Tag Archives: Lop10

Đáp án đề thi học kì 1 môn toán 10 năm học 2018 trường PTNK – Cơ sở 2

Bài 1. Giải các phương trình sau:
a)$\sqrt{7x+2} = 1 + \sqrt{4x+1}$
b) $\left| x^2-x-1 \right|+3= 2x$
Bài 2. 

a) Tìm $a$, $b$, $c$ biết parabol $(P):y= ax^2 + bx +c$ đi qua điểm $A(1;-1)$ và có đỉnh $I(-1; -5)$.
b) Tìm $m$ để phương trình $(x-1)\left( \sqrt{x+m}-1 \right) =0$ có hai nghiệm là độ dài các cạnh góc vuông của một tam giác vuông với cạnh huyền có độ dài bằng 3.
Bài 3. Cho hệ phương trình
$$\left\{ \begin{array}{l}
(1-2m)x +4y = 4m^2 + 4m +3 \\
mx + 2(m-1)y=-m-2
\end{array} \right. \quad (I) $$
Chứng minh khi $m$ nhận giá trị bất kì trên $\mathbb{R}$, hệ $(I)$ luôn có nghiệm duy nhất. Giả sử $(x_0, 1)$ là nghiệm của hệ $(I)$. Tìm $x_0$.
Bài 4. Cho góc $\alpha$ thỏa $\tan \left( \alpha + \dfrac{\pi}{3} \right) = -\dfrac{ 3\sqrt{3}}{5}$. Tính giá trị của biểu thức:
$$ P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha }$$
Bài 5. Cho tam giác $ABC$ có $AB=3a$, $AC=6a$, $BC=7a$.
a) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$ và $\cos A$.
b) Gọi $M$, $N$ là hai điểm được xác định bởi $\overrightarrow{AM} = \dfrac{2}{3} \overrightarrow{AB}$, $\overrightarrow{AN} = -\dfrac{3}{2} \overrightarrow{AC}$, tính $MN$ theo $a$.

Bài 6. Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(1;3)$, $B(6;-2)$.

a) Tìm tọa độ điểm $C$ sao cho $G(1;1)$ là trọng tâm của tam giác $ABC$.
b) Tìm tọa độ chân đường vuông góc kẻ từ $M(4;3)$ đến đường thẳng $AB$.

Hết

Lời giải

 

Bài 1. 

a) Nghiệm của phương trình: $x=2$.
b) $\left| x^2-x-1 \right| +3= 2x$
$\Leftrightarrow \left| x^2-x-1 \right| = 2x-3 \quad \left( x \ge \dfrac{3}{2} \right) $
$\Leftrightarrow \left[ \begin{array}{l}
x^2-x-1 = 2x-3 \\\\
x^2-x-1=3-2x
\end{array} \right. $
Từ đó suy ra nghiệm của phương trình: $x=2$ hoặc $x=\dfrac{\sqrt{17}-1}{2}$

Bài 2.

a) $P$ qua điểm $A(1;-1)$ nên $-1=a+b+c$.

$(P)$ có đỉnh $I(-1;-5)$ nên $-5=a-b+c$ và $-\dfrac{b}{2a}= -1$.

Từ đó suy ra $P: y= x^2 + 2x-4$.
b) Điều kiện: $x\ge -m$

Từ phương trình suy ra: $\left[ \begin{array}{l}
x= 1 \\\\
x= 1-m
\end{array} \right. $

Để hai nghiệm là độ dài các cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 thì: $1^2 + (1-m)^2 =3^2$ $\Rightarrow \left[ \begin{array}{l}
m= 1+2\sqrt{2} \\\\
m= 1-2\sqrt{2} \quad \text{(loại vì } x\ge -m)
\end{array} \right. $

Vậy $m=1+2\sqrt{2}$.

Bài 3. 

$D= \left| \begin{array}{*{20}{c}}
{1-2m}&{4}\\\\
{m}&{2(m-1)}
\end{array} \right| = (1-2m)(2m-2)-4m = -4m^2+2m-2 $

$D_x = \left| \begin{array}{*{20}{c}}
{4m^2+4m+3}&{4}\\\\
{-m-2}&{2(m-1)}
\end{array} \right| = 8m^3+2m+2 $

$D_y= \left| \begin{array}{*{20}{c}}
{1-2m}&{4m^2+4m+3}\\\\
{m}&{-m-2}
\end{array} \right| = -4m^3-2m^2-2 $

$D=0 \Leftrightarrow -4m^2+2m-2 =0$ (vô nghiệm).

Suy ra $D \ne 0$ với mọi $m \in \mathbb{R}$

Vậy với mọi $m \in \mathbb{R}$ thì hệ $(I)$ luôn có nghiệm duy nhất.

Khi $(x_0;1)$ là nghiệm của hệ $(I)$ thì $y=\dfrac{D_y}{D}=\dfrac{-4m^3-2m^2-2}{-4m^2+2m-2}=1 \Leftrightarrow m=0$

Khi đó $x=\dfrac{D_x}{D}= \dfrac{2}{-2}=-1$

Bài 4.

$\tan\left( \alpha + \dfrac{\pi}{3} \right) =\dfrac{\tan \alpha + \tan \dfrac{\pi}{3}}{1-\tan \alpha \cdot \tan \dfrac{\pi}{3}} = -\dfrac{3\sqrt{3}}{5} \Leftrightarrow \tan \alpha = 2\sqrt{3}$

$P=\dfrac{\cos ^3 \alpha + 2\sin \alpha \cdot \cos ^2 \alpha}{\sin ^2 \alpha \cdot \cos \alpha + \sqrt{3} \sin ^3 \alpha } = \dfrac{1+2\tan \alpha}{\tan ^2 \alpha + \sqrt{3} \tan ^3 \alpha} = \dfrac{1+4\sqrt{3}}{84}$

Bài 5. 

a) $\overrightarrow{AB} \cdot \overrightarrow{AC} = -2a^2$; $\cos A = \dfrac{-2a^2}{3a\cdot 6a}= -\dfrac{1}{9}$
b) $\overrightarrow{MN} = \overrightarrow{AN} – \overrightarrow{AM} = -\dfrac{3}{2} \overrightarrow{AC} – \dfrac{2}{3} \overrightarrow{AB} \Rightarrow MN^2=\overrightarrow{MN}^2 = \ldots = 81a^2 \Rightarrow MN = 9a$

Bài 6. 

a) $C(-4;2)$
b) Gọi chân đường vuông góc hạ từ $M$ đến $AB$ là $H(x,y)$

Ta có: $\left\\{ \begin{array}{l}
\overrightarrow{MH} \bot \overrightarrow{AB} \\\\
\overrightarrow{AH} \parallel \overrightarrow{AB}
\end{array} \right. $

Từ đó suy ra: $H\left( \dfrac{5}{2}; \dfrac{3}{2} \right) $

Đáp án đề thi học kì 1 môn toán lớp 10 trường Phổ thông Năng khiếu năm 2016

Bài 1. Tìm m để phương trình $\dfrac{(x-1)(x-3m)}{\sqrt{x-2}+1}=0$ vô nghiệm

Bài 2. Gọi $(P)$ là đồ thị của hàm số: $y= x^2 + bx + c \, \, (b,c \in \mathbb{R} )$. Biết các điểm $A(1;-4)$, $B(2;-3)$, thuộc $(P)$. \
Tìm tọa độ giao điểm của $(P)$ và $(P’)$, với $(P’)$ là đồ thị của hàm số $y= (2x-1)^2 -4$

Bài 3. Cho hệ phương trình: $\left\{ \begin{array}{l}
x+\dfrac{1}{m} \sqrt{y} =4 \\
\dfrac{1}{m} x + \sqrt{y} = \dfrac{2}{m} + 2
\end{array} \right.$, với m là tham số và $m \ne 0$.

Định m để hệ phương trình có nghiệm duy nhất.

Bài 4. Giải các phương trình sau:

a) $\sqrt{2x+1}+\sqrt{x-3}=4$
b) $x+ \dfrac{3x}{\sqrt{x^2-9}}=\dfrac{35}{4}$

Bài 5. Chứng minh đẳng thức: $\tan^2 a – \tan^2 b = \dfrac{\sin(a+b).\sin(a-b)}{\cos^2a.\cos^2b}$

Bài 6. Cho tam giác $ABC$ có các đỉnh $A(-1;3)$, $B(-3;-3)$, $C(2;2)$. Chứng minh tam giác $ABC$ là tam giác vuông và tìm trực tâm tam giác $ABC$.

Bài 7.  Cho hình bình hành $ABCD$ với $AB=6a$, $AD=3a$, $\angle ABC =60^0$. Gọi $M,N$ thỏa: $\overrightarrow{MA}+2 \overrightarrow{MB}=\overrightarrow{0}$, $3 \overrightarrow{ND}+2 \overrightarrow{NC}=\overrightarrow{0}$.
a) Tính $\overrightarrow{AM}. \overrightarrow{AD}$.
b) Tính độ dài cạnh $AN$ theo $a$.
c) Gọi $G$ là trọng tâm tam giác $AMN$. Tìm $x$ và $y$ thỏa: $\overrightarrow{BG}= x \overrightarrow{BA} + y \overrightarrow{BD}$.

Hết

Đáp án

[userview]

ptnk10hk12016

[/userview]

Phương pháp chứng minh phản chứng (Lớp 10)

Tính chất.  $A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow \overline{A}$ hoặc $A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow S$,  $S$ là mệnh đề hằng sai.

  • Phương pháp chứng minh phản chứng là một phương pháp chứng minh gián tiếp, để chứng  minh mệnh đề $A \Rightarrow B$ ta chứng minh mệnh đề tương đương với nó là $\overline{B} \Rightarrow \overline{A}$.
  • Điểm mạnh của phương pháp này là ta đã tạo thêm được giả thiết mới $\overline{B}$, để từ đó giúp ta suy luận tiếp để giải quyết được bài toán.
  • Tất nhiên việc viết lại mệnh đề $\overline{B}$ một cách chính xác là điều quan trọng, cái này chú ý một số quy tắt về mệnh đề.
  • Phương pháp này được sử dụng hầu hết trong các phân môn của toán là: đại số, số học, hình học, tổ hợp.

1. Các bài toán tổ hợp

Ví dụ 1. (Nguyên lý Dirichlet) Có $nk + 1$ viên bi, bỏ vào trong $k$ cái hộp. Chứng minh rằng có ít nhất một hộp có ít nhất là là $n+1$ viên bi.

Lời giải
  •  Giả sử tất cả các hộp chỉ chứa số lượng bị không vượt quá $n$ viên, khi đó tổng số viên bi không vượt quá $k \cdot n$, mâu thuẫn với số bi là $kn + 1$.
  • Vậy phải có một hộp chứa nhiều hơn $n$ viên bi.

 

Ví dụ 2. Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau:$-5, -4, -3, 3, 4, 5$.

Lời giải
  • Giả sử có một cách ghi thỏa đề bài.
  • Khi đó ta thấy rằng các số $0, 1, 2, 8, 9$ không thể đứng cạnh nhau đôi một. Hơn nữa có đúng 10 số, vậy các số còn lại sẽ đứng xen kẽ giữa các số này.
  • Khi đó xét số 7, ta thấy số 7 chỉ có thể đứng bên cạnh số 2 trong các số $\{ 0, 1, 2, 8, 9 \}$, mâu thuẫn.
    Vậy không tồn tại cách ghi thỏa đề bài.

Ví dụ 3.  Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?

Lời giải
  • Giả sử tồn tại một cách điền số vào các ô thỏa yêu cầu đặt ra. Khi đó bảng ô vuông được chia thành hai phần ngăn cách nhau bởi cột điền các số chính phương. Một phần chứa $11n$ ô vuông $1 \times 1$, và phần còn lại chứa $110-11n$ ô vuông $1 \times 1$ , với $0 \le n \le 5.$
  • Để ý rằng các số tự nhiên nằm giữa hai số chính phương liên tiếp $a^2$ và $(a+1)^2$ sẽ cùng nằm về một phần và dó đó các số tự nhiên nằm giữa $(a+1)^2$ và $(a+2)^2$ sẽ nằm ở phần còn lại.
  • Số lượng các số tự nhiên nằm giữa 1 và 4, 4 và 9, 9 và 16,…,100 và 121 lần lượt là $2,4,6,8,…,20$. Do đó một phần sẽ chứa $2+6+10+14+18=50$ số, phần còn lại chứa $4+8+12+16+20=60$ số.
  • Cả 50 và 60 đều không chia hết cho 11, mâu thuẫn. Vậy không tồn tại cách điền số thỏa yêu cầu đề bài.

Ví dụ 4. Cho $F ={E_1, E_2, …, E_k }$ là một họ các tập con có $r$ phần tử của tập $X$. Nếu giao của $r+1$ tập bất kì của $F$ là khác rỗng, chứng minh rằng giao của tất cả các tập thuộc $F$ là khác rỗng.

Lời giải
  • Giả sử ngược lại, giao tất cả các tập thuộc $F$ bằng rỗng.
  • Xét tập $E_1 = \{x_1, \cdots, x_r\}$. Do giao tất cả các tập thuộc $F$ là rỗng, nên với $x_k$ tồn tại một tập $E_{i_k}$ mà $x \notin E_{i_k}, \forall k = \overline{1,r}$.
  • Khi đó xét giao của họ gồm $r+1$ tập $E_1, E_{i_1}, \cdot, E_{i_r}$ thì bằng rỗng, mâu thuẫn.Vậy giao của tất cả các tập thuộc $F$ là khác rỗng.

Ví dụ 5.  Cho $A$ và $B$ là các tập phân biệt và hợp của $A$ và $B$ là tập các số tự nhiên. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại các số  phân biệt $a,b > n$ sao cho ${a,b,a + b } \subset A$ hoặc ${a,b,a+b} \subset B$.

Lời giải
  • Nếu $A$ hoặc $B$ là tập hợp hữu hạn phần tử thì chỉ cần chọn $a, b$ lớn hơn phần tử lớn nhất của $A$ hoặc $B$ ta có điều cần chứng minh.
  • Nếu $A, B$ là tập vô hạn, giả sử tồn tại $n$ sao cho với mọi $a, b$ thì $a, b, a+b$ không cùng thuộc $A$ hoặc $B$. (1)
  • a chọn các số $x, y, z \in A$ sao cho $x < y < z$  và $z-y, y-x > n$.
  • Do (1) nên các số $y-x, z-y,z-x \in B$, suy ra $z-y+y-x = z-x \in A$ (mâu thuẫn).
    Vậy điều giả sử là sai, tức là ta có điều cần chứng minh.

Bài tập rèn luyện.

Bài 1. Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.

Bài 2. Cho $S$ là tập vô hạn các phần tử và $P(S)$ là họ các tập con của $S$. Chứng minh rằng không tồn tại một song ánh từ $S$ và $P(S)$.

Bài 3. Cho $A$ là tập con có 19 phần tử của tập ${1, 2, \cdots, 106}$ sao cho không có hai phần tử nào có hiệu bằng $6, 9, 12, 15, 18$. Chứng minh rằng có 2 phần tử thuộc $A$ có hiệu bằng 3.

Bài 4. Một hình vuông $n \times n$ ô được tô bởi hai màu đen trắng, sao cho trong 4 ô góc thì 3 ô được tô màu đen, 1 ô được tô màu trắng. Chứng minh rằng trong hình vuông có ô vuông $2 \times 2 $ mà có số ô màu đen là số lẻ.

Bài 5.  Tập $S$ được gọi là một tập cân nếu lấy từ $S$ ra một phần tử bất kì thì các phần tử còn lại của $S$ có thể chia ra làm hai phần có tổng bằng nhau. Tìm số phần tử nhỏ nhất của một tập cân.

(còn nữa)

Đại cương hàm số – Bài giảng

1. Hàm số là gì?

a. Định nghĩa. Cho tập $D \neq \emptyset$, một quy tắc cho tương mỗi phần tử $x \in D$ với một và chỉ một phần tử $y \in \mathbb{R}$ được gọi là hàm số. Kí hiệu

$f: D \to \mathbb{R}$

      $x \mapsto y = f(x)$.

  • $D$ được gọi là tập xác định.
  • $y = f(x)$ được gọi là giá trị của hàm số tại $x$. 

b. Cách cho một hàm số. Các quy tắc có thể cho bởi công thức, ví dụ cho hàm số $f: \mathbb{R} \mapsto \mathbb{R}, y = 2x + 1$. Tập xác định là $\mathbb{R}$.

Khi cho hàm số bởi công thức, nếu không nói gì đến tập xác định thì quy ước tập xác định trong trường hợp này là tập các giá trị $x$ để biếu thức có nghĩa.

Ví dụ 1. Cho $y = \dfrac{2}{4x-1}$. Thì biểu thức có nghĩa khi $4x -1 \neq 0 \Leftrightarrow x \neq \dfrac{1}{4}$. Do đó tập xác định là $D = \mathbb{R} \setminus {\dfrac{1}{4}}$

2. Sự biến thiên của hàm số

  • Cho hàm số $f$ xác định trên khoảng $I$. Ta nói $f$ đồng biến trên $I$ khi và chỉ khi $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
  • Cho hàm số $f$ xác định trên khoảng $I$. Ta nói $f$ đồng biến trên $I$ khi và chỉ khi $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Ví dụ 2. Cho hàm số $y = f(x) = 2x – 3$.

Chứng minh rằng hàm số này đồng biến trên $\mathbb{R}$.

Lời giải. Lấy $x_1, x_2 \in \mathbb{R}, x_1 < x_2$. Ta có $f(x_1) – f(x_2) = (2x_1-3) – (2x_2-3) = 2(x_1 – x_2) < 0$, suy ra $f(x_1) < f(x_2)$.

Vậy hàm số đồng biến trên $\mathbb{R}$.

Ví dụ 3. Cho hàm số $y = f(x) = \dfrac{1}{x}$. Chứng minh hàm nghịch biến trên $(0;+\infty)$,

Lời giải. Lấy $x_1, x_2 \in (0;+\infty), x_1 < x_2$ ta có $f(x_1) – f(x_2) = \dfrac{1}{x_1} – \dfrac{1}{x_2} = \dfrac{x_2-x_1}{x_1x_2}$.

Ta có $x_2 – x_1 > 0, x_1x_2 > 0$, suy ra $f(x_1) – f(x_2) > 0 \Rightarrow f(x_1) > f(x_2)$.

Vậy hàm số nghịch biến trên $(0;+\infty)$.

Chú ý. 

  • $f$ đồng biến trên $I$ khi và chỉ khi $\forall x_1, x_2 \in I, \Rightarrow \dfrac{f(x_1)-f(x_2)}{x_1-x_2} >0$
  • $f$ đồng biến trên $I$ khi và chỉ khi $\forall x_1, x_2 \in I,  \Rightarrow \dfrac{f(x_1)-f(x_2)}{x_1-x_2} < 0$

3. Hàm số chẵn, hàm số lẻ

a. Cho hàm số $f$ có tập xác định là $D$. Ta nói $f$ là hàm số chẵn nếu thoả

  • $\forall x \in D \Rightarrow -x \in D$.
  • $\forall x \in D, f(-x) = f(x)$.

b. Cho hàm số $f$ có tập xác định là $D$. Ta nói $f$ là hàm số lẻ nếu thoả

  • $\forall x \in D \Rightarrow -x \in D$.
  • $\forall x \in D, f(-x) = -f(x)$.

Ví dụ 3. Xét tính chẵn lẻ của các hàm số sau:

a. $y = 2x^2 + |x|$

b.$ y = \dfrac{1}{x^3}$.

Lời giải.

a. Tập xác định của hàm số là $\mathbb{R}$.

Ta có với mọi $x \in \mathbb{R}$ thì $-x\in \mathbb{R}$.

$f(-x) = 2(-x)^2+|-x| = 2x^2 + |x| = f(x)$.

Do đó $f$ là hàm số chẵn.

b. Tập xác định là $D =\mathbb{R} \setminus {0}$.

Với $x \in D \Rightarrow -x \in D$.

$f(-x) = \dfrac{1}{(-x)^3} = \dfrac{-1}{x^3} = -f(x)$.

Suy ra $f$ là hàm số lẻ.

4. Đồ thị của hàm số

a. Định nghĩa. Cho hàm số có tập xác định $f$. Đồ thị hàm số là tập hợp các điểm $(x,y)$ trong mặt phẳng toạ độ $Oxy$ sao cho

  • $x \in D$.
  • $y = f(x)$.

Ví dụ 4. Cho hàm số $y = x^3-3x + 2$. Tìm giao điểm của đồ thị hàm số với trục hoành.

Lời giải. Gọi $M(x;y)$ là giao điểm của đồ thị với trục hoành, khi đó $y = 0$.

Ta có $M(x;0)$ thuộc đồ thị hàm số nên $ 0 = x^3-3x + 2 $ giải ra được $x=1, x=-2$.

Vậy giao điểm của đồ thị hàm số với trục hoành là $M_1(1;0), M_2(2;0)$.

Chú ý. Nếu hàm số $y = f(x)$ có đồ thị (C) và hàm số $y = g(x)$ có đồ thị $(H)$. Khi đó hoành độ giao điểm của (C)  và (H) là nghiệm của phương trình $f(x)= g(x)$.

b. Tính chất. 

  • Đồ thị hàm số chẵn nhận trục tung làm trục đối xứng.
  • Đồ thị hàm số lẻ nhận gốc toạ độ làm tâm đối xứng.

Bài tập rèn luyện

Dạng tìm tập xác định

Bài 1. Tìm tập xác định của hàm số $y= \dfrac{\sqrt{5-6x}-\sqrt{2x+11}}{x^2+3x+2}$.

Bài 2. Tìm tập xác định của các hàm số sau:

a) $y=\dfrac{\sqrt{x+1}}{x^2+5x-14}$.
b) $y=\sqrt{x^2-2x+5}-\dfrac{1}{x}$.
c) $y=\dfrac{x^2-2}{(x-2)\sqrt{x+1}}$.
d) $y=\sqrt{x+1}+\sqrt{8-x}$.

Bài 3. Tìm tập xác định của các hàm số sau

a) $y=\sqrt{x+4+2\sqrt{x+3}}$.
b) $y=\dfrac{\sqrt{2x-3}}{(x^2-3x+2) \sqrt{7-x}}$.
c) $y =\dfrac{x+\sqrt{x+4}-2 \sqrt{2-x}}{-x^2+4x-3}$.
d) $y=\sqrt{\dfrac{x}{1-x}}+\sqrt{2x-1}$.

Bài 4, Tìm $m$ để các hàm số sau xác định trên tập đã chỉ ra:

a) $y=\dfrac{2x+1}{x^2-6x+m-2}$ trên $D=\mathbb{R}$.
b) $y=\sqrt{x-m}+\sqrt{2x-m-1}$ trên $D=(0, +\infty)$.
c) $y=\sqrt{2x-3m+4}+\dfrac{x-m}{x+m-1}$ trên $D=(0, +\infty)$.
d) $y=\dfrac{x+2m}{x-m+1}$ trên $(0, +\infty)$.

Dạng 2. Sự biến thiên

Bài 1. Chứng minh hàm số $y=\dfrac{x^2-x-1}{x-1}$ đồng biến trên $(- \infty, 1)$ và $(1, + \infty)$.

Bài 2. Khảo sát sự biến thiên của các hàm số sau
a) $y = 2020x – 2019$ trên $\mathbb{R}$
b) $y = \dfrac{1}{x-2048}$ trên $(2048;+\infty)$.
c) $y = x^3+x$ trên $\mathbb{R}$.
d) $y=\sqrt{x-4}-\sqrt{x+1}$ trên $(0, + \infty)$
e) $y=\sqrt{x+4+2 \sqrt{x+3}}$ trên tập xác định
f) $y=\dfrac{x}{x^2+1}$ trên $(1, + \infty)$

Bài 3. Khảo sát sự biến thiên của các hàm số sau

a) $y = x^3+x$ trên $\mathbb{R}$.
b) $y=\sqrt{x-4}-\sqrt{x+1}$ trên $(0, + \infty)$
c) $y=\sqrt{x+4+2 \sqrt{x+3}}$ trên tập xác định
d) $y=\dfrac{x}{x^2+1}$ trên $(1, + \infty)$

Dạng 3. Tính chẵn lẻ và đồ thị

Bài 1. Xét tính chẵn, lẻ của các hàm số sau:

a) $y=x^4-x^2+1$
b) $y=x^3-3x-4$
c) $y=\dfrac{x^4+x^2}{1-x^2}$
d) $y=\sqrt{x+1}+\sqrt{1-x}$
e) $y=x^3 |x|$
f) $y=\dfrac{|x|}{x^2-4}$
g) $y=\sqrt{x}(x^2+1)$
h) $\sqrt{x^2+1}-\sqrt{1-x^2}$.

Bài 2. Xét tính chẵn, lẻ của các hàm số sau:

a) $y = \dfrac{\sqrt{1-2x}-\sqrt{1+2x}}{x^2-x^4}$.
b) $y = \dfrac{\sqrt{3-x}+\sqrt{3+x}}{|x|+2}$.

Bài 3. Cho hàm số $y = x^2 -2x-1$, có đồ thị $G$.

a) Nếu tịnh tiến $G$ qua phải hai đơn vị thì được đồ thị hàm số nào?
b) Nếu tịnh tiến qua trái một đơn vị và tịnh tiến lên 3 đơn vị thì được đồ thị hàm số nào?

Bài 4. Cho hàm số $y = \dfrac{\sqrt{3-x}-\sqrt{3+x}}{x^2-1}$.

a) Tìm tập xác định của hàm số.
b) Xét tính chẵn lẻ của hàm số. Từ đó nhận xét về đồ thị của hàm số.

Tập hợp

1. Tập hợp là gì?

  • Tập hợp là khái niệm cơ bản, không có định nghĩa.
  • Kí hiệu tập hợp là các chữ cái in hoa: A, B, C…
  • Trong tập hợp bao gồm các phần tử, tập không có phần tử nào gọi là tập rỗng, kí hiệu $\emptyset $.
  • Phần tử $a$ thuộc tập $X$, kí hiệu là $a \in X$. Phần tử $b$ không thuộc tập $X$ kí hiệu là $b \notin X$.
  • Cách cho tập hợp:
  1. Cho bằng cách liệt kê. Ví dụ $A = \{1, 2, 3, 4, 5 \}$.
  2. Cho bằng đặc trưng của tập hợp $A = \{n \in \mathbb{N}|n \vdots 5 \}$.

2.Tập hợp con – Tập hợp bằng nhau.

Tập $A$ là tập con của $B$ (hay $A$ chứa trong $B$) khi và chỉ khi mọi phần tử của $A$ đều là phần tử của $B$.

$(A \subset B) \Leftrightarrow (\forall x \in A \Rightarrow x \in B) $

Ta có các tình chất sau:

  • Tập rỗng là con của mọi tập hợp.
  • Một tập là tập con của chính nó
  • Nếu $A \subset B$ và $B \subset C$ thì $A \subset C$.

3. Các phép toán trên tập hợp

a. Giao của hai tập hợp.

$A \cap B = \{x| x\in A \wedge x \in B \}$.

b. Hợp của hai tập hợp.

$A \cup B = \{x|x \in A \vee x \in B$\}$.

c. Hiệu – Phần bù

$A \setminus B = \{x|x \in A \wedge x \notin B \}$

Ví dụ. Cho $A = \{1, 2, 3, 4 \}, B = \{3, 4, 5, 6 \}, C = \{5, 6, 1, 8\}$.

Khi đó $A \cap B = \{3, 4 \}, A \cup C = \{1, 2, 3, 4, 5, 6, 8\}, A \setminus B = \{1, 2\}, B \setminus A = \{5, 6\}$.

4. Các tập hợp số

a) Tập các số tự nhiên $\mathbb{N} = \{0, 1, 2, …\}$.

Tính chất.

  • Một tập con của $\mathbb{N}$ luôn có phần tử nhỏ nhất.
  • Tập số tự nhiên không có số lớn nhất.
  • Giữa hai số tự nhiên liên tiếp không có số tự nhiên nào.

b) Tập các số nguyên $\mathbb{Z} = \{…,-2,-1,0,1,2,…\}$

c) Tập các số hữu tỉ. $\mathbb{Q} = \{\dfrac{m}{n}|m, n \in \mathbb{Z}, n \neq 0 \}$.

Tính chất.

  • Tổng hiệu tích thương (mẫu khác 0) của hai số hữu tỉ là một số hữu tỉ.
  • Giữa hai số hữu tỉ bất kì luôn có một số hữu tỉ

d) Tập các số thực. Hợp của tập các hữu tỷ và vô tỷ.

Các tập con của tập các số thực.

Bài tập.

  1. Cho $A = \{0, 1, 2, 3, 4, 5 \}, B = \{2,3, 4, 8 \}, C = \{3, 4, 10, 11 \}$. Tìm $A \setminus B, A \cap B, (A \cup B) \setminus C$.
  2. Cho $A = [-4;2], B = (-1;5), C = (-\infty;0)$. Tìm $\mathbb{R} \setminus A, A \cup B, C \setminus B, (A\cap B) \setminus C$.
  3. Cho hai tập A, B thoả mãn $C_{R}A=(2, +\infty), C_{R}B=(- \infty,1) \cup [3, + \infty)$. Hãy xác định các tập $A \cap B, A \cup B, A \setminus B, B \setminus A$ và phần bù của các tập trên.
  4. Cho $A=[\dfrac{1}{2}, +\infty), B=\{x \in \mathbb{R}: |2x-1| \le 1\}$. Tìm $A \cap B, A \cup B, A \setminus B, B \setminus A$ và phần bù của các tập trên.
  5. Cho $A=(2m-1, 2m+3), B=(-6,1]$. Tìm $m$ để
    a. $A \subset B.$
    b. $B \subset A.$
  6. Lớp 10A có 40 học sinh, trong đó có 15 bạn được xếp học lực giỏi, 20 bạn được xếp hạnh kiểm tốt, 10 bạn vừa học lực giỏi vừa hạnh kiểm tốt.
    a. Hỏi lớp 10A có bao nhiêu bạn được khen thưởng, biết để được khen thưởng thì bạn đó hoặc phải có học lực giỏi hoặc phải có hạnh kiểm tốt.
    b. Lớp 10 A có bao nhiêu bạn chưa có học lực giỏi và chưa có hạnh kiểm tốt?

 

 

 

 

 

 

 

 

 

 

 

Đề thi: ôn vào lớp 10 chuyên toán

Bài 1. (2,5 điểm) 

1) Cho phương trình ${x^2} – 2\left( {{m^2} + m + 1} \right)x + {m^4} + {m^2} + 1 = 0$ ($m$ là tham số).
a) Tìm $m$ đề phương trình có nghiệm $x_1, x_2$. Tìm giá trị nhỏ nhất của biểu thức: $A = \left( {{x_1} + {x_2}} \right)\left( {1 + \dfrac{1}{{{x_1}{x_2}}}} \right)$
b) Tìm $m$ để $\dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{{4{x_1}{x_2}}}$ là một số tự nhiên.

2) Giải hệ phương trình $\left{ \begin{matrix} x(x+y+z)+yz = – 4 \hfill \cr y(x+y+z)+xz=1 \hfill \cr z(x+y+z) + xy = – 1 \end{matrix} \right.$

Bài 2. (1 điểm) Cho các số $a, b, c > 0$ thỏa $abc > 1$ và $a + b + c < \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c}$.

Chứng minh rằng trong 3 số $a, b, c$ có đúng một số nhỏ hơn 1.

Bài 3. (2 điểm) Một số nguyên dương được gọi là số lập phương nếu tích các ước dương của nó bằng lập phương của số đó.
a) Chứng minh rằng 12 và 32 là các số lập phương

b) Tìm số tự nhiên $n$ để $2^n$ là số lập phương.
c) Tìm tất cả các số lập phương.
Bài 4. (3 điểm) Cho đường tròn tâm $O$ đường kính $AB = 2R$. Gọi $C$ là một điểm thay đổi trên tiếp tuyến tại $A$ của $(O)$,$BC$ cắt $(O)$ tại điểm $D$ khác $B$. $E$ là điểm đối xứng của $D$ qua $O$, $CE$ cắt $(O)$ tại $F$ và $BF$ cắt $AC$ tại $G$.
a) Tính $AC$ khi diện tích tứ giác $ADBE$ lớn nhất.
b) $DF$ cắt $AC$ tại $M$. Chứng minh $MA^2 = MG.MC$.
c) Chứng minh rằng các đường thẳng $AD, BF$ và $CO$ đồng quy.
Bài 5. (1, 5 điểm)Cho bảng vuông $3 \times 3$. Người ta điền vào các ô vuông các số không âm sao cho nếu tổng các số ở một dòng là $r$, tổng các số ở một cột là $c$ thì $|r-c|$ là bằng giá trị ô vuông giao giữa dòng và cột đó.
a) Chứng minh rằng với số ở mỗi ô vuông bằng tổng hoặc hiệu các số ở hai ô vuông khác.
b) Có tồn tại hay không một cách điền số mà các số đều là số dương?

Hết.

Đáp án -> Here

 

 

 

 

 

 

 

Phương trình bậc nhất: $ax + b = 0$.

Giải và biện luận phương trình $ax + b = 0$. 

  • Nếu $a \neq 0$ thì phương trình có nghiệm duy nhất $x = \dfrac{-b}{a}$.
  • Nếu $a = 0, b \neq 0$ thì phương trình vô nghiệm.
  • Nếu $a = 0, b = 0$ thì mọi $x \in \mathbb{R}$ đều là nghiệm.

Ví dụ 1. Giải và biện luận phương trình $(m-1)x + 2m – 3 = 0$.

Giải
  • Khi $m -1 \neq 0 \Leftrightarrow m = 1$, phương trình có nghiệm $x = \dfrac{3-2m}{m-1}$.
  • Khi $m = 1$, ta có phương trình $0x -1 = 0$ (Vô nghiệm).

Ví dụ 2. Giải và biện luận phương trình $(m^2-3m + 2)x – m^2 +1 = 0$.

Giải
  • Khi $m^2 – 3m + 2 \neq 0 \Leftrightarrow m \neq 1, m\neq 2$ thì phương trình có nghiệm $x = \dfrac{m^2-1}{m^2-3m+2} = \dfrac{m+1}{m-2}$.
  • Khi $m^2 – 3m + 2 = 0 \Leftrightarrow m = 1$ hoặc $m = 2$.
    • Với $m = 1$ thì $ 1-m^2 = 0$ nên mọi $x \in \mathbb{R}$ đều là nghiệm.
    • Với $m = 2$ thì $1 – m^2 \neq 0$ nên phương trình vô nghiệm.

Ví dụ 3. Tìm $m$ để phương trình $\dfrac{3mx – 1}{x-m} =2 $ có nghiệm duy nhất.

Giải

Điều kiện $x \neq m$. Phương trình tương đương với $3mx – 1 = 2(x-m) \Leftrightarrow (3m-2)x = -2m+1$.

Phương trình có nghiệm duy nhất khi và chỉ khi $3m – 2 \neq 0$ và $x = \dfrac{-2m-1}{3m-2} \neq m \Leftrightarrow m \neq \pm \dfrac{1}{\sqrt{3}}$.

Kết luận: $m \neq \dfrac{2}{3}, \dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}$.

Bài tập

Bài 1. Giải và biện luận các phương trình sau:

a) $(m^2-4m+2)x=m-2$
b) $m^2(x-1)=mx-1$
c) $m(x-m+3)=m(x-2)+6$
d) $m(mx-1)=4x+2$

Bài 2. Định $m$ để các phương trình sau vô nghiệm
a) $(4m^2-2)x=1+2m-x$
b) $(m+1)^2x-2=(4m+9)x-m$
c) $\dfrac{x-2}{x-3}=\dfrac{x}{x+m}$
d) $\dfrac{x+1}{x-m+1}=\dfrac{x}{x+m+2}$

Bài 3. Định $m$ để phương trình sau có nghiệm
a) $m^2(x-1)=4x-3m+2$
b) $\dfrac{2x+m}{x-1}-\dfrac{x+m-1}{x}=1$
c) $\dfrac{x+m}{x+3}=\dfrac{x}{x+1}$

[WpProQuiz 4]