Phân tích đa thức thành nhân tử – Đặt thừa số chung

Cách thực hiện: Đưa nhân tử chung của các hạng tử của đa thức ra ngoài dấu ngoặc

$AB+AC=A(B+C)$

Ví dụ 1.  Phân tích các đa thức sau thành nhân tử.

a) $ x^2 -x. $
b) $ 5x^2(x-2y)-15x(x-2y) .$
c) $ 3(x-y) -5x(y-x). $
d) $ 3x- 6y. $

Giải

a) $ x^2 -x =x(x-1)$

b) $ 5x^2(x-2y)-15x(x-2y) = (x-2y)(5x^2-15x)=5x(x-3)(x-2y)$

c) $ 3(x-y) -5x(y-x)=3(x-y)+5x(x-y)=(x-y)(3-5x) $

d)$ 3x- 6y.=3(x-2y).$

Ví dụ 2. Phân tích các đa thức sau thành nhân tử.

a) $ \dfrac{2}{5}x^2 +5x^3 +x^2y.$
b) $ 14x^2y -21xy^2 + 28x^2y^2. $
c) $ \dfrac{2}{5}x(y-1) -\dfrac{2}{5}y(y-1). $
d) $ 10x(x-y) – 8y(y-x). $

Giải

a) $ \dfrac{2}{5}x^2 +5x^3 +x^2y=x^2(\dfrac{2}{5}+5x+y)$
b) $ 14x^2y -21xy^2 + 28x^2y^2=7xy(2x-3y+4xy) $
c) $ \dfrac{2}{5}x(y-1) -\dfrac{2}{5}y(y-1)=\dfrac{2}{5}(y-1)(x-y)$
d) $ 10x(x-y) – 8y(y-x)=2(x-y) (5x+4y)$

Bài tập

Bài 1. Phân tích các đa thức sau thành nhân tử (phương pháp đặt thừa số chung)

a) $3a-6b-9c$
b) $-7a-14ab-21b$
c) $8xy-24x+16y$.

Bài 2. Phân tích các đa thức sau thành nhân tử (phương pháp đặt thừa số chung)

a) $9ab-18a+9$
b) $4ax-2ay-2$
c) $-2a^2b-4ab^2-6ab$

Bài 3. Phân tích đa thức thành nhân tử

a) $2axy-4a^2xy^2+6a^3x^2$
b) $12x^3y-6xy+3x$
c) $-8x^3y+16xy^2-24$
d) $m(x+y)-n(x+y)$
e) $ab(x-5)-a^2(5-x)$.

Bài 4. Phân tích đa thức thành nhân tử

a) $2a^2(x-y)-4a(y-x)$
b) $2a^2b(x+y)-4a^3b(-x-y)$
c)  $x^{m+2}-x^2$
d) $x^{m+2}+x^m$.

Bài 5. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

a) $x^2 – xy+ 2x$
b) $xy^2 – 3xy + xy^2$
c) $a^2b + 2a^2b^2 – 3a^2$
d) $x(x+y) – 2y^2(x+y)$.

Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

a) $2(x^2-y^2) + x(x+y)$
b) $xy(x-2) + x^2 – 4$
c) $ab(a+b) + (a^2 – b^2)$.

Bài 7. Tính nhanh.

a)  $ 85\cdot 12,7 + 5\cdot 3\cdot 12,7. $
b)  $ 52\cdot 143 – 52 \cdot 39 – 8 \cdot 26. $
c)  $ 97 \cdot 13 + 130 \cdot 0,3. $
d)  $ 86\cdot 153 – 530 \cdot 8,6. $

Bài 8. Phân tích các đa thức sau thành nhân tử:

a) $ 12x^2 + 18x. $
b) $ 21x^2y – 14xy^2 + 7xy. $
c) $ x^2 + 2x. $
d) $ 15ab^2 – 25abc. $
e) $ -45x^3yz – 15xy^2z + 30x^2yz. $

Bài 9. Phân tích các đa thức sau thành nhân tử:

a) $x^4-4x^3-2x^2$.
b) $6x^2y + 9xy^2 -3xy$.
c) $2x^2y^2 -4x^3y^2 + 12x^3y^3$.
d) $ 3a^2(x-5) -6ab(5-x). $

Bài 10. Phân tích các đa thức sau thành nhân tử:

a) $ 15(x-2y) – 3x(2y-x). $
b) $ -12x^2 (-x+y) +18x^3(y-x). $
c) $xy(z+1) + 3x(z+1) – 4x^2(z+1)$.
d) $(x+1)^2+3(x-1)^3 – (x+1)^2$.

Bài 11. Tìm $ x $, biết:

a) $ x^3 -9x =0. $
b) $ x^2 – 4x = 0. $
c) $ 2x(x-5) +5-x =0. $

Bài 12. Tìm $ x $, biết:

a) $ x+ 5x^2 =0. $
b) $ x+1 =(x+1)^2. $
c) $ x^3 + x =0. $

Đề thi cuối khóa STAR 2017 -2018: Toán 8

Đề bài

Bài 1. Giải các phương trình sau:

a) $ x^2 – 4x + 3 = 0$

b) $ \dfrac{1}{x-1} + \dfrac{2x^2 -5}{x^3 – 1} = \dfrac{4}{x^2 + x +1}$

c) $ |x-3| -3x = 1 $

d) $(x+3)^4 + (x+ 5)^4 = 2$

Bài 2. Giải các bất phương trình sau:

a) $ x – 5 > -5x + 3 $

b) $ \dfrac{2x-3}{-4 } \ge \dfrac{4-x}{-3}$

c) $ x^2 – 3x + 2 \le 0 $

d) $ \dfrac{x+1}{991} + \dfrac{x+5}{995} < \dfrac{x+4}{994} + \dfrac{x+9}{999}. $

Bài 3. 

a)  Quãng đường từ $ A $ đến $ B $ dài 180 $ km $. Xe thứ nhất khởi hành từ $ A $ đến $ B $. Cùng lúc đó và trên quãng đường $ AB $, xe thứ hai khởi hành từ $ B $ đến $ A $ với vận tốc lớn hơn vận tốc xe thứ nhất là $ 10km/h $. Biết hai xe gặp nhau tại nơi cách $ A $ là $ 80km/h $. Tính vận tốc của mỗi xe.

b) Dân số hiện nay của phường 12, quận 10 là 41618 người. Cách đây 2 năm dân số của phường là 40000 người. Hỏi trung bình mỗi năm dân số của phường đã tăng bao nhiêu phần trăm? ( giả sử \% tăng dân số mỗi năm là như nhau)

Bài 4. Một ngọn đèn đặt trên cao ở vị trí $A$, hình chiếu vuông góc của nó trên mặt đất là $H$. Người ta đặt 2 chiếc cọc có cùng độ cao là $1,6m$, thẳng đứng ở 2 vị trí $B$ và $C$ và 2 điểm $ B $, $ C $ thẳng hàng với $H$. Khi đó bóng cọc ở 2 vị trí $ B $, $ C $ ở trên mặt đất có độ dài lần lượt là $0,4m$ và $0,6m$. Biết $BC = 1,4m$. Hãy tính độ cao $AH$ của cột đèn.

Bài 5. Cho tam giác $ABC$ nhọn, các đường cao $ AD, BE, CF $ cắt nhau tại $ H $. Chứng minh rằng:
a) $ AF\cdot AB = AE\cdot AC $ và $ HF\cdot HC = HE\cdot HB. $
b) $ BE $ là phân giác của $ \widehat{DEF} $ . Từ đó chứng minh $ H $ là giao điểm các đường phân giác của $ \Delta DEF $.
c) $ BH\cdot BE + CH\cdot CF = BC^2 $
d)  Gọi $ O $ là giao điểm 3 đường trung trực, $ G $ là trọng tâm. Chứng minh $ G, H, O $ thẳng hàng và $ \dfrac{OG}{GH} = \dfrac{1}{2} $.

 

Phương trình lượng giác không mẫu mực

1.Phương pháp đưa về phương trình tích

Ta biến đổi phương trình về dạng: $ A.B…=0 \Leftrightarrow \left[\begin{matrix} A=0\B=0\… \end{matrix} \right.   $

Ví dụ 1. Giải phương trình: $ \sin x \cos 2x =\sin 2x \cos 3x-\dfrac{1}{2}\sin 5x$

Đáp số

Pt $ \Leftrightarrow \sin x \cos 2x =\dfrac{1}{2}\left(\sin 5x -\sin x\right)-\dfrac{1}{2}\sin 5x $

$  \Leftrightarrow \sin x (2\cos x+1)=0      $

$  \Leftrightarrow \left[\begin{matrix} \sin x=0 \\ 2\cos x+1=0  \end{matrix} \right.    $

$  \Leftrightarrow \left[\begin{matrix} x=k\pi \\x=\pm \dfrac{\pi}{3}+k\pi  \end{matrix} \right.  , k \in \mathbb{Z}.$

2. Phương pháp tổng các bình phương

Ta biến đổi phương trình thành dạng: $A^2+B^2+…=0  $

$\Leftrightarrow \left{ \begin{matrix} A^2=0\B^2=0\… \end{matrix} \right.$

Ví dụ 2. Giải phương trình: $3\tan^2 x+4\sin^2 x-2\sqrt{3}\tan x-4\sin x+2=0$

Đáp số

$3\tan^2 x+4\sin^2 x-2\sqrt{3}\tan x-4\sin x+2=0$

$  \Leftrightarrow 3\tan^2 x-2\sqrt{3}\tan x+1+4\sin^2 x-4\sin x+1=0   $

$ \Leftrightarrow (\sqrt{3}\tan x-1)^2+(2\sin x-1)^2=0  $

$ \Leftrightarrow \left\{\begin{matrix} \sqrt{3}\tan x-1=0\\ 2\sin x-1=0  \end{matrix} \right.  $

$\Leftrightarrow \left\{\begin{matrix} \tan x=\dfrac{\sqrt{3}}{3}\\ \sin x=\dfrac{1}{2} \end{matrix} \right.$

$ \Leftrightarrow x=\dfrac{\pi}{6}+2k\pi, k \in \mathbb{Z}  $

3. Phương pháp đánh giá

Ví dụ 3. Giải phương trình: $ \cos^5 x+x^2=0         $

Đáp số

$  \Leftrightarrow x^2=-\cos^5 x     $

Vì $ -1 \le \cos x \le 1  $ nên $0 \le x^2 \le 1 \Leftrightarrow -1 \le x \le 1 $

mà $[-1;1] \subset \left(-\dfrac{\pi}{2};\dfrac{\pi}{2}\right)$

$\Rightarrow \cos x>0, \forall x \in [-1;1] \Rightarrow -\cos^5 x<0, \forall x \in [-1;1]$

Do đó, phương trình vô nghiệm.

Ví dụ 4. Giải phương trình: $  \sin^4 x+\cos^{15} x=1$

Đáp số

Ta có:

$ \Leftrightarrow \sin^4 x+\cos^{15}x=\sin^2 x+\cos^2 x  $

$\Leftrightarrow \sin^2 x(\sin^2 x-1)=\cos^2 x(1-\cos^{13} x)$

Vì: $\sin^2 x(\sin^2 x-1) \le 0 , \forall x$ và $\cos^2 x(1-\cos^{13} x)\ge 0, \forall x$

Nên: Pt $\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} \sin x=0 \\ \sin x=\pm 1 \end{matrix} \right. \\ \left[\begin{matrix} \cos x=0\\ \cos x=1 \end{matrix} \right. \end{matrix} \right.$

$\Leftrightarrow x=\dfrac{\pi}{2}+k\pi; x=2k\pi, k \in \mathbb{Z}$.

4. Bài tập

Giải các phương trình sau:

a) $\cos^4 x+\sin^6 x=\cos 2x$

b) $\sin^2 x+\dfrac{1}{4}\sin^2 3x=\sin x.\sin^2 3x$

c) $(\sin x+\sqrt{3}\cos x)\sin 3x=2$

d) $\cos^5 x+\sin^5 x+\sin 2x+\cos 2x=1+\sqrt{2}$

e) $\sin^8 2x+\cos^8 2x=\dfrac{1}{8}$

f) $\sin^3 x+\cos^3 x=1-\dfrac{1}{2}\sin 2x$

 

 

 

 

 

 

 

Một số phương trình lượng giác thường gặp (tt)

I. Lý thuyết

3. Phương trình đẳng cấp với $\sin x$ và $\cos x$

Dạng: $a\sin^2 x+b \sin x \cos x+ c \cos^2 x=d$  (*)

(hoặc $a\cos^2 x+b \sin x \cos x+ c \sin^2 x=d$.)

Cách làm:

  • Với $\cos x=0 \Rightarrow \sin x=1$ nếu (*) đúng thì $\cos x=0$ là nghiệm.

  • Với $\cos x \ne 0$, chia cả hai vế của phương trình cho $\cos^2 x$, ta được:

$(a-d)\tan^2 x+b \tan x+ c-d =0$

Ví dụ 3. Giải phương trình:

$2\sin^2 x-5\sin x\cos x+3\cos^2 x=0$

Đáp số

+ Nếu $\cos x =0$ thì phương trình trở thành $\sin x=0$, không xảy ra.

+ Nếu $\cos x \ne 0$, chia hai vế phương trình cho $\cos^2$ ta được:

$2\tan^2 x-5\tan x+3=0 \Leftrightarrow \tan x=1$ hoặc $\tan x=\dfrac{3}{2}$.

Với $\tan x=1 \Leftrightarrow x=\dfrac{\pi}{4}+k\pi, k \in \mathbb{Z}$

Với $\tan x =\dfrac{3}{2}$, có số $\alpha$ để $\tan \alpha =\dfrac{3}{2}$ ta có: $\tan x=\tan \alpha \Leftrightarrow x=\alpha + k\pi .$

Vậy phương trình có các nghiệm: $x=\dfrac{\pi}{4}, x=\alpha+k\pi, k \in \mathbb{Z}$.

4. Phương trình đối xứng với $\sin x$ và $\cos x$

Dạng: $a(\sin x \pm \cos x)+b\sin x\cos x=c$

Cách làm:

Đặt: $t=\sin x+ \cos x \Rightarrow \sin x\cos x=\dfrac{t^2-1}{2}.$ Điều kiện: $|t| \le \sqrt{2}$

Hoặc $t=\sin x- \cos x \Rightarrow \sin x\cos x=\dfrac{1-t^2}{2}.$ Điều kiện: $|t| \le \sqrt{2}$

Ví dụ 4. Giải phương trình: $\sin 2x -12(\sin x-\cos x)+12=0$

Đáp số

Đặt: $t= \sin x -\cos x,$ với $-\sqrt{2} \le t \le \sqrt{2}$

$\Rightarrow t^2=1-\sin 2x \Rightarrow \sin 2x=1-t^2$

PT $\Leftrightarrow 1-t^2-12t+2=0 \Leftrightarrow -t^2-12t+13=0 \Leftrightarrow t=1$ hoặc $t=-13$ (loại).

$\Rightarrow \sin x-\cos x =1 \Leftrightarrow \sin \left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}$

$\Leftrightarrow \left[ \begin{matrix} x-\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\ x-\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi \end{matrix} \right.$

$\Leftrightarrow  \left[ \begin{matrix} x=\dfrac{\pi}{2}+k2\pi\\x=\pi +k2\pi \end{matrix} \right. k \in \mathbb{Z}$

II. Bài tập

  1. Giải các phương trình sau:

a) $\cos^2 x-\sqrt{3}\sin2x=1+\sin^2 x$

b) $1+2\sin 2x=6\cos^2 x$

c) $\cos^3 x-4\sin^3 x-4\cos x \sin^2 x+\sin x=0$

d) $\sqrt{2}\sin^3 \left(x+\dfrac{\pi}{4}\right)=2\sin x$

  1. Giải các phương trình sau:

a) $\sin 2x-4(\cos x-\sin x)=4$

b) $\sin 2x+\sqrt{2}\sin \left(x-\dfrac{\pi}{4}\right)=1$

c) $-1+\sin^3 x+\cos^3 x=\dfrac{3}{2}\sin 2x$

d) $\sqrt{2}(\sin x+\cos x)=\tan x+\cot x)$

Đáp số

1. a) $x=k\pi; x=-\dfrac{\pi}{3}+k\pi$

b) $x=\dfrac{\pi}{4}+k\pi; x= \arctan (-5)+k\pi$

c) $x=-\dfrac{\pi}{4}+k\pi; x=\pm \dfrac{\pi}{6}+k\pi$

d) $x=-\dfrac{\pi}{4}+k\pi$

2. a) $x=\dfrac{\pi}{2}+k2\pi; x=\pi+k2\pi, k \in \mathbb{Z}$

b) $x=\dfrac{\pi}{2}+k2\pi; x=\pi+k2\pi; x=\dfrac{\pi}{4}+k\pi, k \in \mathbb{Z}$

c) $x=k2\pi; x=\dfrac{\pi}{2}+k2\pi; x=\varphi-\dfrac{\pi}{4}+k2\pi;$

$x=\dfrac{3\pi}{4}-\varphi +k2\pi, k \in \mathbb{Z}$ với $\sin \varphi=\dfrac{\sqrt{3}-2}{2}$.

d) $x=\dfrac{\pi}{4}+k2\pi$

 

 

Một số phương trình lượng giác thường gặp

I. Lý thuyết

1. Phương trình thuần nhất với một hàm số lượng giác

  • Bậc nhất: $a\sin x+b=0$ (hoặc $a\cos x+b=0, a\tan x+b=0, a\cot x+b=0$).
  • Bậc hai: $a\sin^2 x+b\sin x+c=0$

(hoặc $a\cos^2 x+b\cos x+c=0, a\tan^2 x+b\tan x+c=0, a\cot^2 x+b\cot x+c=0)$

Cách giải: Đặt ẩn phụ $t=\sin x (t=\cos x, t=\tan x, t=\cot x)$, đưa về phương trình bậc nhất hoặc bậc hai theo $t$.

Chú ý: Với ẩn phụ $t=\sin x  (t=\cos x)$ thì phải có điều kiện $|t| \le 1$.

Ví dụ 1. Giải các phương trình sau:

a) $\sqrt{3} \cot (3x-30^o)-1=0$

b) $\cot^2 x+(\sqrt{3}-1)\cot x-\sqrt{3}=0$

c) $6\sin^2 x+5\cos x-4=0$

d) $\cos 2x+3\sin x -1=0$

e) $\dfrac{\sqrt{3}}{\cos^2 x}=3\tan x+\sqrt{3}$

Đáp số

a) $\sqrt{3} \cot (3x-30^o)-1=0 \Leftrightarrow \cot (3x-30^o)=\dfrac{1}{\sqrt{3}}=\cot 60^o$

$\Leftrightarrow 3x-30^o=60^o+k180^o \Leftrightarrow x=30^o+k60^o (k \in \mathbb{Z})$

b) Điều kiện: $x \ne k\pi$. Ta có: $\cot^2 x+(\sqrt{3}-1)\cot x-\sqrt{3}=0$

$\Leftrightarrow \left[ \begin{matrix} \cot x=1=\cot \dfrac{\pi}{4} \\ \cot x= -\sqrt{3}=\cot \left(-\dfrac{\pi}{6} \right) \end{matrix} \right.$ $\Leftrightarrow \left[ \begin{matrix} x=\dfrac{\pi}{4}+k\pi \\ x=-\dfrac{\pi}{6}+k\pi \end{matrix} \right. (k \in \mathbb{Z})$

c) $6\sin^2 x+5\cos x-4=0 \Leftrightarrow 6(1-\cos^2x)+5\cos x -4=0$

$\Leftrightarrow 6\cos^2 x -5\cos x -2 =0 (*).$

Đặt $t=\cos x$, điều kiện $|t| \le 1$. Phương trình (*) trở thành:

$ 6t^2-5t-2=0 \Leftrightarrow t=\dfrac{5-\sqrt{73}}{12}$ (thỏa mãn) hoặc $t=\dfrac{5+\sqrt{73}}{12}$ (loại vì không thỏa điều kiện).

Do đó: $\cos x=\dfrac{5-\sqrt{73}}{12}=\cos \alpha \Leftrightarrow x=\pm \alpha +k2\pi$ với $\cos \alpha =\dfrac{5-\sqrt{73}}{12}.$

Vậy phương trình đã cho có các họ nghiệm: $x=\pm \alpha +k2\pi, k \in \mathbb{Z}$.

c) $\cos 2x +3\sin x -1=0 \Leftrightarrow 1-2\sin^2 x+3\sin x-1=0$

$\Leftrightarrow \sin x(-2\sin x+3)=0 $

$\Leftrightarrow \left[ \begin{matrix} \sin x=0 \ (nhận) \\ \sin x=\dfrac{3}{2}  \   (loại) \end{matrix} \right.$

$\Leftrightarrow \sin x=0 \Leftrightarrow x=k\pi$

Vậy phương trình có nghiệm: $x=k\pi, k \in \mathbb{Z}$.

e) Điều kiện: $x \ne \dfrac{\pi}{2}+k\pi.$ Vì $\dfrac{1}{\cos^2 x}=1+\tan^2 x$ nên:

$\dfrac{\sqrt{3}}{\cos^2 x}=3\tan x+\sqrt{3}$

$\Leftrightarrow \sqrt{3} (1+\tan^2 x)=3\tan x+\sqrt{3} \Leftrightarrow \sqrt{3} \tan^2 x-3\tan x =0$

Đặt $t=\tan x$, khi đó phương trình đã cho trở thành:

$ \sqrt{3} t^2-3t=0 \Leftrightarrow t=0$ hoặc $t=\sqrt{3}$

+ Với $t=0$ ta có $\tan x =0 \Leftrightarrow x=k\pi, k \in \mathbb{Z}$.

+ Với $t=\sqrt{3}$ ta có $\tan x=\sqrt{3}=\tan \dfrac{\pi}{3} \Leftrightarrow x=\dfrac{\pi}{3}+k\pi, k \in \mathbb{Z}.$

Vậy phương trình có các họ nghiệm: $x=k\pi; x=\dfrac{\pi}{3}+k\pi.$

2. Phương trình bậc nhất với $\sin x$ và $\cos x$

$a \sin x+b\cos x =c  \   (1)$

($a,b$ là các số đã cho khác 0).

Cách giải. Chia vế của (1) cho $\sqrt{a^2+b^2}$ ta được:

$(1) \Leftrightarrow \dfrac{a}{\sqrt{a^2+b^2}}\sin x+ \dfrac{b}{\sqrt{a^2+b^2}} \cos b =\dfrac{c}{\sqrt{a^2+b^2}}$     (2)

Vì $\left(\dfrac{a}{\sqrt{a^2+b^2}}\right)^2+\left(\dfrac{b}{\sqrt{a^2+b^2}}\right)^2=1$ nên có số $\alpha$ sao cho:

$\cos \alpha =\dfrac{a}{\sqrt{a^2+b^2}}, \sin \alpha=\dfrac{b}{\sqrt{a^2+b^2}},$ phương trình (2) trở thành:

$\sin x \cos \alpha+\sin \alpha \cos x=\dfrac{c}{\sqrt{a^2+b^2}}$

$\Leftrightarrow \sin (x+\alpha)=\dfrac{c}{\sqrt{a^2+b^2}} $       (3)

Phương trình (3) có nghiệm $\Leftrightarrow \left|\dfrac{c}{\sqrt{a^2+b^2}} \right| \le 1 \Leftrightarrow a^2+b^2 \ge c^2.$

Khi đó (3) $\Leftrightarrow \sin (x+\alpha)=\sin \beta$ (trong đó $\sin \beta=\dfrac{c}{\sqrt{a^2+b^2}}$

Ví dụ 2. Giải các phương trình sau:

a) $5\sin x-12\cos x =13$

b) $\sqrt{3} \sin x-\cos x=2$

c) $\left(\sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)^2+\sqrt{3}\cos x=2$

d) $4\cos^2 x+3\sin 2x=7$

Đáp số

a) Chia hai vế phương trình cho $\sqrt{a^2+b^2}=\sqrt{5^2+12^2}=13$ ta được:

$\dfrac{5}{13}\sin x-\dfrac{12}{13}\cos x=1 (*).$ Đặt $\cos \varphi =\dfrac{5}{13}$ với $0< \varphi<\dfrac{\pi}{2}.$

Khi đó $\sin \varphi =\dfrac{12}{13}.$ Phương trình (*) trở thành:

$\sin x\cos x-\sin x \cos x=1 \Leftrightarrow \sin (x-\varphi)=1 \Leftrightarrow x-\varphi =\dfrac{\pi}{2}+k2\pi$

Vậy phương trình có nghiệm: $x=\varphi +\dfrac{\pi}{2}+k2\pi, k \in \mathbb{Z}$.

b) $\sqrt{3} \sin x-\cos x=2 \Leftrightarrow \dfrac{\sqrt{3}}{2}\sin x-\dfrac{1}{2}\cos x=1$

$\Leftrightarrow \sin x\cos \dfrac{\pi}{6}-\sin\dfrac{\pi}{6}\cos x=1 \Leftrightarrow \sin\left(x-\dfrac{\pi}{6}\right)=1$

$x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi \Leftrightarrow x=\dfrac{2\pi}{3}+k2\pi, k \in \mathbb{Z}$.

c) $\left(\sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)^2+\sqrt{3}\cos x=2 \Leftrightarrow \sin^2 \dfrac{\pi}{2}+\cos^2 \dfrac{\pi}{2}+2\sin\dfrac{x}{2}\cos\dfrac{x}{2}+\sqrt{3}\cos x=2$

$\Leftrightarrow \sin x+\sqrt{3}\cos x=1 \Leftrightarrow \dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x=\dfrac{1}{2} \Leftrightarrow \sin \left(x+\dfrac{\pi}{3}\right)=\sin\dfrac{\pi}{6}$

$\Leftrightarrow \left[\begin{matrix} x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\ x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi \end{matrix} \right.$

$\Leftrightarrow \left[\begin{matrix} x=-\dfrac{\pi}{6}+k2\pi\\ x=\dfrac{\pi}{2}+k2\pi \end{matrix} \right. (k\in \mathbb{Z})$.

d) $4\cos^2 x+3\sin 2x=7 \Leftrightarrow 4\left(\dfrac{1+\cos 2x}{2}\right)+3\sin 2x=7$

$\Leftrightarrow 2\cos 2x+3\sin 2x=5$

Ta thấy phương trình có $a^2+b^2=13<c^2=25$.

Vậy phương trình đã cho vô nghiệm.

II. Bài tập

1. Giải các phương trình sau:

a) $\dfrac{2\sin x+1}{2\cos x-\sqrt{3}}=0$

b) $\sqrt{\sin x}.(2\cos x+1)=0$

c) $\cos 2x \sin\left(\dfrac{\pi}{6}-3x\right)-\sin2x\sin\left(\dfrac{\pi}{6}-3x\right)=\dfrac{\sqrt{3}}{2}$

2. Giải các phương trình sau:

a) $-2\sin^2 x+5\sin x+3=0$

b) $\cos 2x+\sin^2 x+2\cos x+1=0$

c) $\dfrac{\sqrt{3}}{\sin^2x}=3\cot x+\sqrt{3}$

3. Giải các phương trình sau:

a) $\sin x -\sqrt{3}\cos x=\sqrt{3}$

b) $(\sqrt{3}-2)\cos 3x+\sin 3x-2=0$

c) $\sin(x+45^o)+\cos(x+45^o)=\sqrt{2}\sin 4x$

Đáp số

1. a) $x=\dfrac{7\pi}{6}+k2\pi$

b) $x=\dfrac{2\pi}{3}+k2\pi; x=k\pi$

c) $x=-\dfrac{\pi}{30}+k\dfrac{2\pi}{5}; x=-\dfrac{\pi}{10}+k\dfrac{2\pi}{5}$

2. a) $x=-\dfrac{\pi}{6}+k2\pi; x=\dfrac{7\pi}{6}+k2\pi$

b) $x=\pi+k2\pi$

c) $x=\dfrac{\pi}{2}+k\pi; x=\dfrac{\pi}{6}+k\pi$

3. a) $x=\dfrac{5\pi}{6}+k2\pi$

b) Vô nghiệm.

c) $x=30^o+k120^o; x=18^o+k72^o$.

 

 

 

 

Đáp án đề ôn thi Chuyên Toán – Đề số 3

Bài 1. 

1) a) a) Ta có $\Delta’ = {\left( {{m^2} + m + 1} \right)^2} – \left( {{m^4} + {m^2} + 1} \right) = \left( {{m^2} + m + 1} \right)2m \ge 0$\\
Mà ${m^2} + m + 1 = {\left( {m + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0 \Rightarrow m \ge 0$\\
Khi đó theo định lý Viete ta có: $\left\{ \begin{array}{l}
{x_1} + {x_2} = 2\left( {{m^2} + m + 1} \right) \\
{x_1}{x_2} = {m^4} + {m^2} + 1 \\
\end{array} \right.$
Suy ra:
$\begin{array}{l}
A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right) = 2\left( {{m^2} + m + 1} \right)\left( {1 + \dfrac{1}{{{m^4} + {m^2} + 1}}} \right) \\
= 2\left( {{m^2} + m + 1 + \dfrac{1}{{{m^2} – m + 1}}} \right) \\
\end{array}$.
Ta có ${m^2} – m + 1 = {\left( {m – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0$. \\
Theo bất đẳng thức Cauchy ta có ${m^2} – m + 1 + \frac{1}{{{m^2} – m + 1}} \ge 2$ và $m \ge 0$.
Do đó $A \geq 4$, đẳng thức xảy ra khi $m =0$. Vậy giá trị nhỏ nhất của A là 4 khi $m = 0$.

b) $B = \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}} = \dfrac{{{{\left( {{m^2} + m + 1} \right)}^2}}}{{{m^4} + {m^2} + 1}} = \dfrac{{{m^2} + m + 1}}{{{m^2} – m + 1}}$;
Ta có $0 < \dfrac{{{m^2} + m + 1}}{{{m^2} – m + 1}} = 1 + \dfrac{{2m}}{{{m^2} – m + 1}} \le 3$\\
B là số tự nhiên nên $B = 1,2,3$.
Với $B = 1$ ta có $m =0$;
Với $B = 2$ (vô nghiệm) ;
Với $B = 3$ ta có $m = 1$.
Vậy các giá trị cần tìm là $m = 0$ và $m = 1$.

2)  Ta có $\left\{ \begin{array}{l}
\left( {x + y} \right)\left( {x + z} \right) = – 4 \\
\left( {y + x} \right)\left( {y + z} \right) = 1 \\
\left( {z + x} \right)\left( {z + y} \right) = – 1 \\
\end{array} \right.$
Nhân 3 phương trình ta có:
${\left[ {\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)} \right]^2} = 4 \Rightarrow \left[ \begin{array}{l}
\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right) = – 2 \\
\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right) = 2 \\
\end{array} \right.$;
Trường hợp 1: $\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) = – 2 \Rightarrow \left\{ \begin{array}{l}
y + z = 1/2 \\
x + z = – 2 \\
x + y = 2 \\
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{ – 1}}{4} \\
y = \frac{9}{4} \\
z = \frac{{ – 7}}{4} \\
\end{array} \right.$
Trường hợp 2: $\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right) = 2 \Rightarrow \left\{ \begin{array}{l}
y + z = – 1/2 \\
x + z = 2 \\
x + y = – 2 \\
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 1/4 \\
y = – 9/4 \\
z = 7/4 \\
\end{array} \right.$
Vậy hệ phương trình có hai nghiệm $\left( {x,y,z} \right):\left( {\frac{{ – 1}}{4},\frac{9}{4},\frac{{ – 7}}{4}} \right),\left( {\frac{1}{4},\frac{{ – 9}}{4},\frac{7}{4}} \right)$

Bài 2.  Vì $abc > 1$ nên không thể có 3 số đều nhỏ hơn 1.

Vì $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$ nên không thể cùng lớn hơn 1.
Nếu có một số bằng 1, giả sử $a = 1$ ta có $bc > 1$ và $b + c < \dfrac{1}{b} + \dfrac{1}{c} = \dfrac{b+c}{bc}$ (vô lý).
Nên các số đều khác 1. Giả sử có hai số nhỏ hơn 1 là $a, b$ và $c > 1$.
Khi đó $ab < 1, ac \geq \dfrac{1}{b} > 1, bc \geq \dfrac{1}{a} > 1$.

Do đó: $(ab-1)(bc-1)(ac-1) < 0 \Leftrightarrow a^2b^2c^2 +ab+bc+ac -abc(a+b+c) – 1 < 0 (1)$.
Mặc khác $abc > 1, a+ b+ c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} \Leftrightarrow ab+bc+ac > abc(a+b+c) (2)$
Từ (1) và (2) ta có mâu thuẫn.
Vậy chỉ có đúng một số nhỏ hơn 1.

Bài 3.

a) Các ước của 12 là: 1, 2, 3, 4, 6, 12 ta có $1.2.3.4.6.12 = 12^3$. Nên 12 là số lập phương.
Các ước của 32 là $1, 2, 4, 8, 16, 32$, ta có $1.2.4.8.16.32 = 32^3$. Nên 32 là số lập phương.

b) Dễ tìm được $n = 5$.
c) Giả sử $n$ là số lập phương.
Nếu $n = 1$ thì $n$ là số lập phương. \\
Xét $n > 1$. Thì $n$ không là số nguyên tố vì nếu $n$ là số nguyên tố thì $n$ có các ước là $1, n$, mà $1.n \neq n^3$.
Suy ra $n$ là hợp số.
Trường hợp 1. Nếu $n$ có một ước nguyên tố là $p$, tức là: $n = p^k$ với $q$ là số nguyên tố. Khi đó các ước của $n$ là $1, p, p^2, …, p^{k-1}, p^k$. Khi đó $1. p.p^2…p^{k} = n^3 = p^{3k}$, suy ra $1 + 2 + …+ k = 3k$, suy ra $k = 5$. Vậy $n = p^5$ với $p$ nguyên tố. \\
Trường hợp 2. Nếu $n$ có 2 ước nguyên tố là $p, q$. Khi đó $n = p^m.q^k$. Nếu $m, k \geq 2$ thì ta có các ước của $n$ là $1, n, p^m, q^n, p, p.q^k, q, q.p^m$. Khi đó tích các ước sẽ lớn hơn $n^3$. Do đó $m, k$ không cùng lớn hơn hoặc bằng 2.
Nếu $m = k = 1$ thì các ước của $n$ là $1, p, q, n$ khi đó tích các ước là $1.p.q.n = n^2$, cũng không thỏa.
Nếu $m = 2, k = 1$ thì các ước của $n$ là $1, p, q, p^2, qp, n$. Khi đó $1.p.q.p^2.pq.n = n^3$ thỏa đề bài. \\ Vậy $n= p^2q$ với $p, q$ là các số nguyên tố là số lập phương.

Trường hợp 3. $n$ có nhiều hơn ba ước nguyên tố, khi đó số ước của $n$ lớn hơn hoặc bằng 8. Giả sử các ước là $1, d_1, d_2, …, d_k = n$ thì $1.d_1.d_{k-1}.d_2.d_{k-2}.d_3.d_{k-3}.n > n^3$, nên không thể là số lập phương.
Vậy các số lập phương là $1, p^5, p^2.q$ với $p, q$ là các số nguyên tố.
Cách khác: Ta có thể chứng minh số lập phương có đúng 6 ước số trước, rồi suy ra $n$.

Bài 4. 

a) Ta có $ADBE$ là hình chữ nhật $S_{ABDE} = AD.AB$. Ta có $AD. AB \leq \dfrac{1}{2}(AD^2+BD^2) = 2R^2$. Đẳng thức xảy ra khi và chỉ khi $AD = BD$. Khi đó $AC = AB = 2R$.
Vậy diện tích tứ giác $ADBE$ nhỏ nhất bằng $2R^2$ khi $AC = AB = 2R$.
b) Ta có $\Delta MFA \sim \Delta MAD$, suy ra $MA^2 = MF.MD$.(1)
Ta có $BF.BG = BA^2, BD.BC = BA^2$, suy ra $BF.BG = BD.BC$, suy ra tứ giác $DFGC$ nội tiếp. Khi đó $\Delta MFG \sim \Delta MCD$, suy ra $MC.MG = MF.MD$. (2)
Từ (1) và (2) ta có $MA^2 = MC.MG$.
c) Gọi $H$ là giao điểm của $AD$ và $BF$. $CH$ cắt $AB$ tại $O’$.
Ta có $\angle CDG = \angle CFG = \angle BFE = \angle DBA$, suy ra $DG || AB$.
Qua $H$ vẽ đường thẳng song song với $AB$ cắt $AG, BD$ tại $P, Q$. Ta có $\dfrac{HP}{AB} = \dfrac{GH}{GB} = \dfrac{DH}{DA} = \dfrac{QH}{AB}$, suy ra $HP = HQ$.
Ta có $\dfrac{HP}{AO’} = \dfrac{CH}{CO’} = \dfrac{QH}{BO’}$, mà $HP = HQ$, suy ra $AO’ = BO’$, hay $O’ \equiv O$. Vậy các đường thẳng $AD, BF, CO$ đồng quy.

Bài 5.

a) Đặt $r_1 = a + b+ c, r_2 = d+e+f, r_3 = g + h + i$ và $c_1 = a+ d + g, c_2 = b + e + h, c_3 = c + f + i$. Ta có $r_1 + r_2 + r_3 = c_1 + c_2 + c_3$.
Khi đó $a = |r_1 – c_1| = |(r_2 +r_3) – (c_2 + c_3)| = |(r_2-c_2) + (r_3 – c_3)| = \pm (r_2-c_2) \pm (r_3-c_3) = \pm e \pm i$.
Vì các số đều không âm nên không thể xảy ra trường hợp $a = – e- i$. Do đó $a = e +i, e- i$ hoặc $i – e$.
Tương tự cho các trường hợp khác.

b) Tồn tại, xét bảng sau: với $x > 0$.

 

 

 

 

 

 

 

 

 

 

 

Phương trình lượng giác cơ bản

I. Lý thuyết

Với $\alpha$ là một số cho trước.

  • $\sin x =\sin \alpha \Leftrightarrow \left[ \begin{matrix} x=\alpha +k2\pi\\x=\pi – \alpha +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$
  • $\cos x =\cos \alpha \Leftrightarrow \left[ \begin{matrix} x=\alpha +k2\pi\\x=- \alpha +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$
  • $\tan x=\tan \alpha \Leftrightarrow x=\alpha +k\pi, k \in \mathbb{Z}$
  • $\cot x=\cot \alpha \Leftrightarrow x= \alpha +k\pi, k \in \mathbb{Z}$

Với điều kiện $m \in [-1;1]$ ta có:

  • $\sin x =m \Leftrightarrow \left[ \begin{matrix} x=\arcsin m +k2\pi\\x=\pi – \arcsin m +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$
  • $\cos x =m \Leftrightarrow \left[ \begin{matrix} x=\arccos m +k2\pi\\x= – \arccos m +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$

Nếu $|m|>1$ thì các phương trình $\sin x=m, \cos x=m$ vô nghiệm.

Ví dụ 1. Giải các phương trình sau:

a) $2\sin x-1=0$

b) $2\cos(x-15^o)+1=0$

c) $\sqrt{3} \tan x=3$

d) $3\cot  (2x+1)=-1$

Đáp số

a) $2\sin x-1-0 \Leftrightarrow \sin x=\dfrac{1}{2}=\sin \dfrac{\pi}{6}$

$\Leftrightarrow \left[ \begin{matrix} x=\dfrac{\pi}{6} +k2\pi\\x=\pi – \dfrac{\pi}{6} +k2\pi \end{matrix} \right.  $

$ \Leftrightarrow \left[ \begin{matrix} x=\dfrac{\pi}{6} +k2\pi\\x=\dfrac{5 \pi}{6} +k2\pi \end{matrix} \right.  (k \in \mathbb{Z})$

b) $2\cos (x-15^o)+1=0 \Leftrightarrow \cos (x-15^o)=-\dfrac{1}{2}=\cos 120^o$

$\Leftrightarrow \left[ \begin{matrix} x-15^o=120^o+k360^o\\x-15^o=-120^o+k360^o \end{matrix} \right.$

$\Leftrightarrow \left[\begin{matrix} x=135^o+k360^o\\ x=-105^o+k360^o \end{matrix} \right. (k \in \mathbb{Z})$

c) $\sqrt{3} \tan x=3 \Leftrightarrow \tan x=\sqrt{3}=\tan \dfrac{\pi}{3} $

$\Leftrightarrow x= \dfrac{\pi}{3}+k\pi, k \in \mathbb{Z}.$

d) $3\cot (2x+1)=-1 \Leftrightarrow \cot (2x+1)=\dfrac{-1}{3} \Leftrightarrow 2x+1=arccot \left(-\dfrac{1}{3}\right)+k\pi   $

$\Leftrightarrow x=-\dfrac{1}{2}+\dfrac{1}{2} arccot \left(-\dfrac{1}{3} \right)+\dfrac{k\pi}{2}, k \in \mathbb{Z}$

II. Bài tập

1. Giải các phương trình sau

a) $\sin 4x -\sin x=0$

b) $\cot (x+3)=\tan (x-1)$

c) $\sin 2x=\cos \left( \dfrac{\pi}{3}-x \right)$

d) $\sin 4x+\cos x =0$

Đáp số

a) $x=\dfrac{\pi}{5}+k2\pi; x=\dfrac{k2\pi}{3}, k \in \mathbb{Z}$

b) $x=\dfrac{\pi}{4}-1+k\dfrac{\pi}{2}, k \in \mathbb{Z}$

c) $ x=\dfrac{\pi}{6}+k2\pi; x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}, k \in \mathbb{Z}$

d) $x=-\dfrac{\pi}{6}+\dfrac{k2\pi}{3}; x=-\dfrac{\pi}{10}+\dfrac{k2\pi}{5}, k \in \mathbb{Z}$

2. Giải  các phương trình sau:

a) $\dfrac{2\sin x-1}{\sqrt{\cos x}}=0$

b) $\dfrac{(2\cos 2x-1)(\sin x-3)}{\sqrt{\sin x}}=0$

Đáp số

a) $x=\dfrac{\pi}{6}+k2\pi, k \in \mathbb{Z}$

b) $x=\dfrac{\pi}{6}+k2\pi; x= \dfrac{5\pi}{6}+k2\pi , k \in \mathbb{Z}$.

3. Giải các phương trình sau với điều kiện của nghiệm đã cho:

a) $\sin 2x -1=0$ với $0 <x<2\pi$;

b) $\tan (x+30^o)+1=0$ với $-90^o<x<360^o$

Đáp số

a) Tập nghiệm của phương trình $S=\left\{ \dfrac{\pi}{12}; \dfrac{13\pi}{12}; \dfrac{5 \pi}{12}; \dfrac{17\pi}{12} \right\}$

b) Tập nghiệm của phương trình  $S=\left\{-75^o; 105^o; 285^o \right\}$

Đề thi: ôn vào lớp 10 chuyên toán

Bài 1. (2,5 điểm) 

1) Cho phương trình ${x^2} – 2\left( {{m^2} + m + 1} \right)x + {m^4} + {m^2} + 1 = 0$ ($m$ là tham số).
a) Tìm $m$ đề phương trình có nghiệm $x_1, x_2$. Tìm giá trị nhỏ nhất của biểu thức: $A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right)$
b) Tìm $m$ để $\dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}}$ là một số tự nhiên.

2) Giải hệ phương trình $\left{ \begin{matrix} x(x+y+z)+yz = – 4 \hfill \cr y(x+y+z)+xz=1 \hfill \cr z(x+y+z) + xy = – 1 \end{matrix} \right.$

Bài 2. (1 điểm) Cho các số $a, b, c > 0$ thỏa $abc > 1$ và $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$.

Chứng minh rằng trong 3 số $a, b, c$ có đúng một số nhỏ hơn 1.

Bài 3. (2 điểm) Một số nguyên dương được gọi là số lập phương nếu tích các ước dương của nó bằng lập phương của số đó.
a) Chứng minh rằng 12 và 32 là các số lập phương

b) Tìm số tự nhiên $n$ để $2^n$ là số lập phương.
c) Tìm tất cả các số lập phương.
Bài 4. (3 điểm) Cho đường tròn tâm $O$ đường kính $AB = 2R$. Gọi $C$ là một điểm thay đổi trên tiếp tuyến tại $A$ của $(O)$,$BC$ cắt $(O)$ tại điểm $D$ khác $B$. $E$ là điểm đối xứng của $D$ qua $O$, $CE$ cắt $(O)$ tại $F$ và $BF$ cắt $AC$ tại $G$.
a) Tính $AC$ khi diện tích tứ giác $ADBE$ lớn nhất.
b) $DF$ cắt $AC$ tại $M$. Chứng minh $MA^2 = MG.MC$.
c) Chứng minh rằng các đường thẳng $AD, BF$ và $CO$ đồng quy.
Bài 5. (1, 5 điểm)Cho bảng vuông $3 \times 3$. Người ta điền vào các ô vuông các số không âm sao cho nếu tổng các số ở một dòng là $r$, tổng các số ở một cột là $c$ thì $|r-c|$ là bằng giá trị ô vuông giao giữa dòng và cột đó.
a) Chứng minh rằng với số ở mỗi ô vuông bằng tổng hoặc hiệu các số ở hai ô vuông khác.
b) Có tồn tại hay không một cách điền số mà các số đều là số dương?

Hết.

Đáp án -> Here