình gì? Tại sao?

Bài 8. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O) . M$ là trung điểm $B C$. Từ $A$ dựng các tiếp tuyến đến đường tròn $(O ; O M)$ cắt $B C$ tại $D$ và $E$ sao cho $D$ và $C$ khác phía đối với $M ; E, B$ khác phía đối với $M$. Chứng minh rằng các tam giác $A D C$ và $A B E$ cân.

Bài 9. Cho tam giác $A B C$ vuông tại $A, A B=a, B C=2 a$. Đường cao $A H$. Từ $B, C$ vẽ các tiếp tuyến $B D, C E$ dến đường tròn tâm $A$ bán kính $A H$.
(a) Tính $A H$ và số đo $\angle A B C$.
(b) Chứng minh $D, A, E$ thẳng hàng.
(c) Chứng minh $E D$ là tiếp tuyến của đường tròn đường kính $B C$.
(d) Chứng minh $D C, B E$ và $A H$ dồng quy.

Bài 10. Cho hình vuông $A B C D$ cạnh $2 a$, tâm $O$. Đường tròn tâm $O$ bán kính $a$ tiếp xúc với $A B$ và $B C$ tại $E$ và $F$. Gọi $P$ là một điểm trên cung nhỏ $E F$. Tiếp tuyến tại $P$ cắt $A B, B C$ tại $M$ và $N$. Đặt $M B=c, B N=y$.
(a) Chứng minh rằng $x+y+\sqrt{x^2+y^2}=2 a$.
(b) Chứng minh rằng $A M \cdot C N=2 a^2$.
(c) Gọi $K$ là trung điểm của $A D$. Chứng minh rằng $M K |$ $D N$.

Cực trị hình học (Lớp 8)

Cực trị hình học là bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của các đối tượng hình học như độ dài, chu vi, diện tích, …

Các bước cho một bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất gồm các bước sau:

  • Đánh giá bất đẳng thức
  • Tìm điều kiện, vị trí để đẳng thức xảy ra
  • Kết luận

Một số tính chất cần nhớ trong các bài toán cực trị

Tính chất 1. Bất đẳng thức trong tam giác: Cho 3 điểm $A, B, C$ thì $AB + BC \geq AC$. Đẳng thức xảy ra khi $B$ nằm giữa $A, C$. Tính chất này có thể tổng quát cho trường hợp nhiều hơn 3 điểm.

Từ tính chất này ta có thể thấy rằng, con đường ngắn nhất để đi từ $A$ đến $B$ là con đường thẳng.

Tính chất 2. Đường xiên và hình chiếu: Cho điểm $A$ và đường thẳng $d$, khi đó $M$ thay đổi trên $d$ thì $AM$ nhỏ nhất khi và chỉ khi $M$ là hình chiếu vuông góc của $A$ trên $d$.

Một số bất đẳng thức cần dùng: Cho $a, b \geq 0$.

  • $a^2 + b^2 \geq \dfrac{1}{2} (a+b)^2 \geq 2ab$
  • $\dfrac{1}{a} + \dfrac{1}{b} \geq \dfrac{4}{a+b}$
  • $a^2+b^2+c^2 \geq \dfrac{1}{3}(a+b+c)^2 \geq ab+bc+ac$.

Chú ý trong các bài toán cực trị thì đẳng thức phải xảy ra, do đó việc đánh giá bất đẳng thức cần chặt chẽ để xảy ra dấu bằng, nếu tìm không được vị trí dấu bằng xảy ra thì đánh giá đó chưa hợp lý.

Kinh nghiệm làm bài, nếu bài toán có nhiều giá trị thay đổi ta có thể

  • Tính toán biến đổi để đưa về biểu thức ít yếu tố thay đổi hơn.
  • Tìm mối liên hệ giữa các biến mà không đổi như: tích không đổi, tổng không đổi,… và từ đó áp dụng các bất đẳng thức đại số để đánh giá.

Sau đây là một số ví dụ.

Ví dụ 1. Cho hai điểm $A, B$ và đường thẳng $d$. Tìm vị trí của $M$ thuộc $d$ sao cho $MA + MB$ nhỏ nhất trong hai trường hợp.

a) $A, B$ cùng phía với $d$.

b) $A,B$ khác phía đối với đường thẳng $d$.

Phân tích và Lời giải

a) Với bài toán này ta nhận thấy rằng ta có thể áp dụng ngay tính chất 1, ta có $MA + MB \geq AB$

Đẳng thức xảy ra khi $M$ là điểm nằm giữa $A,B$, mà $M$ thuộc $d$ nên $M$ là giao điểm của đoạn thẳng $AB$ và đường thẳng $d$. Rõ ràng giao điểm này tồn tại vì $A, B$ là khác phía đối với $d$.

b) Đối với ý này, nếu vội vàng áp dụng như câu a thì ta thấy do $A,B$ cùng phía nên giao điểm của đoạn thẳng $AB$ và $d$ không tồn tại. Do đó cách làm như câu a, cũng không đúng.

Vậy ta sẽ làm thế nào? Ta có thể đưa về trường hợp ở câu a hay không? nếu đưa về câu a thì ta sẽ làm gì?

Ở đây có một kĩ thuật, là sử dụng đối xứng trục, để thay đổi vị trí điểm $A$ và vẫn tạo ra một đoạn thẳng bằng với $MA$. Tạo ra điểm phụ sẽ giúp ta giải được bài toán này.

Gọi $A’$ là đối xứng của $A$ qua $d$, khi đó $A’, B$ khác phía đối với $d$ và $MA = MA’$, ta đưa về trường hợp của câu $a$.

Ta có $MA + MB = MA’ + MB \geq A’B$, đẳng thức xảy ra khi $M$ là giao điểm của $A’B$ và $d$.

Vậy $MA + MB$ nhỏ nhất khi $M$ là giao điểm của $A’B$ với $d$.

Ví dụ 2. Cho tam giác $ABC$ đều cạnh $a$. $M$ là một điểm nằm trong tam giác. Gọi $D, E, F$ là hình chiếu của $M$ trên các cạnh $BC, AC, AB$.

a) Chứng minh $MD + ME + MF$ không đổi và tìm giá trị nhỏ nhất của $MD^2 +ME^2 +MF^2$.

b) Tìm giá trị nhỏ nhất của $BD^2+CE^2+AF^2$.

Phân tích và lời giải

a) Với bài này việc chứng minh ý đầu có thể còn khó hơn ý sau, việc chứng minh tổng này không đổi thì nhiều khi ta phải dự đoán được tổng này giá trị không đổi là bao nhiêu, phụ thuộc vào $a$ thế nào. Ta có thể đoán bằng cách cho $M$ trùng với một đỉnh nào đó, hoặc điểm đặc biệt như tâm của tam giác đều, khi cho trùng đỉnh $A$ thì ta có $E, F \equiv A$, $D \equiv H$, chân đường cao từ $A$, do đó ta có $MD + ME +MF = AH$ độ dài đường cao. Việc chứng minh tổng này bằng $AH$ ta có thể sử dụng phương pháp diện tích, rất hữu hiệu trong các bài có độ dài đường vuông góc.

a) $S_{A B C}=S_{M B C}+S_{M A C}+S_{M A B}$
$$
\begin{aligned}
\frac{1}{2} A H \cdot B C= & \frac{1}{2} M D \cdot B C+\frac{1}{2} M E \cdot A C \
& +\frac{1}{2} M F \cdot A C
\end{aligned}
$$
$\frac{1}{2} A H \cdot a=\frac{1}{2} a(M D+M E+M E)$
$$
\Rightarrow M D+M E+M F=A I+\text { (Ehongdon!) }
$$
$$
=\frac{a \sqrt{3}}{2}
$$
Áp dụng bất đẳng thức $x^2+y^2+z^2 \geqslant \frac{1}{3}(x+y+z)^2$
$$
\begin{array}{ll}
\Rightarrow M D^2+M E^2+M F^2 \geqslant \frac{1}{3}(M D+M E+M F)^2 & =\frac{1}{2} \cdot\left(\frac{a \sqrt{3}}{2}\right)^2 \
& =\frac{a^2}{4}
\end{array}
$$
Đẳng thức xảy ra khi và chỉ khi $M D=M E=M F$, tức là $M$ là giao điểm 3 đường phân giác của tam giác $ABC$, do tam giác $ABC$ đều nên $M$ cũng là trọng tâm tam giác.
$$
(M D^2+M E^2+M F^2)_{\min }=\dfrac{a^2}{4}
$$

b) Với câu này mình không có gợi ý như câu b, tìm min của đại lượng $P = BD^2+CE^2+AF^2$ ta có thể suy nghĩ tới việc tính tổng hay tích các số hạng, tuy vậy các giá trị này thay đổi theo $M$. Và quan sát thêm một chút là vị trí của các đoạn thẳng $DB, CE, AF$ trên các cạnh $BC, AC, AB$ có vẻ là cùng một hướng, và ta lại xem các đoạn thẳng còn lại thế nào? tức là $CD, BF, AE$ vai trò như nhau với các đoạn trên không? Liệu $BD^2+CE^2+AF^2 = CD^2+BF^2+AE^2?

Và khi đi vào kiểm tra thì rõ ràng ta chứng minh được $BD^2+CE^2+AF^2 = CD^2 + BF^2+AE^2 (1)$ và từ đó ta có lời giải như sau.

Trước hết ta chứng minh (1), theo định lý Pitago ta có $BD^2 – CD^2 = MB^2-MD^2 – (MC^2-MD^2) = MB^2-MC^2$, tương tự ta cũng có các đẳng thức khác.

Khi đó $BD^2+CE^2+AF^2 – CD^2-AE^2-BF^2 = MB^2 – MC^2 + MC^2-MA^2 +MA^2-MB^2 = 0$

Suy ra $BD^2+CE^2+AF^2 = CD^2+BF^2+AE^2 = \dfrac{1}{2} (BD^2+CD^2+AF^2+BF^2+CE^2+AE^2$.

Mà $CD^2+BD^2 \geq \dfrac{1}{2}(CD+BD)^2 = \dfrac{1}{2}a^2$

Tương tự thì $AF^2+BF^2 \geq \dfrac{1}{2}a^2, AE^2+CE^2 \geq \dfrac{3}{2}a^2$

Từ đó $BD^2+CE^2+AD^2 \geq \dfrac{3}{4}a^2$, đẳng thức xảy ra khi $M$ là giao điểm 3 đường trung trực của tam giác $ABC$.

Vậy $(BD^2+CE^2+AF^2)_{\max} = \dfrac{3}{4}a^2$.

Ví dụ 3. (PTNK 1999) Cho tam giác $A B C$ có diện tích $\mathrm{S}$ và một điểm $P$ nằm trong tam giác.
(a) Gọi $S_1, S_2, S_3$ lần lượt là diện tích của tam giác $P B C, P C A, P A B$. Hãy tìm giá trị nhỏ nhất của $S_1^2+S_2^2+S_3^2$.
(b) Gọi $P_1, P_2, P_3$ lần lượt là các điểm đối xứng của $P$ qua $B C, C A$ và $A B$. Đường thẳng qua $P_1$ song song với $B C$ cắt $A B$ và $A C$ tại $B_1$ và $C_1$. Đường thẳng qua $P_2$ song song với $A C$ cắt $B C, B A$ tại $C_2, A_2$, đường thẳng qua $P_3$ và song song với $A B$ cắt $C A, C B$ tại $A_3, B_3$. Hãy xác định vị trí của điểm $P$ dể tổng diện tích ba hình thang $B C C_1 B_1, C A A_2 C_2$ và $A B B_3 A_3$ đạt giá trị nhỏ nhất và tính giá trị đó.

Phân tích và lời giải

a) Bài này ta làm tương tự câu a ví dụ 2, cũng áp dụng bdt $x^2+y^2+z^2 \geq \dfrac{1}{3} (x+y+z)^2$ để suy ra cực trị.

b) Với bài toán này, để tìm cực trị của tổng diện tích các hình thang, ta phải tính diện tích các hình thang này thông qua một đại lượng trung gian, trong bài này thì đó là diện tích tam giác $ABC$, (S). Việc các đường thẳng song song gợi ta nghĩa tới tam giác đồng dạng và tính chất “tỉ số diện tích bằng bình phương tỉ số đồng dạng”, từ đó ta có cách giải sau:

b) Gọi độ dài các đường cao của tam giác $A B C$ là $h_a, h_b, h_c$ và khoảng cách từ $P$ đến $B C, A C, A B$ là $x, y, z$. Ta có $\frac{S}{S_{A B_1 C_1}}=\frac{h_a^2}{\left(h_a+x\right)^2}$.
Suy ra $S_{A B_1 C_1}=\left(1+\frac{x}{h_a}\right)^2 S$.
Tương tự ta có $S_{B A_2 C_2}=\left(1+\frac{y}{h_b}\right)^2 . S, S_{C A_3 B_3}=\left(1+\frac{z}{h_c}\right)^2 S$.
Đặt $a=\frac{x}{h_a}, b=\frac{y}{h_b}, c=\frac{z}{h_c}$ thì $a+b+c=1$.
Ta có $S_{B C C_1 B_1}+S_{A C C_2 A_2}+S_{A B B_3 A_3}=S\left((1+a)^2+(1+b)^2+(1+c)^2-3\right)=$ $S\left(2+a^2+b^2+c^2\right)$.
Ta có $a^2+b^2+c^2 \geq \frac{1}{3}(a+b+c)^2=\frac{1}{3}$. Do đó $S_{B C C_1 B_1}+S_{A C C_2 A_2}+S_{A B B_3 A_3} \geq \frac{7}{3} S$.
Đẳng thức xảy ra khi $P$ là trọng tâm tam giác $A B C$.

Ví dụ 4. (PTNK 2008) Cho góc $x A y$ vuông và hai điểm $B, C$ lần lượt trên các tia $A y, A y$. Hình vuông $M N P Q$ có các đỉnh $M$ thuộc cạnh $A B$, dỉnh $N$ thuộc cạnh $A C$ và các đỉnh $P, Q$ thuộc cạnh $B C$.
(a) Tính cạnh hình vuông $M N P Q$ theo cạnh $B C=a$ và đường cao $A H=h$ của tam giác $A B C$.
(b) Cho $B, C$ thay đổi lần lượt trên các tia $A x, A y$ sao cho tích $A B \cdot A C=k^2$ ( $k$ không đổi). Tìm giá trị lớn nhất của diện tích hình vuông $M N P Q$.

Phân tích và lời giải

a)

a) Đặt $x$ là độ dài hình vuông. Gọi $K$ là giao điểm của $A H$ và $M N$.
Ta có $M K H Q$ là hình chữ nhật, suy ra $K H=M Q=x, A E=A H-E H=$ $h-x$.
Ta có $M N \parallel B C$, suy ra $\frac{M N}{B C}=\frac{A N}{A C}$.
Và $N K \parallel C H$ nên ta có $\frac{A N}{A C}=\frac{A K}{A H}$.
Do đó ta có $\frac{M N}{B C}=\frac{A K}{A H}$ hay $\frac{x}{a}=\frac{h-x}{h}$, suy ra $x=\frac{a h}{a+h}$.
b) Ta có $b c=a h=k^2$ và $a^2=b^2+c^2 \geq 2 b c=2 a h$. Suy ra $a \geq 2 h$.
Ta có $S_{M N P Q}=M N^2=\frac{(a h)^2}{(a+h)^2}=\frac{k^4}{(a+h)^2}$.
Ta có $(a+h)^2=a^2+h^2+2 a h=h^2+\frac{1}{4} a^2+\frac{3}{4} a^2+2 a h$.
Mà $h^2+\frac{1}{4} a^2 \geq a h=k^2, \frac{3}{4} a^2 \geq \frac{3}{2} a h=\frac{3}{2} k^2, a h=k^2$.
Suy ra $(a+h)^2 \geq \frac{9}{2} k^2$.
Do đó $S \leq \frac{2}{9} k^2$. Đẳng thức xảy ra khi $a=2 h$ hay tam giác $A B C$ cân.
Vậy giá trị lớn nhất của diện tích hình vuông MNPQ là $\frac{2}{9} k^2$ khi $A B=A C=k$.

Chú ý, nếu ta áp dụng Cauchy ngay chỗ $(a+h)^2 \geq 4ah$ thì đẳng thức không xảy ra, do đó đánh giá chưa đủ chặt chẽ.

Bài tập rèn luyện.

Bài 1. Cho tam giác $ABC$ nhọn tìm vị trí điểm $M$ trong tam giác sao cho $MA + MB + MC$ nhỏ nhất.

Bài 2. Cho hình vuông $A B C D . M, N, P, Q$ là các đỉnh của tứ giác $M N P Q$ lần Iượt thuộc các cạnh $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ (MNPQ gọi là tứ giác nội tiếp hình vuông). Tìm điều kiện để tứ giác MNPQ có chu vi nhỏ nhất.

Bài 3. Cho tam giác $ABC$ nhọn. Tìm vị trí của $M$ bên trong tam giác sao cho $MA \cdot BC + MB \cdot AC + MC \cdot AB$ đạt giá trị nhỏ nhất.

Bài 4. Cho tam giác $ABC$ vuông tại $A$ có $BC$ không đổi $BC = 2a$. Vẽ đường cao $AH$. Tìm giá trị lớn nhất của $BH + AH$.

Bài 5. Cho hình bình hành $ABCD$, một đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Tìm vị trí của $d$ để tổng khoảng cách từ các đỉnh $B, C, D$ đến $d$ là lớn nhất.

Bài 6. Cho đoạn thẳng $A B=a$. $C$ là điểm trên đoạn thẳng $A B$. Vẽ các hình vuông $A C D E$ và $C B F G$. Xác định vị trí điểm $C$ để $S_{A C D E}+S_{C B F G}$ đạt giá trị nhỏ nhất.

Sử dụng phương pháp điểm trùng để chứng minh hình học

Trong việc giải các bài toán hình học, có một kĩ thuật khá là đặc biệt và cũng thường được sử dụng đó là sử dụng điểm trùng, kĩ thuật này dựa trên sự xác định duy nhất của hình để thực hiện.

Tình huống thường gặp nhất, ta cần chứng minh tính chất hay sự tồn tại của một số đối tượng hình học, chẳng hạn như giao điểm của một số đường thẳng. Khi đó, gọi hai hay một số giao điểm (dĩ nhiên tồn tại) của một số cặp hay một số đối tượng. Sau đó, ta sẽ chứng minh các giao điểm (đối tượng) mà ta vừa dựng là trùng nhau. Đôi khi để thực hiện điều này, ta cũng cần gọi thêm một số đối tượng khác cùng đi qua điểm đang xét rồi xét sự đồng quy của chúng với các đối tượng gọi thêm nhằm có thêm tính chất của các điểm mà ta cần chứng minh trùng nhau.

Ta chú ý một số tính chất sau:

Định lý 1. Về giao điêm của các đối tượng hình học:

  1. Hai đường thẳng có nhiều nhất 1 giao điêm.
  2. Hai đường tròn có nhiều nhất 2 giao điểm.
  3. Một đường thẳng và một đường tròn có nhiều nhất 2 giao điểm.
  4. Một tia có gốc nằm trong đường tròn và đường tròn đó có nhiều nhât 1 giao điềm.

Sau đây ta xét một số ví dụ trong chương trình toán hình học lớp 9.

Ví dụ 1. Cho đường tròn tâm $O$ đường kính $AB$, $C$ thuộc đường tròn. Tiếp tuyến tại $C$ cắt tiếp tuyến tại $A, B$ của $(O)$ tại $D, E$. Gọi $H$ là hình chiếu của $C$ trên $AB$.

a. $DB$ cắt $CH$ tại $N$. Chứng minh $A, N, E$ thẳng hàng.

b.Đường thẳng qua $A$ song song $HE$ và đường thẳng qua $B$ song song với $HD$ cắt nhau tại $M$. Chứng minh $D, M, E$ thẳng hàng.


a. $BC$ cắt $AD$ tại $F$, ta chứng minh được $D$ là trung điểm của $AF$.

Khi đó $\dfrac{CN}{DF} = \dfrac{PN}{PD} = \dfrac{HN}{AD}$.

Mà $AD = DF$, suy ra $CN = HN$ hay $N$ là trung điểm của $CH$.

Gọi $N’$ là giao điểm của $AE$ và $CH$, chứng minh tương tự ta cũng có $N’$ là trung điểm của $CH$. Do đó $N \equiv N’$ hay $A, N, E$ thẳng hàng.

b. Phân tích: vẽ hình chính xác và trực giác ta dự đoán được $M$ là trung điểm của $DE$, hơn nữa điểm $M$ là được xác định duy nhất do là giao điểm của 2 đường, do đó ta có thể gọi $M’$ là trung điểm và chứng minh $M’ \equiv M$ bằng cách chứng minh $AM’||HD$ và $BM’||HC$. Thực ra do vai trò như nhau nên chỉ cần chứng minh $AM’||HD$ là đủ.

Ta có $\dfrac{HA}{HB} = \dfrac{CD}{CE} = \dfrac{AD}{BE}$. Suy ra $\triangle AHD \backsim \triangle BHE$. Suy ra $\angle AHD = \angle BHE$

Suy ra $\angle KHA = \angle BHE = \angle AHD$. Từ đó ta có tam giác $HDK$ cân tại $H$ và $A$ là trung điểm $AD$.

Tam giác $DHE$ có $M’A$ là đường trung bình nên $AM’||EK$ hay $AM’||HE$.

Chứng minh tương tự ta có $BM’||HD$.

Vậy $M’ \equiv M$. Hay $D, M, E$ thẳng hàng.

Ví dụ 2. (LHP 2019) Cho tam giác đều $A B C$. Gọi $M, N$ là hai điểm nằm trên cạnh $B C$ sao cho $\angle M A N=30^{\circ}(M$ nằm giữa $B$ và $N)$. Gọi $K$ là giao điểm của hai đường tròn $(A B N)$ và $(A C M)(K$ khác $A)$. Chứng minh rằng hai điểm $K$ và $C$ đối xứng với nhau qua $A N$.

Lời giải

Việc chứng minh trực tiếp $K, C$ đối xứng qu $AN$ nhìn có vẻ dễ nhưng khi tìm cách chứng minh thì liên kết lại hơi khó, cảm giác như bị thiếu thiếu gì đó, ta phải vẽ thêm yếu tố phụ mới có thể làm được. Do đó ta nghĩ tới kĩ thuật điểm trùng, tức là dựng ra một điểm $K’$ đối xứng với $C$ qua $AN$ và chứng minh $K’$ là giao điểm của hai đường tròn.

Gọi $K$ là điểm đối xứng của $C$ qua $A N$. Có
$$
\angle A K^{\prime} N=\angle A C N=\angle A B N
$$
nên tứ giác $A B K^{\prime} N$ nội tiếp. Suy ra $K^{\prime} \in(A B N)$. Có
$$
\angle M A K^{\prime}+\angle N A C=\angle M A K^{\prime}+\angle K^{\prime} A N=30^{\circ}
$$
$$
\angle B A M+\angle N A C=30^{\circ}
$$
suy ra $\angle M A K^{\prime}=\angle B A M$.
Suy ra $\triangle A B M=\triangle A K^{\prime} M(c-g-c)$ nên $\angle A K^{\prime} M=\angle A B C=\angle A C B$ ta thu được $K^{\prime} \in(A M C)$. Vậy $K \equiv K^{\prime}$ ta có điều phải chứng minh.

Ví dụ 3. Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$, có $H$ là trực tâm tam giác $ABC$ và $AD$ là đường kính của $(O)$. Trên các cạnh $AB, AC$ lấy $E, F$ sao cho $AE = AF$ và $E, H, F$ thẳng hàng. Đường tròn ngoại tiếp tam giác $AEF$ cắt phân giác góc $\angle BAC$ tại $P$. Chứng minh $H, P, D$ thẳng hàng.

Lời giải

Gọi $P’$ là giao điểm phân giác góc $\angle BAC$ và $HD$. Ta chứng minh $P’ \equiv P$, hay cần chứng minh $AEPF$ nội tiếp.

Ta có tính chất quen thuộc $\angle HAB = \angle DAC$, nên $AP’$ cũng là phân giác $\angle HAD$.

Ta có $\angle AEF = \angle ABH + \angle EHB$, $\angle AFE = \angle ACH + \angle FHC$.

Mà $\angle ABH = \angle ACH$ và $\angle AEF = \angle AFE$ nên $\angle EHB = \angle FHC = \angle EHL$.

Do đó $HE$ là phân giác $\angle LHB$, suy ra $\dfrac{LE}{EB} = \dfrac{HL}{HB}$. (1)

Tam giác $AHL $ và tam giác $ADC$ đồng dạng, suy ra $\dfrac{HL}{CD} = \dfrac{AH}{AD}$.

Mà $CD = BH, \dfrac{AH}{AD} = \dfrac{HP’}{P’D}$, suy ra $\dfrac{HL}{HB} = \dfrac{HP’}{P’D}$. (2)

Từ (1) và (2) ta có $\dfrac{LE}{EB} = \dfrac{HP’}{P’D}$, suy ra $P’E ||HL||BD$, suy ra $P’E \bot AB$.

Chứng minh tương tự ta có $P’F \bot AC$.

Do đó $AEP’F$ nội tiếp, suy ra $P’ \equiv P$. Hay $D, P, H$ thẳng hàng.

Ví dụ 4. (PTNK 2022) Cho tam giác $A B C$ có trực tâm $H, D$ đối xứng với $H$ qua $A$. $I$ là trung điểm của $C D$, đường tròn $(I)$ đường kính $C D$ cắt $A B$ tại $E, F(E$ thuộc tia $A B)$
a) Chứng $\operatorname{minh} \angle E C D=\angle F C H$ và $A E=A F$.
b) Chứng minh $H$ là trực tâm của $\triangle C E F$.
c) $B H$ cắt $A C$ tại $K$. Chứng minh $E F K H$ nội tiếp và $E F$ là tiếp tuyến chung của $(C K E)$ và $(C K F)$.
d) Chứng minh tiếp tuyến tại $C$ của $(I)$ và tiếp tuyến tại $K$ của $(K E F)$ cắt nhau trên đường thẳng $A B$.

Lời giải. Các câu a, b, c dành cho bạn đọc, ở đây mình trình bày lời giải cho câu d.

Lấy $N$ đối xứng với $K$ qua $A B$.
$$
\angle E N F=\angle E K F=\angle E H F=180^{\circ}-\angle E C F \Rightarrow N \in(I) \text {. }
$$
$A P=A K=A N \Rightarrow \angle K N P=90^{\circ} \Rightarrow N P | B C \Rightarrow E N P F$ là hình thang cân.
$\Rightarrow \angle E C N=\angle F C P \Rightarrow \triangle E C N \backsim \triangle A C F$ và $\triangle E C A \backsim \triangle N C F$.
$\Rightarrow \frac{N E}{A F}=\frac{E C}{A C}$ và $\frac{E A}{N F}=\frac{C A}{C F}$
$\Rightarrow \frac{N E}{E C}=\frac{A F}{A C}=\frac{A E}{A C}=\frac{N F}{C F}$
Tiếp tuyến tại $N$ và $C$ của $(I)$ cắt nhau tại $S, S F$ cắt $(I)$ tại $E^{\prime}\left(E^{\prime} \neq F\right)$
$\triangle S E^{\prime} N \backsim \triangle S N F \Rightarrow \frac{N E^{\prime}}{N F}=\frac{S E^{\prime}}{S N}$
$\triangle S E^{\prime} C \backsim \triangle S C F \Rightarrow \frac{E^{\prime} C}{C F}=\frac{S E^{\prime}}{S C}$
$\Rightarrow \frac{N E^{\prime}}{N F}=\frac{E^{\prime} C}{C F}$
Từ (1) và $(2)$ suy ra: $E \equiv E^{\prime}$
Mà tiếp tuyến tại $N$ của $(I)$ đối xứng với tiếp tuyến tại $K$ của $(E H F)$ qua $A B$ nên ta có đpcm.

Bài tập rèn luyện.

Bài 1. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài $(O)$. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $(O)$, một cát tuyến qua $A$ cắt $(O)$ tại $D, E$ sao cho $D$ nằm giữa $A$ và $E$ và tia $AE$ nằm giữa hai tia $AB, AO$. Đường thẳng qua $D$ song song $BE$ cắt $BC$ tại $F$. Gọi $K$ là điểm đối xứng của $B$ qua $E$, chứng minh $A, P, K$ thẳng hàng.

Bài 2. Cho tam giác $ABC$ đều, trên cạnh $AB, AC$ lấy $M,N$ thỏa $\dfrac{AM}{BM} + \dfrac{AN}{CN} = 1$. Chứng minh rằng $MN$ tiếp xúc với một đường tròn cố định.

Bài 3. Cho tam giác $A B C$ có các đường cao $A A_1, B B_1, C C_1$ và trực tâm $H$. Chúng minh rằng đường thẳng Euler của các tam giác $A B_1 C_1, B C_1 A_1, C A_1 B_1$ đồng quy.

Bài 4. (Nga 2017) Cho hình thang cân $ABCD$ có $BC < AD$ và $BC \parallel AD$. Đường tròn $w$ qua $B, C$ cắt cạnh $AB$ tại $X$, đường chéo $BD$ tại $Y$. Tiếp tuyến tại $C$ của $w$ cắt $AD$ tại $Z$. Chứng minh $X, Y, Z$ thẳng hàng.

Cực trị hình học (Lớp 9)

Bài toán cực trị hình học thường xuất hiện trong các kì thi học sinh giỏi cũng như thi tuyển sinh, đây là câu hỏi gây khó khăn cho nhiều bạn học sinh vì để giải bài toán cực trị đòi hỏi các kiến thức tổng hợp: bài toán quỹ tích, sử dụng các bất đẳng thức đại số,… ngoài ra cũng phải biết và vận dụng được một số bài toán cực trị cơ bản. Bài viết này giúp các em làm quen với các bài toán cực trị trong chương trình lớp 9, từ đó giúp ôn tập tốt hơn trong kì thi tuyển sinh sắp tới.

Cực trị hình học là các bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của các đối tượng hình học như: các biểu thức về độ dài, diện tích, chu vi,…khi giá trị của các biểu thức này thay đổi.

Ta có một số chú ý sau khi giải bài toán cực trị hình học.

Chú ý 1. Để tìm giá trị lớn nhất của biểu thức $P$. Ta thường làm theo các bước sau:

  • Chứng minh $P \leq M$ ( $M$ phải là giá trị không đổi).
  • Tìm điều kiện để xảy ra đẳng thức.
  • Kết luận.

Chú ý 2. Để chứng minh với mô hình $H$ có biểu thức $P$ đạt giá trị lớn nhất (hoặc nhỏ nhất), ta có thể chọn mô hình $H^{\prime}$ bất kì với biểu thức tương ứng là $P^{\prime}$ và ta chứng minh $P \geq P^{\prime}$ (hoặc $P \leq P^{\prime}$ ).

Chú ý 3. Để làm các bài toán cực trị hay bất đẳng thức thường có hai hướng để suy nghĩ:

  • Đưa bài toán ban đầu về các bài toán cực trị quen thuộc đã biết cách giải.
  • Sử dụng các bất đẳng thức Đại số áp dụng lên các yếu tố Hình học.

Một số bài toán cực trị quan trọng.

Tính chất 1. (Đường xiên và hình chiếu) Cho điểm $A$ và đường thẳng $d, M$ là điểm thay đổi trên $d$. Khi đó, $A M$ nhỏ nhất khi và chỉ khi $M$ là hình chiếu vuông góc của $A$ trên $d$.

Tính chất 2. (Bất đẳng thức tam giác) Cho 3 điểm $A, B, C$.

  • $A B+B C \geq A C$. Đẳng thức xảy ra khi và chỉ khi $B$ nằm giữa $A$ và $C$.
  • $|A C-A B| \leq B C$. Đẳng thức xảy ra khi $A, B, C$ thẳng hàng và $A$ nằm ngoài đoạn thẳng $B C$.

Tính chất 3. Trong một tam giác vuông thì độ dài đuờng cao xuất phát tù đỉnh góc vuông không lớn hơn nủa độ dài canh huyền.
Chứng minh
Cho tam giác $A B C$ vuông tại $A$, đường cao $A H$. Cần chứng minh $A H \leq \frac{1}{2} B C$.
Gọi $M$ là trung điểm của $B C$ ta có $A M=\frac{1}{2} B C$.
Mà $A H \leq A M$. Suy ra $A H \leq \frac{1}{2} B C$.
Đẳng thức xảy ra khi $H \equiv M$ hay tam giác $A B C$ vuông cân.

Tính chất 4. Cho đường tròn $(O)$ và dây cung $B C$ cố định. Tìm điểm $A$ thuộc cung lớn $\overparen{B C}$ sao cho
a) Chu vi tam giác ABC lớn nhất.
b) Diện tích tam giác ABC lớn nhất.
Chứng minh
a) Trên tia đối của tia $A B$ lấy điểm $D$ sao cho $A D=A C \Rightarrow A B+A C=B D$. Hơn nữa $\angle B D C=\frac{1}{2} \angle B A C$ không đổi.
Suy ra $D$ thuộc cung chứa góc $\frac{1}{2} \angle B A C$ dựng trên đoạn $B C$.
Do đó $B D$ lớn nhất khi $B D$ là đường kính, lúc này $A$ là điểm chính giữa $\overparen{\mathrm{BC}}$.
Vậy chu vi tam giác $A B C$ lớn nhất $\Leftrightarrow A$ là điểm chính giữa cung $B C$.
b) Vẽ đường cao $A H$, gọi $M$ là trung điểm $B C$.
Ta có $A H \leq A M \leq O A+O M$ không đổi.
Diện tích tam giác $A B C$ lớn nhất khi và chỉ khi $A H$ lớn nhất hay khi $H \equiv M$.
Lúc này $A$ là điểm chính giữa cung $B C$.
Vậy diện tích tam giác $A B C$ lớn nhất $\Leftrightarrow A$ là điểm chính giữa $\overparen{\mathrm{BC}}$.

Tính chất 5. Cho đường tròn $(O)$ và điểm $A$ nằm ngoài đường tròn. Tìm $M$ thuộc (O) đề AM là lớn nhất, nhỏ nhất.
Chứng minh.
a) Ta có $A M \leq O A+O M$. Đẳng thức xảy ra khi $O$ nằm giữa $A, M$. Vậy $A M$ lớn nhất khi và chỉ khi $M$ là giao điểm của tia đối tia $O A$ và $(O)$.
b) Tương tự như trên ta có $A M \geq O A-O M$. Đẳng thức xảy ra khi $M$ nằm giữa $O$ và $A$.
Vậy $A M$ nhỏ nhất khi và chỉ khi $M$ là giao điểm của tia $O A$ và $(O)$.

Bất đẳng thức thường dùng. Cho các số $a, b, c$ không âm. Ta có các bất đẳng thức sau:

  • $a+b \geq 2 \sqrt{a b}$
  • $a^2+b^2 \geq \frac{1}{2}(a+b)^2 \geq 2 a b$.
  • $a+b+c \geq 3 \sqrt[3]{a b c}$
    $\frac{1}{a}+\frac{1}{b} \geq \frac{4}{a+b}$
  • $a+b \leqslant \sqrt{2\left(a^2+b^2\right)}$.
    Dấu bằng xảy ra khi và chỉ khi $a=b$.

Một số ví dụ

Ví dụ 1. Cho tam giác $A B C$ có $\angle B A C=60^{\circ}$. M là điểm thay đổi trên cạnh $B C$.
Gọi $D$, E lần lượt là hình chiếu của $M$ trên $A B, A C$. Tìm vị trí của $M$ đề $D E$ có độ dài nhỏ nhất.
Lời giải.
Gọi $I$ là trung điểm $A M$.
Ta có $A D M E$ nội tiếp đường tròn $(I)$. Kẻ đường kính $D F$ của đường tròn $(I)$.
Xét tam giác $D F E$ vuông tại $E$.
Ta có $\angle D F E=\angle A D E=60^{\circ}($ cùng chắn $\overparen{\mathrm{DE}}$ ) $\Rightarrow \angle F D E=30^{\circ}$.
Suy ra $D E=D F \cos \widehat{D F E}=\frac{D F}{2}=\frac{A M}{2}$.
Do đó $D E$ nhỏ nhất khi và chỉ khi $A M$ nhỏ nhất, hay $M$ là chân đường cao hạ từ $A$. Vậy $D E$ nhỏ nhất khi và chỉ khi $M$ là chân đường cao từ $A$ của tam giác $A B C$.

Ví dụ 2. Cho đuờng tròn $(O)$ và dây cung $B C$ cố định. A là điểm thay đổi trên cung lơn BC. Gọi I là tâm đường tròn nội tiếp của tam giác $A B C$.
a) Tìm vị trí của A để diện tích tam giác BIC là lớn nhất.
b) Tìm vị trí của A để AI lớn nhất.
Lời giải.
a) Ta có $\angle B A C \Rightarrow \angle B I C=90^{\circ}+\frac{1}{2} \angle A$ không đổi. Do đó $I$ thuộc cung chứa góc $\alpha=90^{\circ}+\frac{1}{2} \angle A$ dựng trên đoạn $B C$.
Khi đó diện tích tam giác $I B C$ lớn nhất khi và chỉ $I$ là điểm chính giữa cung, hay $A$ là điểm chính giữa cung $B C$.
b) $A I$ cắt $(O)$ tại $D$ khác $A, D$ là điểm chính giữa cung $B C$. Ta có $D I=D C$ không đổi.
Ta có $A I=D A-D I$, do đó $A I$ lớn nhất khi và chỉ khi $D A$ lớn nhất, hay $D A$ là đường kính, khi đó $A$ là điểm chính giữa cung $B C$.
Vậy $A I$ lớn nhất khi và chỉ khi $A$ là điểm chính giữa cung $B C$.

Ví dụ 3. Cho tam giác $A B C$ nội tiếp đường tròn w. P là một điểm thay đổi thuộc cung BC không chúa A. Gọi $H, K$ lần lượt là hình chiếu của A trên $P B, P C$. Tìm vi trí của $P$ để
a) Độ dài đoạn thẳng HK là lớn nhất.
b) Giá trị biểu thúc $A H \cdot P B+A K \cdot P C$ là lớn nhất.
Lời giải.
a) Ta có $\triangle A H B \backsim \triangle A K C \Rightarrow \triangle A H K \sim \triangle A B C$.
Suy ra $\frac{H K}{B C}=\frac{A H}{A B} \leqslant 1$. Do đó $K H \leqslant B C$.
Đẳng thức xảy ra khi $H \equiv B$ hay $A P$ là đường kính.
Vậy $K H$ lớn nhất bằng $B C$ khi $A P$ là đường kính.
b)
$$
\text { Ta có: } \begin{aligned}
A H \cdot P B+A K \cdot P C & =2 S_{A P B}+2 S_{A P C} \
& =2 S_{A B P C} \
& =2\left(S_{A B C}+S_{P B C}\right)
\end{aligned}
$$
Suy ra $A H \cdot P B+A K \cdot P C$ lớn nhất khi và chỉ khi $S_{P B C}$ lớn nhất, hay $P$ là điểm chính giữa cung $B C$.
Vậy $A H \cdot P B=A K \cdot P C$ lớn nhất khi $P$ là điểm chính giữa cung $B C$.

Ví dụ 4. (Thi vào lớp 10 Chuyên Toán trường Chuyên Lam Sơn tỉnh Thanh Hóa năm 2010) Cho đường tròn $(O)$ bán kính $R=1$ và điểm $A$ thỏa $O A=\sqrt{2}$. Từ $A$ vẽ các tiếp tuyến $A B, A C$ với $B, C$ là các tiếp điểm. Các điểm $D, E$ thay đổi trên các đoạn $A B, A C$ sao cho $\angle D O E=45^{\circ}$.
(a) Chứng minh $D E$ tiếp xúc với $(O)$.
(b) Tìm giá trị lớn nhất và nhỏ nhất của $DE$.
Hướng dẫn giải
(a) Ta chứng minh được $A B O C$ là hình vuông. Đường thẳng qua $O$ vuông góc $O D$ cắt $A C$ tại $F$, suy ra $\angle D O E=\angle F O E$.
Ta có $\triangle O B D=\triangle O C F \Rightarrow C F=B D, O F=O D$.
Khi đó $\triangle O E F=\triangle O E D \Rightarrow \angle O E F=\angle O E D$, vẽ $O H \perp D E$, suy ra $O H=O C$, do đó $D E$ là tiếp tuyến của $(O)$.
(b) Ta có $E H=C E, B D=D B$, suy ra $A E+A D+D E=A B+A C=2$.
Đặt $x=A D, y=A E$, suy ra $D E=\sqrt{x^2+y^2}$ và $x+y+\sqrt{x^2+y^2}=2$.
Ta có $\sqrt{x^2+y^2} \leq x+y \leq \sqrt{2\left(x^2+y^2\right)}$, suy ra $2 \sqrt{x^2+y^2} \leq x+y+\sqrt{x^2+y^2} \leq(1+$ $\sqrt{2}) \sqrt{x^2+y^2}$, từ đó suy ra $2-\sqrt{2} \leq \sqrt{x^2+y^2} \leq 1$ hay $2-\sqrt{2} \leq D E \leq 1$.

Từ đó $DE$ lớn nhất bằng 1 khi D trùng B, nhỏ nhất là $2 – \sqrt{2}$ khi $AD = AE$.

Ví dụ 5. Cho nửa đường tròn đường kính $BC=2a$, $A$ thay đổi trên nửa đường tròn. Đường cao $AH$.

a) Tìm giá trị lớn nhất của $BH + AH$.

b) Phân giác góc $BAH, CAH$ cắt $BC$ tại $MN$. Tìm vị giá trị lớn nhất của $MN$.

Lời giải.

a) Rõ ràng $BH + AH$ lớn nhất chỉ khi $H$ thuộc đoạn $OC$ vì nếu $H$ thuộc đoạn $BC$ ta lấy $A’$ đối xứng với $A$ qua trung trực $BC$ ta sẽ có $A’H + BH’ > AH+BH$.

Khi đó $BH + AH = BO + OH + AH$ = a + OH + AH$.

Mà $OH + AH \leq \sqrt{2(OH^2+AH^2)} = a\sqrt{2}$

Do đó $AH + BH \leq a + a\sqrt{2}$, đẳng thức xảy ra khi $AH = OH$ và $H$ là trung điểm $OC$.

Vậy giá trị lớn nhất của $BH+AH$ là $a+a\sqrt{2}$ khi $H$ là trung điểm $OC$.

b) Ta có $\angle BAN = \angle BAH + \angle HAN = \angle ACB + \angle CAN = \angle BNA$, suy ra $BN = BA$

Chứng minh tương tự thì $CM = AC$

Khi đó $MN = BN +CM – BC = AB + AC – BC \leq \sqrt{2{AB^2+AC^2}} – BC = 2a(\sqrt{2}-1)$.

Do đó $MN$ lớn nhất là $2a(\sqrt{2}-1)$ khi $AB = AC$.

Bài tập rèn luyện

Bài 1. Cho tam giác $A B C$ nội tiếp đường tròn $(O), A B<A C$. Phân giác trong $\angle B A C$ cắt $(O)$ tại $D$ khác $A$. Trên tia $A B$ lấy $M$ tuỳ ý sao cho đường tròn ngoại tiếp $\triangle A D M$ cắt $A C$ tại $N$ khác $A, C$. Xác định vị trí tâm $I$ của đường tròn ngoại tiếp $\triangle A D M$ để độ dài đoạn thẳng $M N$ nhỏ nhất.

Bài 2. Cho đường tròn tâm $O$ đường kính $B C, A$ là điểm di động trên đường tròn $(O)$ ( $A$ khác $B, C)$. Kẻ $A H \perp B C$ tại $H$. Kẻ $H P \perp A B$ tại $P$. Tìm vị trí điểm $A$ sao cho bán kính đường tròn ngoại tiếp $\triangle B P C$ đạt giá trị lớn nhất.
Bài 3. Cho $\triangle A B C$ vuông tại $A$ có $A B<A C$ ngoại tiếp đường tròn $(O)$.
Gọi $D, E, F$ lần lượt là tiếp điểm của $(O)$ với các cạnh $A B, A C, B C$. $M$ là điểm di động trên đoạn $C E$. Gọi $N$ là giao điểm của $B M$ với cung nhỏ $E F$ của $(O)$. Các điểm $P, Q$ lần lượt là hình chiếu của $N$ trên các đường thẳng $D E, D F$. Xác định vị trí điểm $M$ để độ dài $P Q$ lớn nhất.

Bài 4. Cho 3 đường tròn có tâm thẳng hàng và ngoài nhau, đường tròn thứ tư tiếp xúc ngoài với cả ba đường tròn trên. Chứng minh rằng bán kính đường tròn thứ tư lớn hơn bán kính của một trong ba đường tròn kia.

Bài 5. (Đề thi Olympic 30-4 năm 2000)Trên đường tròn tâm $O$ bán kính $R$ cho năm điểm phân biệt $A, B, C, D, E$ theo thứ tự đó sao cho $A B=B C=D E=R$. Gọi $M, N$ lần lượt là trung điểm của $C D$ và $A E$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $B M N$.

Đường tròn nội tiếp – Đường tròn bàng tiếp trong tam giác

Định nghĩa và một số tính chất quan trọng

Định nghĩa 1. Đường tròn nội tiếp là đường tròn có tâm là giao điểm ba đường phân giác trong và tiếp xúc với ba cạnh của tam giác.

Định nghĩa 2. Đường tròn bàng tiếp là đường tròn có tâm giao điểm của một phân giác trong và hai phân giác ngoài, tiếp xúc với một cạnh và phần nối dài của hai cạnh còn lại.\\
Trong tam giác có ba đường tròn bàng tiếp ứng với ba đỉnh của tam giác.

Tính chất 1. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$, đường tròn tâm $I$ bán kính $r$ nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$.
Gọi $I_a, I_b, I_c$ lần lượt là tâm đường tròn ứng với các đỉnh $A, B, C$. $(I_a)$ tiếp xúc với $BC, AC, AB$ tại $D’,E’, F’$.
Đặt $p = \dfrac{AB+BC+AC}{2}, S = S_{ABC}$.
Ta có một số tính chất sau:
a) $AE = AF = p-a$ và $AE’ = AF’ = p$ và $BD = CD’ = \dfrac{AB+BC-AC}{2}$.
b) $K$ là điểm đối xứng của $D$ qua $I$ thì $A, K, D’$ thẳng hàng.
c) Đường tròn ngoại tiếp tam giác $ABC$ đi qua trung điểm các cạnh của tam giác $I_aI_bI_c$.

Chứng minh.

(a) Ta có $A E=A F, B D=B F, C D=C E$, khi đó $A B+A C-B C=A F+B F+A E+C E-$ $B D-C D=A E+A F=2 A E$, suy ra $A E=\frac{A B+A C-B C}{2}=\frac{A B+B C+A C}{2}-B C=p-a ;$
Ta có $B D^{\prime}=B F, C D^{\prime}=C E$, suy ra $A B+A C+B C=A B+B D^{\prime}+C D^{\prime}+A C=$ $A B+B F^{\prime}+A C+C E^{\prime}=A E^{\prime}+A F^{\prime}=2 A E^{\prime} \Rightarrow A E^{\prime}=A F^{\prime}=\frac{A B+B C+A C}{2}=p ;$

Chứng minh tương tự thì $B D=p-b$ và $C D^{\prime}=C E^{\prime}=A E^{\prime}-A C=p-b$, do đó $B D=C D^{\prime}$.
(b) Ta có $I K=I E, I_a D^{\prime}=I_a E^{\prime}$ nên $\frac{I K}{I_a D^{\prime}}=\frac{I E}{I_a E^{\prime}}$ và $I E / / I_a E^{\prime}$ nên $\frac{I E}{I_a E^{\prime}}=\frac{A I}{A I_a}$; do đó $\frac{A I}{A I_a}=$ $\frac{I K}{I_a D^{\prime}}$, suy ra $\triangle A I K \backsim \triangle A I_a D^{\prime} \Rightarrow \angle I A K=\angle I_a A D^{\prime}$, từ đó $A, K, D^{\prime}$ thẳng hàng.
(c) Ta có $A I_b, A I_a$ là phân giác ngoài và phân giác trong góc $A$ nên $\angle I_a A I_b=90^{\circ}$ hay $I_a A \perp I_b I_c$; chứng minh tương tự ta có $I_b B \perp I_a I_c, I_c C \perp I_a I_b$.

Trong tam giác $I_a I_b I_c$ thì $I_a A, I_b B, I_c C$ là ba đường cao, nên đường tròn ngoại tiếp tam giác $A B C$ chính là đường tròn Euler của tam giác $I_a I_b I_c$ nên đi qua trung điểm 3 cạnh của tam giác này.

Tính chất 2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với $BC, AC, AB$ tại $D, E, F$. Gọi $M, N$ lần lượt là trung điểm $BC, AC$. Khi đó $EF, BI, MN$ đồng quy.

Chứng minh.

Gọi $K$ là giao điểm của $B I$ và $E F$, ta chứng minh $K, M, N$ thẳng hàng.
Ta có $\angle K E C=\angle A E F=90^{\circ}-\frac{1}{2} \angle B A C$ và $\angle K I C=\angle I B C+\angle I C B=\frac{1}{2}(\angle A B C+$ $\angle A C B)=90^{\circ}-\angle B A C$. Suy ra $\angle K E C=$ $\angle K I C$, tứ giác $K E I C$ nội tiếp, do đó $\angle B K C=$ $90^{\circ}$.

Tam giác $K B C$ vuông tại $K$ có $K M$ trung tuyến nên $M K=M B=M C$, suy ra $\angle K M C=$ $2 \angle K B C=\angle A B C$, suy ra $K M / / A B$, mà $M N$ là đường trung bình của tam giác $A B C$ nên $M N / / A B$, do đó $K, M, N$ thẳng hàng.

Tính chất 3. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ tại $D, E, F . I D$ cắt $E F$ tại $K$, khi đó $A K$ đi qua trung điểm $M$ của $B C$.

Chứng minh. Qua $K$ vẽ đường thẳng song song hay $M$ là trung điểm cạnh $B C$. với $B C$ cắt $A B, A C$ tại $P$ và $Q$, ta chứng minh $K$ là trung điểm $P Q$.

Ta có $\angle I K \perp P Q$, từ đó suy ra $I K P F, I K E Q$ nội tiếp, suy ra $\angle I P K=\angle I F K, \angle I Q K=\angle I E K$ mà $I E F$ cân tại $I$ nên $\angle I E K=\angle I F K$, suy ra $\angle I P Q=\angle I Q K$. Tam giác $I P Q$ cân nên $K$ là trung điểm $P Q$.

Gọi $M$ là giao điểm của $A K$ với $B C$, ta có $\frac{K P}{M B}=$ $\frac{A K}{A M}=\frac{K Q}{M C}$, mà $K P=K Q$ nên $M B=M C$

Tính chất 4. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ lần lượt tại $D, E, F . E F$ cắt $B C$ tại $P$. Khi đó $\frac{P B}{P C}=\frac{D B}{D C}$ và $I P \perp A D$.
Chứng minh

Theo ví dụ 1.1 ta có $\frac{P B}{P C}=\frac{D B}{D C}$.

Gọi $K$ là giao điểm của $I A$ và $E F$ ta có $\angle I K P=90^{\circ}$, suy ra $I K P D$ nội tiếp, do đó $\angle I P D=\angle I K D$.
Mặt khác $I K \cdot I A=I E^2=I D^2$, suy ra $\triangle I K D \backsim \triangle I D A \Rightarrow I K D=\angle I D A$.
Do đó $\angle I P D=\angle I D A$, suy ra $D A \perp IP$.

Bài tập có lời giải

Bài 1. (PTNK 2014) Cho điểm $\mathrm{C}$ thay đổi trên nửa đường tròn đường kính $A B=2 R$ $(C \neq A, C \neq B)$. Gọi $H$ là hình chiếu vuông góc của $C$ lên $A B ; I$ và $J$ lần lượt là tâm đường tròn nội tiếp các tam giác $A C H$ và $B C H$. Các đường thẳng $C I, C J$ cắt $A B$ tại $M, N$.
(a) Chứng $\operatorname{minh} A N=A C, B M=B C$.
(b) Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng $M J, N I$ và $C H$ dồng quy.
(c) Tìm giá trị lớn nhất của $M N$ và giá trị lớn nhất của diện tích tam giác $C M N$ theo $\mathrm{R}$.

Lời giải.

(a) Ta có $\angle H C B=\angle C A B$ (cùng phụ với $\angle A B C$ ) và $\angle H C A=\angle C B A$ (cùng phụ với $\angle B A C$ ).
Ta có $\angle C A N=\angle N A C+\angle A B C=\angle H A N+\angle A C B=\angle C A N$. Suy ra tam giác $C A N$ cân tại $A$ hay $A N=A C$. Chứng minh tương tự ta có $B M=B C$.
(b) Tam giác $C A N$ cân tại $A$ có $A I$ là phân giác nên cũng là trung trực, suy ra $I C=I N$, suy ra $\angle I N C=\angle I C N=\angle I C H+\angle N C H=\frac{1}{2} \angle A C H+\frac{1}{2} \angle B C H=45^{\circ}$.
Tương tự thì $\angle J M C=45^{\circ}$.
Tứ giác $M I J N$ có $\angle J M C=\angle I N C=45^{\circ}$ nên là tứ giác nội tiếp, hay $M, N, I, J$ cùng thuộc một đường tròn.
Tam giác $I N C$ cân có $\angle I C N=45^{\circ}$ nên $\angle C I N=90^{\circ}$, suy ra $C I \perp C M$.
Chứng minh tương tự $M J \perp C N$.
Tam giác $C M N$ có $C H, M J, N I$ là các đường cao nên đồng quy.
(c) Đặt $A C=b, B C=a$. Ta có $a^2+b^2=B C^2=4 R^2$.
Ta có $A N=A C=b, B M=B C=a$.
$A M+B N=B C+M N$, suy ra $M N=a+b-B C=a+b-2 R$.
Ta có $(a+b)^2 \leq 2\left(a^2+b^2\right)=8 R^2$. Suy ra $a+b \leq 2 \sqrt{2} R$, suy ra $a+b-2 R \leq 2 R(\sqrt{2}-1)$. Đẳng thức xảy ra khi $a=b=R \sqrt{2}$.
Vậy giá trị lớn nhất của $M N$ bằng $2 R(\sqrt{2}-1)$ khi $C$ là điểm chính giữa đường tròn. Khi đó $S_{C M N}=\frac{1}{2} C H \cdot M N \leq R^2(\sqrt{2}-1)$. Đẳng thức xảy ra khi $C$ là điểm chính giữa đường tròn.

Bài 2. Cho tam giác $A B C$ có bán kính đường tròn nội tiếp là $r$, đường tròn ngoại tiếp là $R$ và bán kính đường tròn bàng tiếp lả $r_a, r_b, r_c$. Khi đó
$$
r_a+r_b+r_c=4 R+r
$$

Lời giải.

Đường tròn ngoại tiếp tam giác $A B C$ là đường tròn Euler của tam giác $I_a I_b I_c,(A B C)$ cắt $I_b I_c$ tại $N$ và cắt $A I_a$ tại $M$, khi đó $N$ là trung điểm của $I_a I_b$ và $I I_a$. Ta có $M N$ là đường kính của $(A B C)$.
Gọi $K, L$ là hình chiếu của $I_c, I_b$ trên đường thẳng $B C$ và $E$ là hình chiếu của $I_a$ trên $B C$. Tứ giác $I_b L K I_c$ là hình thang vuông có $N P$ là đường trung bình nên $I_c K+I_b L=2 N P$ hay $r_b+r_c+2 N P$. Tương tự $I_a E-I D=2 M P$ hay $r_a-r=2 M P$. Do đó $r_b+r_c+r_a-r=2 N P+2 M P=2 M N=4 R \Rightarrow r_a+r_b+r_c=4 R+r$.

Bài 3. Cho tam giác $A B C$ nhọn có $A B<A C$, đường tròn tâm I nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $B C, A C, A B$ lần lượt tại $D, E, F$. Gọi $K$ là hình chiếu vuông góc với $D$ trên $E F$.
a) Đường tròn ngoại tiếp tam giác $A B C$ và tam giác $A E F$ cắt nhau tại $P$ khác
A. Chứng $\operatorname{minh} P, K, I$ thẳng hàng.
b) $D K$ cắt $A B$ tai $H$. Tính $\angle F P H$.

Lời giải.

a) Chứng minh được $\triangle P F B \backsim \triangle P E C$.
Suy ra $\frac{P F}{P E}=\frac{F B}{E C}$.
Ta cũng chứng minh được: $\angle B K F=\angle C K E$. Hơn nữa $\angle B F K=\angle C E K$ nên $\triangle K F B \backsim \triangle K E C$. Do đó ta suy ra $\frac{F B}{E C}=\frac{K F}{K E}$.
Do vậy $\frac{P F}{P E}=\frac{K F}{K E}$.
Suy ra $P K$ là phân giác góc $\angle E P F$.
Mà $P I$ là phân giác $\angle E P F$ nên $P, I, K$ thẳng hàng.
b) Ta có $H K / / A I$ nên suy ra $\angle P K H=\angle A I P=\angle P F H$.
Do đó tứ giác $P F H K$ nội tiếp.
Suy ra $\angle H P F+\angle H K F=180^{\circ}$.
Mà $\angle H K F=90^{\circ}$ nên $\angle H P F=90^{\circ}$.

Bài tập rèn luyện

Bài 1. (TPHCM 2020) Đường tròn $(I)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, B C$, $C A$ lần lượt tại $D, E, F$. Kẻ đường kính $E J$ của đường tròn $(I)$. Gọi $d$ là đường thẳng qua $A$ song song với $B C$. Đường thẳng $J D$ cắt $d, B C$ lần lượt tại $L, H$.
(a) Chứng minh: $E, F, L$ thẳng hàng.
(b) $J A, J F$ cắt $B C$ lần lượt tại $M, K$. Chứng minh: $M H=M K$.

Bài 2. (TPHCM 2017) Cho tam giác $A B C$ có góc $B$ tù. Đường tròn $(O)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, C A, B C$ lần lượt tại $L, H, J$.
(a) Các tia $B O, C O$ cắt $L H$ lần lượt tại $M, N$. Chứng minh 4 diểm $B, C, M, N$ cùng thuộc một đường tròn.
(b) Gọi $d$ là đường thẳng qua $O$ và vuông góc với $A J ; d$ cắt $A J$ và đường trung trực của cạnh $B C$ lần lượt tại $D$ và $F$. Chứng minh 4 điểm $B, D, F, C$ cùng thuộc một đường tròn.

Bài 3. (PTNK 2015) Cho tam giác $A B C(A B<A C)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $B C, E$ là điểm chính giữa của cung nhỏ $B C, F$ là điểm đối xứng của $E$ qua $M$.
(a) Chứng minh $E B^2=E F \cdot E O$.
(b) Gọi $D$ là giao điểm của $A E$ và $B C$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.
(c) Gọi $I$ là tâm đường tròn nội tiếp tam giác $A B C$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $I B C$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $P O F$ đi qua một điểm cố định.

Trục đẳng phương – Tâm đẳng phương

Bài 1. Cho đường tròn $(O)$. $A, B$ là hai điểm cố định đối xứng nhau qua $O$, $M$ là điểm chuyển động trên $(O)$. $MA, MB$ giao với $(O)$ tại $P$ và $Q$. Chứng minh rằng $\dfrac{{\overline {AM} }}{{\overline {AP} }} + \dfrac{{\overline {BM} }}{{\overline {BQ} }}$ nhận giá trị không đổi. 

Bài 2. Cho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ củaCho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ của đường tròn ngoại tiếp tam giác $BFK$ và đường kính $KN$ của đường tròn ngoại tiếp tam giác $CEK$. Chứng minh rằng ba điểm $M, H, N$ thẳng hàng.

Gợi ý

Gọi $P$ là giao điểm của $(KBF)$ và $KCE)$.

  • Ta có $AF.AB = AE.AC = AH.AD$ nên $A$ thuộc trục đẳng phương của $(KBF)$ và $(KCE)$. Suy ra $A, P, K$ thẳng hàng.
  • Do đó $AP. AK = AH.AD$, suy ra $\angle HPK = \angle ADK = 90^\circ$.
  • Mặt khác $KM, KN$ là đường kính của $(KBF), (KCE)$ nên $\angle KPM = \angle KPN = 90^\circ$. Vậy $H,M, P, N$ thẳng hàng.

Bài 3. Cho tam giác $ABC$ nhọn, $\angle B > \angle C$. Gọi $M$ là trung điểm đoạn $BC$ và $E, F$ lần lượt là chân đường cao từ $B$ và $C$. Gọi $K, L$ lần lượt là trung điểm của $ME$, $MF$. Gọi $T$ là giao điểm của $KL$ sao cho $TA||BC$. Chứng minh $TA = TM$.

Gợi ý

Xét đường tròn đường kính $AH$.

  •  $ME, MF$ là tiếp tuyến của $(AH)$.
  • $KL$ là trục đẳng phương của $(AH)$ và đường tròn điểm $M$.
  • Mà $TA$ là tiếp tuyến của $(AH)$ nên $TA^2 = TM^2$.

Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, một đường thẳng qua $(O)$ song song với $BC$, cắt $AB$, $AC$ lần lượt tại $F, E$. Đường tròn ngoại tiếp các tam giác $(BFO)$ và $(CEO)$ cắt nhau tại điểm thứ 2 là $D$ và cắt $BC$ tại $L, K$. Gọi $M$ là giao của $BE$ và $CF$. Gọi $N$ là giao của $FL$ và $EK$. Chứng minh rằng $D, M, N$ thẳng hàng.

Gợi ý
  • Gọi $D’$ là giao điểm của đường cao hạ từ $A$ với $(O)$. Chứng minh được $D’BFO, D’CEO$ nội tiếp nên $D’ \equiv D$.
  • Chứng minh tứ giác $EFLK$ nội tiếp. Trục đẳng phương của $(OFBD), (OECD), (EFLK)$ cắt nhau tại $N$ nên $D, O, N$ thẳng hàng.
  • Gọi $P$ là trung điểm $BC$ ta có $A, M, P$ thẳng hàng.
  • Áp dụng Menelaus cho tam giác $ABP$ với đường thẳng $FC$ ta có $\dfrac{PM}{AM} = \dfrac{BF}{2AF} = \dfrac{OP}{AD}$. Suy ra $O, M, D$ thẳng hàng.
  • Vậy $D, M, N$ thẳng hàng.
  • Bài 5. (IMO 2000) Cho hai đường tròn $w_1$ và $w_2$ cắt nhau tại $M$ và $N$. Gọi $l$ là tiếp tuyến chung của $w_1, w_2$ sao cho $l$ gẩn $M$ hơn $N$. Gọi tiếp điểm của $l$ với $w_1$ là $A$, với $w_2$ là $B$. Đường thẳng qua $M$ song song với $l$ cắt $w_1$ tại $C$ và cắt $w_2$ tại $D$. Đường thẳng $CA$ và $DB$ cắt nhau tại $E$; đường thẳng $AN$ và $CD$ cắt nhau tại $P$; $BN$ và $CD$ cắt nhau tại $Q$. Chứng minh rằng $EP = EQ$.

    Gợi ý

    Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.

    Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.

    $PQ||AB$, suy ra $M$ là trung điểm của $PQ$.

    Ta có $\angle FBA = \angle FDM = \angle ABM$ và $\angle FAB = \angle BAM$. Suy ra $\triangle AEM = \triangle BEM$.  Suy ra $BE = BM, AE = AM$ và $AB$ là trung trực của $EM$, suy ra $EM \bot AB$. Do đó $EM \bot PQ$.

    $EM \bot PQ$ và $MP = MQ$ nên tam giác $EPQ$ cân.

    Bài 6. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với góc $A$ nhọn. Gọi $D$ là điểm chính giữa của cung nhỏ $BC$ và $E, F$ lần lượt là trung điểm của $AC, AB$. Giả sử $DE, DF$ cắt lại với $(O)$ tại điểm thứ hai tương ứng là $Y$, $Z$. Đường tròn $(AEY)$ cắt $(AFZ)$ tại điểm thứ hai $M$. Gọi $N$ là trung điểm của $BC$ và đường tròn $(DNM)$ giao với $BC$ tại điểm thứ hai $X$. Chứng minh rằng $AX$ là tiếp tuyến của $(O)$.

    Gợi ý

    Gọi $L, K$ là giao điểm của $DZ, DY$ với $BC$.

    • Ta có $DL.DZ = DB^2 = DK.DY$, suy ra $LKYZ$ nội tiếp. Suy ra $EFZY$ nội tiếp.
    • Khi đó $AM, ZF, YE$ đồng quy tại $D$.
    • Chứng minh $E, M, F$ thẳng hàng.
    • Ta có $\angle XMD = \angle XND = 90^o$, suy ra $XM \bot AP$ và $AM = MP$ suy ra $XA = XP$.
    • Từ đó chứng minh được $AX$ là tiếp tuyến của $(O)$.

    Bài 7. (China 2010) Lấy $AB$ là dây cung của đường tròn tâm $O$, $M$ là điểm chính giữa cung $AB$ và $C$ là điểm nằm ngoài đường tròn $(O)$. Từ $C$ vẽ hai tiếp tuyến đến $(O)$ tại tiếp điểm $S, T$. Gọi $E$ là giao điểm của $MS$ và$ AB$, $F$ là giao điểm của $MT$ và $AB$. Từ $E, F$ vẽ các đường thẳng vuông góc với $AB$, cắt $OS$ và $OT$ lần lượt tại $X$ và $Y$. Một đường thẳng qua $C$ cắt $(O)$ tại $P$ và $Q$, $MP$ cắt $AB$ tại $R$. Chứng minh rằng $XY$ đi qua tâm đường tròn ngoại tiếp tam giác $PQR$.

    Gợi ý
    • Chứng minh $XE = XS$.
    • Chứng minh $P, Q, U, R$ đồng viên, $Q, S, E, U$ đồng viên.
    • Chứng minh $MS.ME = MQ.MU = MP.MR$. Suy ra $M$ thuộc trục đẳng phương của $(PQR)$ và $(X)$. Và $CS^2 = CP.CQ$ nê $C$ cũng thuộc trục đẳng phương của hai đường tròn trên.
    • Do đó $MC \bot ZX$.
    • Cmtt thì $MC \bot ZY$, suy ra $Z, X, Y$ thẳng hàng.

    Bài 8. Cho hai đường tròn $(C_1)$ và $(C_2)$ tiếp xúc ngoài với nhau tại tiếp điểm $M$. Gọi $AB$ là một tiếp tuyến chung của $()C1)$ và $(C_2)$ với $A, B$ phân biệt lần lượt là các tiếp điểm. Trên tia tiếp tuyến chung Mx của hai đường tròn ($Mx$ không cắt $AB$) lấy điểm $C$ khác $M$. Gọi $E$ và $F$ lần lượt là giao điểm thứ hai của $CA$ với $(C_1)$ và $CB$ với $(C_2)$. Chứng minh rằng tiếp tuyến của $(C_1)$ tại $E$, tiếp tuyến của $(C_2)$ tại $F$ và $Mx$ đồng quy.

    Gợi ý

    Gọi $G$ là giao điểm tiếp tuyến tại $E$ của $(C_1)$ và tại $F$ của $(C_2)$.

    •  Ta có $CE.CA = CF.CB$ nên $AEFB$ nội tiếp.
      $\angle GEA = \angle BAE = \angle CFE$, suy ra $GE$ cũng là tiếp tuyến tại $E$ của $(CEF)$.
    • Chứng minh tương tự thì $FG$ là tiếp tuyến tại $F$ của $(CEF)$.
      Suy ra $CG$ là đường đối trung của $CEF$.
    • Mặt khác $CM$ qua trung điểm $AB$ và $CEF \backsim CBA$ nên $CM$ cũng là đường đối trung của $CEF$.
    • Vậy $G \in CM$.

    Bài 9. Cho tam giác $ABC$ là tam giác nhọn, không cân nội tiếp đường tròn tâm O. Gọi $AD, BE, CF$ là ba đường phân giác trong của tam giác $ABC$. Gọi $L, M,N$ lần lượt là trung điểm của $AD, BE, CF$. Gọi $(O_1), (O_2), (O_3)$ lần lượt là các đường tròn đi qua $L$, tiếp xúc với $OA$ tại $A$; đi qua $M$, tiếp xúc với $OB$ tại $B$; đi qua $N$ tiếp xúc với $OC$ tại $C$. Chứng minh rằng $(O_1), (O_2), (O_3)$ có đúng hai điểm chung và đường thẳng nối hai điểm đó đi qua trọng tâm tam giác $ABC$.

    Gợi ý

    Gọi $AA_1, BB_1, CC_1$ là các đường cao của tam giác $ABC$. $A_2$ là giao điểm của $AO_1$ và $BC$.

    • Tam giác $A_2AD$ cân tại $A_2$ nên $A_2L \bot AL$. Và $O_1AL \backsim A_2AD$ nên $O_1$ là trung điểm của $AA_2$. Do đó $A_1$ thuộc đường tròn $(O_1)$ đường kính $AA_2$. Chứng minh tương tự thì $B_1, B_2 \in (O_2), C_1, C_2 \in (O_3)$.
    • Ta có $HA_1.HA = HB_1.HB$ và $OA, OB$ tiếp xúc với $(O_1), (O_2)$ và $OA = OB$ nên $HO$ là trục đẳng phương của $(O_1), (O_2)$.
    • Chứng minh tương tự thì $HO$ cũng là trục đẳng phương của các cặp đường tròn $(O_1), (O_3)$ và $(O_2), (O_3)$.
    • Do đó các đường tròn đi qua 2 điểm chung và đường thẳng qua 2 điểm chung là $HO$, và $HO$ qua $G$.

    Bài 10. Cho tam giác $ABC$ và điểm $D$ thay đổi trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $H$ là trực tâm.(a) Đường tròn ngoại tiếp tam giác $AEF$ và đường tròn đường kính $AH$ cắt nhau tại điểm thứ hai là $P$. Chứng minh $AP$ đi qua trung điểm của $BC$.(b) Chứng minh trực tâm tam giác $PEF$ thuộc một đường thẳng cố định.

    Gợi ý
    1. Các đường cao $AN, BE, CL$ cắt nhau tại $H$. Gọi $AM$ là trung tuyến, $HP \bot AM$. Chứng minh $P \in (AEF)$.
      $\dfrac{PK}{PN} = \dfrac{AC}{AB}$.
      $BF.BA = BD.BC, BK.BA = BL.BC$, suy ra $KF.BA = DL.BC$.
      Tương tự $EN.AC = DL.BC$, suy ra $\dfrac{KF}{EN} = \dfrac{AC}{AB}$.
      Do đó tam giác $PKF$ và $PNE$ đồng dạng, suy ra $P \in (AEF)$.
    2. Gọi $X, Y$ là giao điểm của $(P;PA)$ với $AB, AC$. Chứng minh trực tâm tam giác $PEF$ thuộc $XY$.

    Bài 11. Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.(a) Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. (b) Chứng minh $MP, NQ$ và $BC$ đồng quy.

    Gợi ý

    1.

    • Gọi $H$ là trực tâm tam giác $ABC$ và $AF$ là đường cao thì $HM.HN = HA.HF = HP.HQ$, suy ra $M, N, P, Q$ cùng thuộc đường tròn.

    2.

    • Ta có $AN^2 = AH.AF = AE.AC = AQ^2$, tương tự $AM = AP$. Suy ra $A$ là tâm của $(MNPQ)$.
    • Gọi $V$ là giao điểm của $MP$ và $QN$.
    • Ta có $\angle PFN = \angle PFA +\angle AFN = \angle AQP + \angle AMN = 180^o – \angle BAC – \angle PAN$.
    • Mặt khác $\angle PVN = 180^o – \angle VMQ – \angle VQM = 180^o – \angle PMN – \angle PQN – \angle HMQ – \angle HQM = 180^o – \angle PAN – \angle BAC$.
    • Do đó $\angle PVN = \angle PFN$, suy ra $FVNP$ nội tiếp.
    • Khi đó $\angle VFN = \angle VPN = \angle MQN = \dfrac{1}{2} \angle MAN = \angle MAB = 90^o – \angle AMN = 90^o – \angle APN = 90^o – \angle AFN = \angle NFC$.
    • Do đó $F, K, C$ thẳng hàng.

    Bài 12. (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$. (a) Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng. (b) Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.

    Gợi ý

    1.

    • Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
    • Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
    • Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
    • Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.

    2.

    • Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
    • Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
    • Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
    • Vậy $AF$ luôn đi qua điểm $G$ cố định.

    Bất đẳng thức trong tam giác

    Định lý 1. Trong một tam giác tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại.

    Chứng minh.

    Giả thiết : $\triangle \mathrm{ABC}$.
    Kết luận : $\mathrm{AC}+\mathrm{BC}>\mathrm{AB} ; \mathrm{AB}+$ $+\mathrm{BC}>\mathrm{AC} ; \mathrm{AB}+\mathrm{AC}>\mathrm{BC}$.

    Trên tia đối của tia $\mathrm{CA}$ xác định điểm $\mathrm{D}$ sao cho $\mathrm{CL}=\mathrm{CB}$ (h. 94). Tia $\mathrm{BC}$ nằm giữa hai tia $\mathrm{BA}$ và
    $\mathrm{BD}$, do đó : $\widehat{\mathrm{ABD}}>\mathrm{CBD}$. (1)

    Theo cách xác định điểm $\mathrm{D}$ thì tam giác $\mathrm{BCD}$ là tam giác cân cạnh đáy $\mathrm{BD}$; do đó : $\widehat{\mathrm{CBD}}=\widehat{\mathrm{D}}$.
    (2)

    Từ (1) và $(2)$ suy ra: $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$.
    Trong tam giác $\mathrm{ABD}$ : vì $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$ nên $\mathrm{AD}>\mathrm{AB}$. Ta biết $\mathrm{AD}=\mathrm{AC}+\mathrm{CD}=\mathrm{AC}+\mathrm{CB}$, do đó $\mathrm{AC}+\mathrm{CB}>\mathrm{AB}$.

    Chứng minh tương tự cho các trường hợp còn lại.

    Hệ quả. Trong một tam giác hiệu độ dài hai cạnh nhỏ hơn độ dài cạnh còn lại.

    Ví dụ 1. Có thể có tam giác nào mà ba cạnh như sau không :
    a) $5 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}$;

    b) $1 \mathrm{~m}, 2 \mathrm{~m}, 3,3 \mathrm{~m}$; c) $1,2 \mathrm{~m}, 1 \mathrm{~m}, 2,2 \mathrm{~m}$.

    Ví dụ 2. Trong một tam giác cân, một cạnh bằng 25m, cạnh kia bằng $10 \mathrm{~m}$. Cạnh nào là cạnh đáy ? Vi sao ?

    Ví dụ 3. Cho tam giác $ABC$ có $M$ là trung điểm của đoạn $AC$. Chứng minh

    $2BM + AC > AB + BC$.

    Bài tập.

    1. Tính chu vi tam giác cân $\mathrm{ABC}$ biết rằng :
      a) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$.
      b) $\mathrm{AB}=25 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$.
    2. Cho điểm $M$ nằm trong tam giác $\mathrm{ABC}$. Chứng minh rằng tổng $\mathrm{MA}+\mathrm{MB}+\mathrm{MC}$ lớn hơn nửa chu vi nhưng nhỏ hơn chu vi tam giạc.
    3. Cho điểm $\mathrm{D}$ nằm trên cạnh $\mathrm{BC}$ của tam giác $\mathrm{ABC}$. Chứng minh rằng :
      $$
      \frac{A B+A C-B C}{2}<A D<\frac{A B+A C+B C}{2}
      $$

    Quan hệ giữa cạnh và góc trong tam giác

    Định lý 1. Trong một tam giác góc đối diện với cạnh lớn hơn là góc lớn hơn.

    Chứng minh. Trên tia $\mathrm{AC}$ xác định điểm $\mathrm{B}^{\prime}$ sao cho $\mathrm{AB}^{\prime}=$ $\mathrm{AB}$ (h.88) ‘ tam giác $\mathrm{ABB}$ ‘ là tam giác cân cạnh đáy $\mathrm{BB}$ ‘, từ đó suy ra : $\widehat{\mathrm{ABB}^{\prime}}=\widehat{\mathrm{AB}^{\prime} \mathrm{B}}$ (1).

    Vì $\mathrm{AB}^{\prime}<\mathrm{AC}$ nên điểm $\mathrm{B}^{\prime}$ nằm giữa hai điểm $\mathrm{A}$ và $\mathrm{C}$, từ đó suy $\mathrm{ra}$ : – tia $\mathrm{BB}^{\prime}$ nằm giữa hai tia $\mathrm{BA}$ và $\mathrm{BC}$, do đó : $\widehat{\mathrm{ABC}}>\widehat{\mathrm{ABB}^{\prime}}$ (2)

    • góc $\widehat{\mathrm{AB}^{\prime} \mathrm{B}}$ là góc ngoài ở đỉnh $\mathrm{B}^{\prime}$ của tam giác $\mathrm{BCB}$, do đó : $\widehat{\mathrm{AB}} \mathrm{B}>\widehat{\mathrm{C}}$. (3)

    Từ (1) và (2) ta suy $\mathrm{ra} \widehat{\mathrm{ABC}}>$ $>\widehat{\mathrm{AB}^{\prime} \mathrm{B}}(4)$; từ (3) và (4) ta suy ra : $\widehat{\mathrm{B}}>\widehat{\mathrm{C}}$. Đó là điều phải chứng minh.

    Định lý 2. Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.

    Chứng minh.

    Giả sử tam giác $\triangle \mathrm{ABC}, \widehat{\mathrm{B}}>\widehat{\mathrm{C}}$.
    Ta cần chứng minh: $\mathrm{AC}>\mathrm{AB}$.
    Chứng minh : Giả sử $A C=A B$, tam giác $A B C$ là tam giác cân cạnh đáy $\mathrm{BC}$, do đó $\widehat{\mathrm{B}}=\widehat{\mathrm{C}}$; đó là điều trái với giả thiết.

    Giả sử $\mathrm{AC}<\mathrm{AB}$, theo định lí 1 , thì ta có $\widehat{\mathrm{B}}<\widehat{\mathrm{C}}$, đó cũng là điều trái với giả thiết.
    Do đó $\mathrm{AC}>\mathrm{AB}$.

    Hệ quả 1. Trong một tam giác vuông, cạnh huyền (cạnh đối diện góc vuông) là cạnh có độ dài lớn nhất.

    Ví dụ 1.

    a) So sánh các góc của tam giác $\mathrm{ABC}$ có $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$.
    b) So sánh các cạnh của tam giác $\mathrm{ABC}$ có $\widehat{\mathrm{A}}=50^{\circ}, \widehat{\mathrm{C}}=50^{\circ}$.

    Ví dụ 2.  Cho tam giác $\mathrm{ABC}$ có $\widehat{\mathrm{A}}=100^{\circ}, \widehat{\mathrm{B}}=40^{\circ}$.
    a) Tim cạnh lớn nhất của tam giác $\mathrm{ABC}$.
    b) Tam giác $\mathrm{ABC}$ là tam giác gi? Vì sao?

    Ví dụ 3. Cho tam giác $\mathrm{ABC}$ vuông tại $\mathrm{A}$ có $\widehat{\mathrm{B}}>45^{\circ}$.
    a) So sánh các cạnh của tam giác.
    b) Lấy điểm $\mathrm{K}$ bất ki thuộc đoạn thẳng $\mathrm{AC}$. So sánh độ dài $\mathrm{BK}$ và $\mathrm{BC}$.

    Bài tập 

    1. So sánh các góc của tam giác $\mathrm{ABC}$ biết rằng $\mathrm{AB}=4 \mathrm{~cm}$, $\mathrm{BC}=5 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$.
    2. So sánh các cạnh của tam giác $\mathrm{ABC}$ biết rằng $\widehat{\mathrm{A}}=92^{\circ}$, $\widehat{\mathrm{B}}=48^{\circ}$.
    3. Chứng minh rằng trong tam giác vuông cạnh huyển bao giờ cũng lớn hơn mỗi cạnh góc vuông.
    4. Chứng minh rằng trong một tam giác góc đối diện với cạnh nhỏ nhất là góc nhọn.
    5. Góc ở đáy của tam giác cân nhỏ hơn $60^{\circ}$, cạnh nào của tam giác cân là lớn nhất ?
    6. Chứng minh rằng : Nếu một tam giác có hai đường cao bằng nhau thì nó là tam giác cân.

    Tứ giác nội tiếp – Phần 2

    (Bài viết dành cho học sinh lớp 9 chuyên toán – Lời giải bài tập chương 1 sách [1]) Chứng minh 4 điểm cùng nằm trên một đường tròn là dạng toán thường xuất hiện nhất trong các đề thi, đây cũng là kĩ năng quan trọng để chứng minh các ý toán khác trong một bài toán, có nhiều cách chứng minh 4 điểm cùng thuộc đường tròn trong đó chủ ý các các dấu hiệu một tứ giác nội tiếp. Một tứ giác là tứ giác nội tiếp khi và chỉ khi có một trong các dấu hiệu sau:
    • 4 đỉnh cách đều một điểm
    • Tổng hai góc đối bằng $180^\circ$ (đặc biệt hai góc đối vuông)
    • Góc ngoài bằng góc đối trong
    • Hai đỉnh kề cùng nhìn cạnh còn lại với hai góc bằng nhau (đặc biệt hai góc nhìn là góc vuông).
    Ngoài ra còn có bổ đề thường dùng. Bổ đề 1. Cho tứ giác $ABCD$ có hai đường chéo cắt nhau tại $P$ và hai đường thẳng $AB, CD$ cắt nhau tại $P$. Khi đó $ABCD$ nội tiếp khi và chỉ khi $PA \cdot PC = PB \cdot PD$ hoặc $QA \cdot QB=QC \cdot QD$. Bổ đề 2. Phân giác trong góc $A$ của tam giác $ABC$ cắt trung trực của $BC$ tại $D$, khi đó $D$ thuộc đường tròn ngoại tiếp tam giác $ABC$. Ta bắt đầu với các bài toán sau: Bài 1. Hai dây $AB$ và $CD$ của một đường tròn cắt nhau tại $I$. Gọi $M$ là trung điểm của $IC$ và $N$ đối xứng với $I$ qua $D$. Chứng minh rằng $AMBN$ nội tiếp một đường tròn. Lời giải. Xét tam giác $IAC$ và $IBD$ có $\angle AIC = \angle BID$ và $\angle IAC = \angle IBD$, suy ra $\triangle IBD \backsim \triangle IAC$; $\Rightarrow IA \cdot IB = IC \cdot ID = 2 IM \cdot \dfrac{IN}{2} = IM \cdot IN \Rightarrow \dfrac{IM}{IB} = \dfrac{IA}{IN}$. Suy ra $\triangle IMA \backsim \triangle IBN \Rightarrow \angle IAM = \angle INB$; Do đó tứ giác $AMBN$ nội tiếp. Bài 2. Cho tam giác $ABC$ nhọn, nội tiếp đường tròn tâm $O$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. $AO$ cắt $EF$ tại $K$ và cắt $(O)$ tại $L$ khác $A$. Gọi $P$ là điểm đối xứng của $A$ qua $K$. Chứng minh rằng các tứ giác $DHKL$ và $DHOP$ nội tiếp.
    Lời giải. Dễ thấy tứ giác $BCEF$ nội tiếp, suy ra $\angle AEF = \angle ABC$; Mà $\angle ABC = \angle ALC$, suy ra $\angle AEF = \angle ALC$, từ đó $KECL$ nội tiếp; Theo chú ý trên ta có $AK \cdot AL = AE \cdot AC$ \hfill (1) Mặt khác tứ giác $CDHE$ nội tiếp nên $AH \cdot AD = AE \cdot AC$ \hfill (2) Từ (1) và (2) suy ra $AK \cdot AK = AH \cdot AD \Rightarrow DHKL$ nội tiếp. Ta có $AP = 2AK, AL = 2AO \Rightarrow AP \cdot AO = AK \cdot AL = AH \cdot AD$, suy ra $DHOP$ nội tiếp. Bài 3. Cho hình vuông $ABCD$. Trên các cạnh $BC, CD$ lấy điểm $M,N$ sao cho $\angle MAN = 45^\circ$. $AM, AN$ cắt $BD$ lần lượt tại $P$ và $Q$. a) Chứng minh các tứ giác $ADNP, ABMQ$ nội tiếp. b) Chứng minh $MNQP$ nội tiếp. Lời giải.
    Tứ giác $APND$ có $\angle PAN = \angle PDN = 45^\circ$ nên là tứ giác nội tiếp. Tương tự thì $ABMQ$ cũng là tứ giác nội tiếp. Từ $ADNP, ABMQ$ nội tiếp suy ra $\angle APN = 180^\circ – \angle ADN = 90^\circ$ và $\angle AQM = 180^\circ -\angle ABM = 90^\circ$. Tứ giác $MPQN$ có $\angle MPN = \angle MQN = 90^\circ$ nên là tứ giác nội tiếp. Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Phân giác trong góc $A$ cắt $(O)$ tại $D$. Gọi $M, N$ lần lượt là trung điểm $AB, AC$. $DM, DN$ cắt $(O)$ tại $E, F$ khác $M$, $AD$ cắt $MN$ tại $S$. a) Chứng minh rằng 4 điểm $M, N, E, F$ cùng thuộc một đường tròn. b) $OD$ cắt $BC$ tại $P$, đường tròn ngoại tiếp tam giác $DPS$ cắt $BC$ tại $Q$ khác $P$. Chứng minh $QA$ là tiếp tuyến của $(O)$. Lời giải. 
    Gọi $K$ là giao điểm của $AD$ và $BC$. a) Ta có $\angle AED = \angle ABD = \angle AKC$. Mà $MN \parallel BC \Rightarrow \angle AKC = \angle ASN$. Suy ra $\angle AED = \angle ASN \Rightarrow AEMS$ nội tiếp. Do đó $DM \cdot DE = DS \cdot DA$. Chứng minh tương tự ta có $MN \cdot DF = DS \cdot DA$. Suy ra $DM \cdot DE = DN \cdot DF$, từ đó dẫn đến tứ giác $MNFE$ nội tiếp. b) Ta có $OD \bot BC$ tại $P$. Suy ra $\angle QPD = \angle QPD = 90^\circ$. Tam giác $AQK$ có $QS \bot AK$ và $S$ là trung điểm $AK$ nên $QAK$ cân tại $Q$. Suy ra $\angle QAK = \angle AKQ = \angle ACD$, suy ra $QA$ là tiếp tuyến của $(O)$. Bài 5. Cho tam giác $ABC$ cân tại $A$. Từ một điểm $M$ tùy ý trên cạnh $BC$ kẻ các đường song song với các cạnh bên cắt $AB$ tại $P$ và cắt $AC$ tại $Q$. $D$ là điểm đối xứng của $M$ qua $PQ$. Chứng minh rằng $ADBC$ nội tiếp đường tròn. Lời giải. Tứ giác $APMQ$ là hình bình hành, $D$ đối xứng với $M$ qua $PQ$ ta suy ra được $ADPQ$ là hình thang cân. Suy ra $\angle DAP = 180^\circ – \angle DPQ$.\hfill (1) Ta có $PB = PM = PD$ nên $B, M, D$ thuộc đường tròn tâm $P$, suy ra $\angle MBD = \dfrac{1}{2}(360^\circ – \angle DPM) = \angle DPQ$. \hfill (2) Từ (1) và (2) ta có $\angle DAQ + \angle MBD = 180^\circ$, suy ra $ADBC$ nội tiếp. Bài 6. Cho hai đường tròn $(O)$ và $(O’)$ cắt nhau tại $A, B$. Qua điểm $I$ nằm trên $AB$ vẽ cát tuyến $IMN$ đến $(O)$ và cát tuyến $IPQ$ đến $(O’)$. Chứng minh rằng $M, N, P, Q$ cùng thuộc một đường tròn. Lời giải. Ta có $\angle INA = \angle IBN$, suy ra $\triangle INA \backsim \triangle IBN$ (g.g), khi đó $\dfrac{IA}{IB} = \dfrac{IA}{IN} \Rightarrow IN^2 = IA \cdot IB \Rightarrow IN = \sqrt{IA \cdot IB}$. Chứng minh tương tự thì $IP = \sqrt{IA \cdot IB}$. Mặt khác $IM = IN, IP = IQ$ nên $IM = IN = IP = IQ$, do đó $M, N, P, Q$ cùng thuộc đường tròn tâm $I$. Bài 7. Cho tam giác $ABC$ nhọn, $D$ thuộc cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt cạnh $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $F$. $BE, CF$ cắt nhau tại $K$. Chứng minh đường tròn ngoại tiếp tam giác $BKC$ qua trực tâm $H$ của tam giác $ABC$. Lời giải. Các tứ giác $AEDB, ADDC$ nội tiếp nên ta có $\angle AFB = \angle ADB$ và $\angle AEC = \angle ADC$; Suy ra $\angle AFB + \angle AEC = \angle ADB + \angle ADC = 180^\circ$, suy ra $AEKF$ nội tiếp. Suy ra $\angle EKF = 180^\circ – \angle BAC$, mà $\angle BKC = \angle EKF$ nên $\angle BKC= 180^\circ – \angle BAC$.\hfill (1) Mặt khác, từ $H$ là trực tâm của tam giác $ABC$ nên $\angle BHC = 180^\circ – \angle BAC$. \hfill (2) Từ (1) và (2), ta có $\angle BHC = \angle BKC$, suy ra $BHKC$ nội tiếp. Bài 8. Cho tam giác $ABC$ có đường tròn nội tiếp tiếp xúc với $AB, BC$,$AC$ lần lượt tại $M, D, N$. Lấy điểm $E$ thuộc miền trong của tam giác $ABC$ sao cho đường tròn nội tiếp tam giác $EBC$ cũng tiếp xúc với $BC$ tại $D$ và tiếp xúc với $EB, EC$ tại $P, Q$. Chứng minh rằng $MNPQ$ nội tiếp đường tròn. Lời giải.
    Gọi $T$ là giao điểm của $MN$ và $BC$. Chứng minh được $\dfrac{TB}{TC} = \dfrac{TB}{TC}$ và $PM \cdot PN = PD^2$. Gọi $T’$ là giao điểm của $PQ$ và $BC$ ta cũng có $\dfrac{T’B}{T’C} = \dfrac{DB}{DC}$. Suy ra $\dfrac{TB}{TC} = \dfrac{T’B}{T’C} = \dfrac{DB}{DC}$, do đó $T’ \equiv T$. Và $TP \cdot TQ = TD^2$. Từ đó ta có $TM \cdot TN = TP \cdot TQ$. Suy ra 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. Bài tập tự luyện.  Bài 9. Cho đường tròn tâm $O$ và dây cung $AB$ khác đường kính. $C$ là một điểm thuộc cung nhỏ $AB$. Tiếp tuyến tại $A$ và $B$ của $(O)$ cắt nhau tại $P$. $AC$ cắt $BP$ tại $D$ và $BC$ cắt $AP$ tại $E$. Gọi $Q$ là giao điểm của đường tròn ngoại tiếp tam giác $AEC$ và $BCD$. a) Chứng minh $Q$ là giao điểm của đường tròn ngoại tiếp các tam giác $APD$ và $BPE$. b) Chứng minh $Q$ thuộc đường tròn ngoại tiếp tam giác $OPC$. Bài 10. Cho hình bình hành $ABCD$ có góc $A$ tù. Gọi $F$ là trung điểm cạnh $AD, CF$ cắt đường tròn ngoại tiếp tam giác $ACD$ tại $K$ khác $C$. Đường tròn ngoại tiếp tam giác $BCK$ cắt $CD$ tại $E$. a) Chứng minh $AE \bot CD$. b) $BD$ cắt $AC$ tại $I$ và đường tròn ngoại tiếp tam giác $BCK$ tại $G$. Chứng minh 4 điểm $E, F, G, I$ cùng thuộc một đường tròn. Tài liệu tham khảo. 
    1. Chuyên đề hình học 9 – Bồi dưỡng học sinh năng khiếu, Nguyễn Tăng Vũ, NXB GD 2018.

    Một số định lý, mô hình hình học quan trọng hình học 9

    Bài 1. (Đường thẳng Euler, Đường tròn Euler) Cho tam giác $ABC$, các đường cao $AD, BE, CF$ cắt nhau tại $H$, trung điểm các cạnh là $M, N, P$, các đường thẳng $AM, BN, CP$ cắt nhau tại $G$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

    a) Chứng minh $AH = 2OM$.

    b) Chứng minh $H, G, O$ thẳng hàng và $HG = 2OG$. (Đường thẳng qua $O, H, G$ là đường thẳng Euler)

    c) Gọi $X, Y, Z$ là trung điểm của $HA, HB, HC$. Chứng minh 9 điểm $D, E, F, M, N, P, X, Y, Z$ cùng thuộc một đường tròn và tâm là trung điểm $OH$. (Đường tròn Euler – Đường tròn 9 điểm).

    d) Lấy một điểm $T$ thuộc (O), chứng minh trung điểm của $HT$ thuộc đường tròn Euler.

    Hướng dẫn

    a) Vẽ đường kính $AK$, ta có $BHCK$ là hình bình hành, trung điểm $M$ của $BC$ cũng là trung điểm $HK$, tam giác $AHK$ thì $OM$ là đường trung bình nên $AH = 2OM$.

    b) Tam giác $AHK$ có $AM$ là trung tuyến và $GA =2GM$ nên $G$ cũng là trọng tâm, do đó $H, G, O$ thẳng hàng và $HG = 2GO$.

    c) Ta có $\angle XEH = \angle XHE, \angle MEH = \angle MBE$, suy ra $\angle MEX = \angle XEH + \angle MEH = \angle XHE + \angle MBE = 90^\circ$, suy ra $E$ thuộc đường tròn đường kính $XM$ tâm $J$.

    $XN||CH, MN||AB$, suy ra $MN \bot NX$, suy ra $N$ thuộc $(J)$.

    $MZ||BH, XZ ||AC$ suy ra $\angle MZX = 90^\circ$, suy ra $Z \in (J)$.

    Từ đó chứng minh được các điểm cùng thuộc đường tròn đường kính $MX$.

    $HXMO$ là hình bình hành nên $J$ là trung điểm $OH$.

    d) Tam giác $MNP$ và $ABC$ đồng dạng, tỉ số 1/2 nên đường tròn Euler có bán kính bằng 1/2 bán kính đường tròn ngoại tiếp tam giác $ABC$.

    Xét tam giác $HOT$ có $JL$ là đường trung bình nên $JL= \dfrac{1}{2}OT$, suy ra $L$ thuộc $(J)$.

    Bài 2. (Đường thẳng Simson – Đường thẳng Steiner) Cho tam giác $ABC$ nội tiếp đường tròn $w$, $P$ là một điểm thuộc $(w)$. Gọi $D, E, F$ là hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$.

    a) Chứng minh rằng $D, E, F$ cùng thuộc một đường thẳng. (Đường thẳng Simson của tam giác $ABC$ ứng với $P$.

    b) Gọi $D’, E’,F’$ đối xứng của $P$ qua $BC, AC, AB$. Chứng minh rằng $D’, E’, F’$ cùng thuộc một đường thẳng và đường thẳng này qua trực tâm của tam giác $ABC$.

    Hướng dẫn

    Bài 3. (Bài toán về điểm humpty) Cho tam giác $ABC$, các đường cao $AD, BE, CF$ cắt nhau tại $H$, $M$ là trung điểm $BC$, $P$ là hình chiếu của $H$ trên $AM. Khi đó

    a) $P$ là giao điểm của đường tròn đường kính $AH$ và đường tròn ngoại tiếp tam giác $BHC$. ($P$ được gọi là điểm $A-humpty$)

    b) $MP \cdot MA = MB^2 = \dfrac{1}{4}BC^2$ và $BC$ là tiếp tuyến chung của $(ABP)$ và $(ACP)$

    c) Vẽ $AQ$ vuông góc $MH$, thì $Q$ thuộc $(ABC)$.

    d) $AQ, HP, BC$ đồng quy.

    Hướng dẫn

    a) Ta có các $AP \cdot AM = AH \cdot AD = AF \cdot AB$, suy ra $BFPM$ nội tiếp. Khi đó $\angle MPB = \angle MFB = \angle ABM$.

    Chứng minh tương tự thì $\angle MPC = \angle ACB$

    Suy ra $\angle BPC = \angle MPB + \angle MPC = \angle B + \angle C = 180^\circ – \angle A = \angle BHC$.

    Suy ra $BHPC$ nội tiếp.

    b) Từ câu a, ta có $\angle MPB = \angle ABM$, suy ra tam giác $MPB$ và $MBA$ đồng dạng, khi đó $MA \cdot MP = MB^2 = \dfrac{1}{4} BC^2$.

    c) Ta xét tam giác $BHC$ với $A$ là trực tâm thì vai trò điểm $Q$ giống vai trò điểm $P$, nên $Q$ thuộc đường tròn ngoại tiếp tam giác $ABC$.

    d) Xét tam giác $AHM$ thì $AQ, HP, DM$ là 3 đường cao nên đồng quy.

    Bài 4. (Tứ giác điều hòa – Điểm Dumpty).  Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, tiếp tuyến tại $B, C$ cắt nhau tại $P$, $AP$ cắt $(O)$ tại $D$ khác $A$ và cắt $BC$ tại $I$. $OP$ cắt $BC$ tại $M$.

    a) Chứng minh $OMDA$ nội tiếp và $\dfrac{IA}{ID} = \dfrac{PA}{PD}$

    b) Chứng minh $\angle MDC = \angle ADB$ và $AD\cdot BC = 2 AC \cdot DB = 2 BD \cdot AC$.

    c) Tiếp tuyến tại $A,D$ cắt nhau tại $Q$. Chứng minh $Q$ thuộc $BC$.

    d) Gọi $X$ là giao điểm của $OQ$ và $AD$, chứng minh $\angle XBA = \angle XAC, \angle XAC = \angle XBA$. (Điểm $A-dumpty$ của tam giác $ABC$).

    Hướng dẫn

    a) $PM \cot PO = PB^2 = PA \cdot PD$.

    $\angle PMD = \angle PAO = \angle ODA = \angle AMO$, suy ra $MP, MI$ là phân giác ngoài và phân giác trong của $\angle APD$.

    b) $MO \cdot MP = MB^2 = MA \cdot MD$, suy ra $ABM$ và $BMD$ đồng dạng.

    c) 5 điểm $A, P, M, D, Q$ cùng thuộc đường tròn, $QA = QD$ nên $MQ$ là phân giác $\angle AMD$.

    d)  Chứng minh $BAX$ và $BCD$ đồng dạng, do $AX \cdot BC = AB \cdot CD$.

    Bài 5. Cho tam giác $ABC$, có $O$ là tâm đường tròn ngoại tiếp tam giác. Một đường thẳng vuông góc với $OA$ cắt các cạnh $AB, AC$ tại $F, E$ và đường thẳng $BC$ tại $D$. 

    a) Chứng minh $BFEC$ nội tiếp.

    b) Đường tròn ngoại tiếp tam giác $AEF$ cắt $(O)$ tại điểm $P$ khác $A$. Chứng minh các tam giác $PEF$ và $PCB$ đồng dạng.

    c) Chứng minh các tứ giác $BDPF, BCEP$ nội tiếp và $A, P, D$ thẳng hàng.

    d) Gọi $O_a, O_b$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $AEF, BDF$ và $BCEF$. Chứng minh $O_a, O_b, O_c, O$ cùng thuộc một đường tròn.

    Hướng dẫn

    a) Vẽ tiếp tuyến tại $A$ là $Ax$, $\angle ACB = \angle xAB = \angle AEF$.

    b) $\angle AFP = \angle AEP, \angle PBA = \angle BCA$.

    c) $\angle PEF = \angle PAC = \angle PBD$

    $\angle DPF + \angle APF = \angle ABC + \angle CEF = 180^\circ$.

    d) $O_bO_c$ là trung trực $BF, $O_aO_c$ là trung trực $EF$.

    Suy ra $\angle O_aO_cO_b = \dfrac{1}{2} \angle $ACB$.

    Tương tự cũng có $\angle O_aOO_b$

    Bài 6. (Tứ giác điều hòa) xem tại đây https://geosiro.com/?p=1185