Tag Archives: Daiso

PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC – P.4

CHIA ĐA THỨC

 

Đa thức $\mathrm{A}(\mathrm{x})$ gọi là chia hết cho đa thức $\mathrm{B}(\mathrm{x})$ khác 0 nếu tồn tại đa thức $\mathrm{Q}(\mathrm{x})$ sao cho $\mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x})$.

Người ta chứng minh được rằng : Với mọi cặp đa thức $\mathrm{A}(\mathrm{x})$ và $\mathrm{B}(\mathrm{x})$ trong đó $\mathrm{B}(\mathrm{x}) \neq 0$, tồn tại duy nhất cặp đa thức $\mathrm{Q}(\mathrm{x})$ và $\mathrm{R}(\mathrm{x})$ sao cho $\mathrm{A}(\mathrm{x})=\mathrm{B}(\mathrm{x}) \cdot \mathrm{Q}(\mathrm{x})+\mathrm{R}(\mathrm{x})$, trong đó $R(x)=0$ hoặc bậc của $R(x)$ nhỏ hơn bậc của $B(x)$.

Nếu $R(x)=0$ thì $A(x)$ chia hết cho $B(x)$. Nếu $R(x) \neq 0$ thì $A(x)$ không chia hết cho $B(x)$, khi đó $Q(x)$ là thương và $R(x)$ là dư của phép chia $A(x)$ cho $B(x)$.

Ví dụ 1. Tìm số tự nhiên $\mathrm{n}$ để đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=3 x^{n-1} y^6-5 x^{n+1} y^4 ; B=2 x^3 y^n$

Tìm thương $\mathrm{A}: \mathrm{B}$ trong trường hợp đó.

Giải : Điều kiện để $\mathrm{A}$ chia hết cho $\mathrm{B}$ là :

$\left\{\begin{array}{r}\mathrm{n}-1 \geq 3 \\ \mathrm{n}+1 \geq 3 \\ 6 \geq \mathrm{n} \\ 4 \geq \mathrm{n}\end{array} \Leftrightarrow\left\{\begin{array}{l}\mathrm{n} \geq 4 \\ \mathrm{n} \leq 4\end{array} \Leftrightarrow \mathrm{n}=4\right.\right.$

Vậy với $\mathrm{n}=4$ thì đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$. Khi đó

$A: B=\left(3 x^3 y^6-5 x^5 y^4\right):\left(2 x^3 y^4\right)=\frac{3}{2} y^2-\frac{5}{2} x^2$

Ví dụ 2. Xác định các số hữu tỉ a và $\mathrm{b}$ để đa thức $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho đa thức $x^2+x-2$.

Giải : Cách 1. Đặt tính chia :

Để chia hết thì đa thức dư phải bằng 0 với mọi giá trị của $x$, nên :

$\left\{\begin{array}{l}a+3=0 \\ b-2=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-3 \\ b=2\end{array}\right.\right.$

Vậy với $\mathrm{a}=-3 ; \mathrm{b}=2$ thì $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2+\mathrm{x}-2$.

Cách 2. (Phương pháp hệ số bất định)

Đa thức bị chia có bậc ba, đa thức chia có bậc hai nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là $\mathrm{x}^3: \mathrm{x}^2=\mathrm{x}$.

Gọi thương là $\mathrm{x}+\mathrm{c}$, ta có :

$x^3+a x+b=\left(x^2+x-2\right)(x+c)$

nên

$x^3+a x+b=x^3+(c+1) x^2+(c-2) x-2 c $

Hai đa thức trên bằng nhau nên :

$\left\{\begin{array}{l}\mathrm{c}+1=0 \\ \mathrm{c}-2=\mathrm{a} \\ -2 \mathrm{c}=\mathrm{b}\end{array} \Leftrightarrow\left\{\begin{array}{l}\mathrm{c}=-1 \\ \mathrm{a}=-3 \\ \mathrm{~b}=2\end{array}\right.\right.$

Vậy với $\mathrm{a}=-3 ; \mathrm{b}=2$ thì $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2+\mathrm{x}-2$, thương là $\mathrm{x}-1$.

Cách 3. (Phương pháp xét giá trị riêng)

Gọi thương khi chia $\mathrm{x}^3+\mathrm{ax}+\mathrm{b}$ cho $\mathrm{x}^2+\mathrm{x}-2$ là $\mathrm{Q}(\mathrm{x})$, ta có :

$x^3+a x+b=(x-1)(x+2) Q(x)$

Vì đẳng thức đúng với mọi $x$ nên lần lượt cho $\mathrm{x}=1, \mathrm{x}=-2$, ta được :

$\left\{\begin{array}{l}1+a+b=0 \\ -8-2 a+b=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a+b=-1 \\ -2 a+b=8\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-3 \\ b=2 .\end{array}\right.\right.\right.$

Với $a=-3 ; b=2$ thì $x^3+a x+b$ chia hết cho $x^2+x-2$.

BÀI TẬP

Chia đơn thức cho đơn thức

71. Thực hiện phép tính :

a) $8^{12}: 4^6$;

b) $27^6: 9^2$;

c) $\frac{9^{15} \cdot 25^3 \cdot 4^3}{3^{10} \cdot 50^6}$

72. Chứng minh rằng biểu thức sau không âm với mọi giá trị của biến :

$A=\left(-15 x^3 y^6\right):\left(-5 x y^2\right)$

73. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến $\mathrm{y}(\mathrm{x} \neq 0 ; \mathrm{y} \neq 0)$ :

$B=\frac{2}{3} x^2 y^3:\left(-\frac{1}{3} x y\right)+2 x(y-1)(y+1)$

74. Tìm số tự nhiên $\mathrm{n}$ để đơn thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=4 x^{n+1} y^2 ; B=3 x^3 y^{n-1}$

Chia đa thức cho dơn thức

75. Thực hiện phép tính :

a) $\left(\frac{1}{2} a^2 x^4+\frac{4}{3} a x^3-\frac{2}{3} a x^2\right):\left(-\frac{2}{3} a x^2\right)$

b) $4\left(\frac{3}{4} x-1\right)+\left(12 x^2-3 x\right):(-3 x)-(2 x+1)$.

76. Thực hiện phép tính rồi tìm giá trị nhỏ nhất của biểu thức :

$A=\left(9 x y^2-6 x^2 y\right):(-3 x y)+\left(6 x^2 y+2 x^4\right):\left(2 x^2\right) $

77. Tìm số tự nhiên $\mathrm{n}$ để đa thức $\mathrm{A}$ chia hết cho đơn thức $\mathrm{B}$ :

$A=7 x^{n-1} y^5-5 x^3 y^4 ; \quad B=5 x^2 y^n$

Chia đa thức cho đa thức

78. Rút gọn biểu thức

$\left[\left(x^3+y^3\right)-2\left(x^2-y^2\right)+3(x+y)^2\right]:(x+y)$

79. Chia các đa thức :

a) $\left(3 x^4-2 x^3-2 x^2+4 x-8\right):\left(x^2-2\right)$;

b) $\left(2 x^3-26 x-24\right):\left(x^2+4 x+3\right)$;

c) $\left(x^3-7 x+6\right):(x+3)$.

80. Xác định hằng số a sao cho :

a) $4 x^2-6 x+$ a chia hết cho $x-3$;

b) $2 \mathrm{x}^2+\mathrm{x}+\mathrm{a}$ chia hết cho $\mathrm{x}+3$;

c) $x^3+a x^2-4$ chia hết cho $x^2+4 x+4$.

81. Xác địṇh hằng số a sao cho :

a) $10 x^2-7 x+a$ chia hết cho $2 x-3$;

b) $2 x^2+a x+1$ chia cho $x-3$ dư 4 ;

c) $a x^5+5 x^4-9$ chia hết cho $x-1$.

82. Xác định các hằng số a và $\mathrm{b}$ sao cho :

a) $\mathrm{x}^4+\mathrm{ax}+\mathrm{b}$ chia hết cho $\mathrm{x}^2-4$;

b) $x^4+a x^3+b x-1$ chia hết cho $x^2-1$;

c) $x^3+a x+b$ chia hết cho $x^2+2 x-2$.

83. Xác định các hằng số a và b sao cho :

a) $x^4+a x^2+b$ chia hết cho $x^2-x+1$;

b) $a x^3+b x^2+5 x-50$ chia hết cho $x^2+3 x-10$;

c) $a x^4+b x^3+1$ chia hết cho $(x-1)^2$;

d) $x^4+4$ chia hết cho $x^2+a x+b$.

84. Tìm các hằng số $a$ và $b$ sao cho $x^3+a x+b$ chia cho $x+1$ thì dư 7 , chia cho $x-3$ thì dư $-5$.

85. Tìm các hằng số $\mathrm{a}, \mathrm{b}, \mathrm{c}$ sao cho $\mathrm{ax}^3+\mathrm{bx}^2+\mathrm{c}$ chia hết cho $\mathrm{x}+2$, chia cho $x^2-1$ thì dư $x+5$.

 

 

 

Giới thiệu sách dành cho học sinh chuyên toán THPT – Đại số

Đại số trong chương trình chuyên toán THPT thường có các nội dung: Phương trình hàm, đa thức, bất đẳng thức, dãy số, … có rất nhiều tài liệu tham khảo tiếng Việt và Tiếng Anh, ở đây xin gởi một số sách cho các bạn tham khảo

Sách tham khảo đại số

Ngoài ra thì có sách bản tiếng Việt bán ngoài thị trường của các tác giả trong nước, không có file pdf, các bạn có thể tìm mua trên các kênh bán sách online.

  1. Các bài toán phương trình hàm trong các kì thi Olympic – Nguyễn Trọng Tuấn
  2. Chuyên đề đa thức bồi dưỡng học sinh giỏi – Nguyễn Tài Chung và đồng nghiệp.
  3. Các sách bất đẳng thức của Võ Quốc Bá Cẩn và đồng nghiệp

Phương trình vô tỉ – Phương pháp nhân chia lượng liên hợp

Phương pháp nhân lượng liên hợp được sự dụng khi phương trình có độ phức tạp cao, lệch bậc nhiều ở các biểu thức chứa căn và nghiệm của phương trình thường dễ đoán và có ít nghiệm.
Nội dung phương pháp là ta phải đoán được nghiệm, thêm bớt (tách) và nhóm các số hạng phù hợp và nhân chia với biểu thức liên hợp để xuất hiện nhân tử. Ta xét các ví dụ sau.
Ví dụ 1
Giải phương trình:
$$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$$

Lời giải

Ta có

$\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3(x^2-x-1)}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \sqrt{3x^2-5x+1}-\sqrt{3(x^2-x-1)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}$
$\Leftrightarrow \dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}$
$\Leftrightarrow
-(x-2)\left[ \dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3(x^2-x+1)}}+\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\right] =0$
$\Leftrightarrow x=2.$

(Rõ ràng biểu thức trong ngoặc “[]” là dương)
Thử lại ta thấy $x=2$ thoả mãn.
Vậy $x=2$ là nghiệm của phương trình.

Ta có bước thử lại vì chưa đặt điều kiện của phương trình.

Ví dụ 2 Giải phương trình $$\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}$$

Lời giải
Điều kiện $x \ge \sqrt[3]{2}$.

$\sqrt[3]{x^2-1}-2+x-3=\sqrt{x^2-2}-5$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^1-1)^2}+2\sqrt[]{x^2-1}+4}]=\dfrac{(x-3)(x^2+3x+9)}{\sqrt{x^3-2}+5}$
$\Leftrightarrow (x-3)[1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}- \dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}]=0$
$\Leftrightarrow x=3.$

Vì $$1+\dfrac{x+3}{\sqrt[3]{(x^2-1)^2}+2\sqrt[3]{x^2-1}+4}=1+\dfrac{x+2}{(\sqrt[3]{x^2-1}+1)^2+3}<2<\dfrac{x^2+3x+9}{\sqrt{x^3-x}+5}.$$
Vậy phương trình có nghiệm duy nhất $x=3.$

Ví dụ 3 Giải phương trình $\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1.$

Lời giải
Điều kiện $2 \le x \le 4$.
Khi đó

$\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1$
$\Leftrightarrow \sqrt{x-2}-1+\sqrt{4-x}-1=2x^2-5x-3$
$\Leftrightarrow \dfrac{x-3}{\sqrt{x-2}+1}-\dfrac{x-3}{\sqrt{4-x}+1}=(x-3)(2x+1)$
$\Leftrightarrow (x-3)[\dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1}-(2x+1)]=0$
$\Leftrightarrow x=3.$

$\dfrac{1}{\sqrt{x-2}+1} \le 1$
$\dfrac{1}{\sqrt{4-x}+1} \ge \dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1 $
$\Rightarrow \dfrac{1}{\sqrt{x-2}+1}-\dfrac{1}{\sqrt{4-x}+1} \le 2-\sqrt{2}.$
Và $2x+1 \ge 5 $ (do \ x \ge 2$
$
Vậy phương trình có nghiệm duy nhất $x=2.$

Ví dụ 4 Giải phương trình $x^2+x-1=(x+2)\sqrt{x^2-2x+2}$.

Lời giải
Ta có

$x^2+x-1=(x+2)\sqrt{x^2-2x+2}$
$\Leftrightarrow x^2-2x-7+3(x+2)-(x+2)\sqrt{x^2-2x+2}=0$
$\Leftrightarrow x^2-2x-7+(x+2)(3-\sqrt{x^2-2x+2})=0$
$\Leftrightarrow x^2-2x-7-\dfrac{(x+2)(x^2-2x-7)}{\sqrt{x^2-2x+2}+3}=0$
$\Leftrightarrow (x^2-2x-7)(1-\dfrac{x+2}{\sqrt{x^2-2x+2}+3})=0$
$\Leftrightarrow (x^2-2x-7)[\dfrac{\sqrt{(x-1)^2+1}-(x-1)}{\sqrt{x^2-2x+2}+3}]=0$
$\Leftrightarrow x^2-2x-7=0$
$\Leftrightarrow x=1 \pm \sqrt{7}.$
Vậy phương trình có nghiệm $x=1 \pm \sqrt{7}$.

Bài tập rèn luyện

Bài tập 1 Giải các phương trình sau:

a) $\sqrt{2x-3}-\sqrt{x}=2x-6$
b) $\sqrt{x+1}+1=4x^2+\sqrt{3x}$
c) $\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}$

d) $\dfrac{2x^2}{(3-\sqrt{9+2x})^2}=x+21$
e) $9(x+1)^2=(3x+7)(1-\sqrt{3x+4})^2$

Bài tập 2 Giải các phương trình sau:

a) $\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0$
b) $\sqrt{2x^3+3x^2+6x+16}-\sqrt{4-x} =2 \sqrt{3}$
c) $\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}$
d) $x^2-4x-2+\sqrt{x^2-4x+7}+\sqrt{5x-6}=0$
e) $3 \sqrt[3]{x^2}+\sqrt{x^2+8}-2=\sqrt{x^2+15}$

Bài tập 3 Giải các phương trình sau:

a) $\sqrt{2x^2-x+3}-\sqrt{21x-17}+x^2-x=0$
b) $x(x+1)(x-3)+3=\sqrt{4-x}+\sqrt{1+x}$
c) $\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5$
d) $\sqrt{3-x}+\sqrt{2+x}=x^3+x^2-4x-4+|x|+|x-1|$

Bài tập 4 Giải các phương trình sau

a) $\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1$
b) $3x^2-8x+3=3\sqrt{x+1}$
c) $2x^2-x-2=\sqrt{5x+6}$
d) $\sqrt{x+1}+\sqrt{2x+3}=x^2-x-1$

Ánh xạ – Bài tập

Bài giảng ánh xạ

Bài 1 Trong các quy tắc sau, quy tắc nào là ánh xạ?

a) Xét quy tắc $f$ từ tập các số nguyên $\mathbb{Z}$ vào $X = \{-1, 0 , 1\}$ sao cho với mỗi $x\in \mathbb{Z}$ thì:
$f\left( x \right) = \left\{ \begin{gathered}
– 1 \,\, khi\,\,\,x < 0 \hfill \\
0 \,\, khi\,\,\,x = 0 \hfill \\
1 \,\, khi\,\,\,x > 0 \hfill \\
\end{gathered} \right.$

a)Xét quy tắc cho tương ứng mỗi số thực dương $x$ với số thực $y$ sao cho $y^2 = x$.
b)Cho tương ứng các điểm $M$ thuộc mặt phẳng với các điểm $M’$ thuộc mặt phẳng sao cho $\overrightarrow{MM’} = \overrightarrow{u}$ cho trước.
c)Trong mặt phẳng cho tương ứng điểm $M$ với điểm $M’$ sao cho $MM’ = r > 0$ cho trước.
d)Trong mặt phẳng cho đường thẳng $d$. Quy tắc cho tương ứng $M$ thuộc $d$ ứng với $M$, $M$ không thuộc $d$ ứng với $M’$ sao cho $MM’ \bot d$.
e)Quy tắc cho tương ứng mỗi số hữu tỷ ứng với 1, mỗi số vô tỷ ứng với 0.

Bài 2 Trong các ánh xạ ở bài trên, ánh xạ nào là đơn ánh, song ánh, toàn ánh?

Bài 3 Trong các ánh xạ sau, ánh xạ nào là đơn ánh, toàn ánh, song ánh?

a)Ánh xạ $f: \mathbb{R} \to \mathbb{R}$ thỏa $f(x) = x^3$.
b)Ánh xạ $f: \mathbb{Z} \to \mathbb{N}$ thỏa $f(x) = |x|$.
c)Cho tương ứng mỗi số thực với phần nguyên của nó.

Bài 4 Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}: f(x) = x^2+3x+1$.

a)$f$ có là đơn ánh?
b)$f$ có là toàn ánh không?

Bài 5 Cho $f: (0;1) \to (0;+\infty) $ thỏa $f(x) = \dfrac{x}{1-x}$.

a)Tìm $f(f(x))$.
b)Chứng minh $f$ là song ánh.
c)Tìm ánh xạ ngược của $f$.

Bài 6 Cho $A, B, C, D$ là các tập con của $X$. Đặt ${\chi _D}\left( x \right) = \left\{ \begin{gathered}
1\,\,\,\,\,khi\,\,\,x \in D \hfill \\
0\,\,\,\,khi\,\,\,x \notin D \hfill \\
\end{gathered} \right.$.
Chứng minh rằng:

a)Quy tắc trên là ánh xạ từ $X$ vào ${0, 1}$.
b)$\chi A\cdot \chi _A = \chi_A,\chi{X\backslash A} = 1 – \chi_A$
c)$\chi {A \cap B} = \chi_A.\chi _B,\chi{A \cup B} = \chi_A+ \chi_B – \chi_A\cdot \chi_B$
d)$\chi_A \geqslant \chi _B \Leftrightarrow B \subset A,\chi_A \equiv 0 \Leftrightarrow A = \emptyset $

Bài 7 Cho $f: X \to Y$. $A, B$ là các tập con của $X$; $C, D$ là các tập con của $Y$. Đặt $f(A) = {f(x)|x \in A}$ là tập ảnh của $A$; $f^{-1}(C) = {x \in X|f(x) \in X}$ là tạo ảnh của $C$.

a)Chứng minh nếu $A \subset B$ thì $f(A) \subset f(B)$.
b)Nếu $C \subset D$ thì $f^{-1}(C) \subset f^{-1}(D)$.
c)$f(A\cup B) = f(A) \cup f(B)$.
c)$f(A \cap B) \subset f(A) \cap f(B)$. Và $f(A \cap B) = f(A) \cap f(b)$ khi $f$ là đơn ánh.
d)$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ và $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
e)$A \subset f^{-1}(f(A))$.

Bài 8 Cho $h: A \to B$, $g:B \to C$ và $f: C \to D$.

a)Chứng minh rằng nếu $f\circ g$ là đơn ánh và $f$ toàn ánh thì $g$ đơn ánh.
b)Nếu $f \circ g$ là toàn ánh thì $f$ cũng là toàn ánh.
c)Nếu $f, g$ là đơn ánh(toàn ánh, song ánh) thì $f \circ g$ cũng là đơn ánh (toàn ánh, song ánh).
d)Nếu $h$ là song ánh thì $h^{-1}$ cũng là song ánh.
e)Nếu $f \circ g$ và $g \circ h$ là song ánh thì $f, h, g$ cũng là song ánh.

Bài 9 Cho ánh xạ$f:\mathbb{R} \mapsto \left\{ {0,1} \right\}$

$f\left( x \right) = \left\{ \begin{gathered}
1\,\,\,khi\,\,x \in \mathbb{Q} \hfill \\
0\,\,khi\,\,x \notin \mathbb{Q} \hfill \\
\end{gathered} \right.$

a) Tìm tập ảnh của $f$.
b)Tìm ${f^{ – 1}}\left( 1 \right),{f^{ – 1}}\left( 0 \right)$
c)$f$ có là song ánh không? Vì sao?

Bài 10 Cho $A$ và $B$ là hai tập hợp sao cho có một đơn ánh từ $A$ vào $B$. Chứng minh rằng có một toàn ánh từ $B$ vào $A$.

Bài 11 Cho $A$ và $B$ là hai tập hợp sao cho có một toàn ánh từ $A$ vào $B$. Chứng minh rằng có một đơn ánh từ $B$ vào $A$.

Bài 12 Tìm một song ánh từ tập tập các số tự nhiên chẵn đến tập các số tự nhiên lẻ.

Bài 13 Tìm một đơn ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 14 Tìm một song ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 15 Tìm một song ánh từ tập $\mathbb{N} \times \mathbb{N}$ đến $\mathbb{N}^*$.

Bài 16 Gọi tập X là tập gồm các khoảng có dạng $\left( {a,b} \right)$ thỏa $0 \leqslant a < b \leqslant 1$.
Xét ánh xạ $X \to \left( {0,1} \right),f\left( {\left( {a,b} \right)} \right) = \frac{{a + b}}{2}$

a)$f$ có phải đơn ánh không? Vì sao?
b)$f$ có phải toàn ánh không? Vì sao?

Bài 17 Cho $X$ là tập khác rỗng, $P(X)$ là tập tất cả các tập con của $X$. Có tồn tại hay không một song ánh đi từ $X$ đến $P(X)$?

Bài 18 Tìm một song ánh từ tập $(0;1)$ đến tập các số thực.

Bài 19 Cho $m$ là số nguyên dương và tập $X = \{-m, -m+1, …, -1, 0, 1, …,m\}$. \Ánh xạ $f: X \to X$ thỏa $f(f(n)) = -n$ với mọi $n \in X$.\
Chứng minh $m$ là số chẵn.

Trắc nghiệm lớp 11 – Đại số – Học kì 1

Chương 1. Hàm số lượng giác – Phương trình lượng giác

Bài 1. Hàm số lượng giác

[WpProQuiz 73]

Bài 2. Phương trình lượng giác cơ bản

Bài 3. Phương trình lượng giác không mẫu mực

Bài 4. Ôn tập chương

Chương 2. Tổ hợp – Xác suất

 

Bài 1. Quy tắc cộng – Quy tắc nhân

Bài 2. Chỉnh hợp  – Hoán vị – Tổ hợp

Bài 3. Nhị thức Newton

Bài 4. Xác suất – Các quy tắc xác suất

Bài 5. Ôn tập chương

[WpProQuiz 20]

Chương 3. Dãy số – Cấp số

Bài 1. Dãy số – Tính chất của dãy số

Bài 2. Cấp số cộng

Bài 3. Cấp số nhân

Bài 4. Ôn tập chương

Bài tập Tập hợp

Lí thuyết

Bài 1. Cho các tập $A, B, C, A’, B’, C’$ là tập con của $X$ thỏa:
a) $A \cup B \cup C = X$;
b) $A \cap B = A’ \cap B’, A \cap C = A’ \cap C’, B \cap C = B’ \cap C’$.
c) $A \subset A’, B\subset B’, C\subset C’$.

Chứng minh $A= A’, B = B’, C = C’$.

Bài 2. Cho $A, B$ là các tập con của $X$, ta kí hiệu đối xứng $A \triangle B = (A \cap (X \setminus B)) \cup (B \cap (X \setminus A))$. Chứng minh rằng:
a) $A \triangle \emptyset = A$.
b) $A \triangle A = \emptyset$.
c) $A \triangle X = X \setminus A$.

Bài 3. Cho tập hợp $E$, $P$ là một phân hoạch của $E$, $\mathscr{A}$ là một bộ phận của $P$. Đặt $F = \{x\in E|\exists A\in \mathscr{A},x\in A\}$. Chứng minh $\mathscr{A}$ là một phân hoạch của $F$.

Bài 4. Cho $E$ là một tập hợp, $n\in \mathbb{N}^*$, $A_o, A_1, \cdots, A_n$ là tập con của $E$ sao cho $$\emptyset \subsetneq A_o \subsetneq A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_n = E$$
Đặt $B_o = A_o, B_1 = A_1 \setminus A_o, B_n = A_n \setminus A_{n-1}$.
Chứng minh $B_o, B_1, B_2, \cdots, B_n$ là một phân hoạch của $E$.

Bài 5. Cho $X = \{1, 2, \cdots, n\}$. Cho $F$ là một họ các tập con của $X$, mỗi tập có $r$ phần tử sao cho bất kì $r+1$ tập nào thuộc $F$ thì giao khác rỗng. Chứng minh rằng giao của tất cả các tập trong $F$ cũng khác rỗng.

Bài 6. Cho $A$ là tập con của tập các số hữu tỷ dương thỏa:
a) $1 \in A$.
b) Nếu $x \in A$ thì $x +1 \in A$.
c) Nếu $x \in A$ thì $\dfrac{1}{x} \in A$.
Chứng minh $A$ là tập các số hữu tỷ dương.

Bài 7. Một tập hợp hữu hạn có ít nhất 3 số nguyên dương phân biệt được gọi là tập cân nếu bỏ đi một phần tử bất kì thì các số còn lại có thể chia thành hai tập hợp mà tổng các số trong hai tập hợp đó bằng nhau. Tìm số phần tử nhỏ nhất của một tập cân.

Bài 8.  Cho các số thực $x, y, z$ khác 0 thỏa $xy, yz, xz$ là các số hữu tỉ.
a) Chứng minh $x^2 + y^2 + z^2 $ là số hữu tỉ.
b) Giả sử $x^3+y^3+z^3$ cũng là số hữu tỉ. Chứng minh $x, y, z$ là các số hữu tỉ.

Bài 9. Tìm tất cả các bộ số hữu tỉ dương $(x, y, z)$ sao cho $x+\dfrac{1}{y}, y + \dfrac{1}{z}, z+\dfrac{1}{x}$ là các số nguyên.

Bài 10. Tìm các tập con $A$ khác rỗng của tập ${2,3,4,5,6,…}$ sao cho với mọi $n \in A$ thì cả $n^2+4$ và $\lfloor \sqrt{n} \rfloor +1$ cũng thuộc $A$.

Bài 11. Giả sử tập các số tự nhiên được phân hoạch thành hai tập $A$ và $B$. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại $a, b$ sao cho $a, b, a+b \in A$ hoặc $a, b, a+b \in B$.

Bài 12. Tập hợp $M$ chứa 4 số nguyên phân biệt được gọi là tập liên kết nếu với mỗi $x \in M$ thì ít nhất một trong hai số $x-1, x+1$ thuộc $M$. Gọi $U_n$ là số tập con liên kết của tập $\{1,2,…,n\}$ .

a) Tính $U_7$.
b) Xác định giá trị nhỏ nhất của $n$ sao cho $U_n \ge 2019.$

Bài tập trắc nghiệm đại số 10 – Học kì 1

Chương 1. Mệnh đề – Tập hợp

Bài 1. Mệnh đề

[WpProQuiz 50]

Bài 2. Tập hợp

 

Bài 3. Tổng hợp

[WpProQuiz 72]

Chương 2. Hàm số

Bài 1. Đại cương hàm số

[WpProQuiz 76]

Bài 2. Hàm số bậc nhất

 

Bài 3. Hàm số bậc hai

 

Bài 4. Tổng hợp

Chương 3. Phương trình – Hệ phương trình

Bài 1. Phương trình bậc nhất

 

Bài 2. Phương trình bậc hai – bậc cao

 

Bài 3. Phương trình chứa trị tuyệt đối, chứa căn

 

Bài 4. Hệ phương trình bậc nhất 2 ẩn

 

Bài 5. Hệ phương trình bậc cao

 

Một số vấn đề về nghiệm của đa thức

Bài viết của thầy Vương Trung Dũng

(Giáo viên chuyên toán trường Phổ thông Năng khiếu)

Trong những kì thi học sinh giỏi các bài toán về đa thức thường xuyên xuất hiện. Tuy nhiên trong chương trình THCS các kiến thức về đa thức chủ yếu dừng lại ở các khái niệm và các phép toán. Do đó khi vừa mới lên lớp 10 các kĩ năng của các em học sinh còn chưa cao. Bài viết này nhằm trình bày một vấn đề nhỏ về nghiệm của đa thức mà nội dung chính là Định lý Bézout và Định lý Viète, đối tượng hướng đến là các em học sinh cuối năm lớp 9 và đầu năm lớp 10.

Trong bài viết này ta kí hiệu $\mathbb{R}[x]$ là tập tất cả các đa thức có hệ số thực.

Cơ sở lý thuyết

Định lý Bézout. Cho $f(x) \in \mathbb{R}[x]$ và $a \in \mathbb{R}$. Số dư khi chia đa thức $f(x)$ cho đa thức $x-a$ là $f(a)$.

Theo thuật toán chia Euclide, tồn tại đa thức $g(x) \in \mathbb{R}[x]$ và số thực $r$ sao cho $$f(x)=(x-a)g(x)+r.$$
Trong đẳng thức trên thay $x=a$ vào hai vế ta được $f(a)=r.$ Từ đó ta có điều phải chứng minh.

Hệ quả 1. Đa thức $f(x)$ có nghiệm $x=a$ khi và chỉ khi $f(x)$ chia hết cho $x-a.$

Hệ quả 2. Nếu $a_1,a_2,…,a_n$ là các nghiệm của $f(x)$ thì $(x-a_1)(x-a_2)…(x-a_n)|f(x)$. Đặc biệt nếu $\deg f=n$ thì $f(x)=c(x-a_1)(x-a_2)…(x-a_n), c\in \mathbb{R}$.

Định lý 2. Một đa thức bậc $n$ có nhiều nhất là $n$ nghiệm. Đặc biệt nếu $\deg f \le n$ có quá $n$ nghiệm thì $f(x) =0.$
Hệ quả 3. Nếu $\deg f<n, \deg g<n$ mà tồn tại $n$ giá trị phân biệt của biến $x$ sao cho $f(x)=g(x)$ thì $f(x)= g(x) .$

Các ví dụ áp dụng.

Ví dụ 1. Biết đa thức $P(x)=x^5+x^2+1$ có 5 nghiệm phân biệt $x_1,x_2,x_3,x_4,x_5$. Đặt $Q(x)=x^2-2$. Tính $Q(x_1)Q(x_2)Q(x_3)Q(x_4)Q(x_5)$.

Lời giải

$P(x)$ có dạng $P(x)=(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)$. \

Ta có $$ \prod_{i=1}^{5} Q(x_i)=\prod_{i=1}^{5} (x_i^2-2)=\prod_{i=1}^{5} (\sqrt{2}-x_i) \prod_{i=1}^{5} (-\sqrt{2}-x_i)=P(\sqrt{2})P(-\sqrt{2})=-23. $$

Ví dụ 2. Cho $P(x) \in \mathbb{Z}[x]$ sao cho $|P(a)|=|P(b)|=|P(c)|=1$, với $a,b,c$ là các số nguyên đôi một khác nhau. Chứng minh đa thức $P(x)$ không có nghiệm nguyên.

Lời giải

Giả sử $P(x)$ có nghiệm nguyên $x_0$. Theo định lý Bézout $$ P(x)=(x-x_0)Q(x), \ \ \ \ (1) $$ với $Q(x) \in \mathbb{Z}[x]$. Từ đó suy ra $$ 1=|P(a)|=|a-x_0||Q(a)|. \ \ \ \ (2) $$
Do đó $|a-x_0|=1$, lập luận tương tự ta được $|b-x_0|=|c-x_0|=1$. Như vậy $a-x_0, b-x_0, c-x_0 \in \{-1,1\}$. Theo nguyên lý Dirichlet tồn tại hai trong ba số này bằng nhau từ đó tồn tại hai trong ba số $a,b,c$ bằng nhau, mâu thuẫn. Vậy $P(x)$ không có nghiệm nguyên.

Định lý Viete thuận. Cho đa thức $f \in \mathbb{R}[x]$, trong đó $$f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0,$$
trong đó $a_i \in \mathbb{R}$ và $a_n \ne 0.$ Giả sử rằng $x_1, x_2,…,x_n$ là các nghiệm (không nhất thiết phân biệt) của $f(x)$. Khi đó ta có

$x_1+x_2+…+x_n=-\dfrac{a_{n-1}}{a_n}$
$x_1x_2+x_1x_3+…+x_{n-1}x_n=\dfrac{a_{n-2}}{a_n}$

$x_1x_2…x_n=(-1)^n \dfrac{a_0}{a_n}$

Chứng minh

Định lý Viète có một ứng dụng rất lớn trong các bài toán về nghiệm của đa thức nhưng chứng minh của nó thì không hề khó. Thật vậy, vì $x_1, x_2,…,x_n$ là các nghiệm của $f$ nên ta có thể viết lại đa thức này dưới dạng $$f(x)=a_n(x-x_1)(x-x_2)…(x-x_n).$$
Khai triển vế phải rồi nhóm về dạng chuẩn tắc, sau đó so sánh hệ số của các số mũ tương ứng ở hai vế ta được điều phải chứng minh.

Lưu ý là định lý Viète vẫn đúng trong trường hợp $f$ không đủ $n$ nghiệm thực, nhưng do đối tượng của bạn đọc nên nội dung bài viết không đề cập đến.

Ví dụ 3. Tìm tất cả các giá trị của $a$ để nghiệm $x_1,x_2,x_3$ của đa thức $x^3-6x^2+ax+a$ thỏa mãn $$(x_1-3)^3+(x_2-3)^3+(x_3-3)^3=0.$$

Lời giải

Đặt $y=x-3$, khi đó $y_1=x_1-3, y_2=x_2-3, y_3=x_3-3$ là nghiệm của đa thức $$ (y+3)^3-6(y+3)^2+a(y+3)+a=y^3+3y^2+(a-9)y+4a-27. $$

Theo định lý Viète $$ \sum_{i=1}^{3} y_i=-3, \sum_{1 \le i<j \le 3} y_iy_j=-9, \prod_{i=1}^{3} y_i=27-4a. $$

Mặt khác theo giả thiết $\sum_{i=1}^{3} y_i^3=0$. Mà $$ \sum_{i=1}^{3} y_i^3=\Big(\sum_{i=1}^{3} y_i\Big)^3-3 \Big(\sum_{1 \le i<j \le 3} y_iy_j\Big)\Big(\sum_{i=1}^{3} y_i \Big)+3 \prod_{i=1}^{3} y_i. $$
Dô đó điều kiện cần và đủ của $a$ là $$ 0=(-3)^3-3(a-9)(-3)+3(27-4a)=-27-3a \Leftrightarrow a=-9. $$

Ví dụ 4. Chứng minh đa thức $P(x)=x^n+2nx^{n-1}+2n^2x^{n-2}+…+2n^{n-1}x+2n$ không thể có đủ $n$ nghiệm thực.

Lời giải
Giả sử $P(x)$ có đủ $n$ nghiệm thực $x_1,x_2,…,x_n$. Theo định lý Viet $$ \sum_{i}x_i=-2n, \sum_{i<j}x_ix_j=2n^2. $$
Khi đó $$ \sum_{i<j}x_ix_j=\dfrac{1}{2}(\sum_{i}x_i)^2-\dfrac{1}{2}\sum_ix_i^2 \le \dfrac{n-1}{2n}(\sum_{i}x_{i})^2=2n(n-1) <2n^2,$$
vô lí. Vậy ta có điều phải chứng minh.

Ta ký hiệu $$\begin{aligned}
\sigma_1 & = \sum_{i=1}^nx_i=-\dfrac{a_{n-1}}{a_n}, \sigma_2=\sum_{1 \le i < j \le n}^nx_ix_j =\dfrac{a_{n-2}}{a_n},…, \
\sigma_k & =\sum_{1 \le i_1 <i_2<…<i_k \le n}x_{i_1}x_{i_2}…x_{i_k}=(-1)^k \dfrac{a_{n-k}}{a_n}
\end{aligned}$$
và gọi $\sigma_k$ là các đa thức đối xứng bậc $k$ của các số $x_1,x_2,…,x_n$.

Định lý Viete đảo. Cho $x_1,x_2,…,x_n \in \mathbb{R}$. Gọi $\sigma_k$ là các đa thức đối xứng bậc $k$ của $n$ số đã cho. Khi đó $x_1,x_2,…,x_n$ là nghiệm của phương trình $$ X^n-\sigma_1X^{n-1}+\sigma_2X^{n-2}+…+(-1)^{n-1}\sigma_{1}X+(-1)^n \sigma_n=0.$$

Ví dụ 5. Gọi $a<b<c$ là 3 nghiệm của phương trình
$$x^3-3x+1=0.$$

a) Tính $A=\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}+\dfrac{1-c}{1+c};$
b) Tìm một đa thức bậc 3 nhận $a^2-2, b^2-2, c^2-2$ làm nghiệm;

Lời giải
a) Ta có
$$A+3=\dfrac{1-a}{1+a}+1+\dfrac{1-b}{1+b}+1+\dfrac{1-c}{1+c}+1=2\Big(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\Big).$$
Mặt khác, đặt $x=\dfrac{1}{1+a}$, khi đó $a=\dfrac{1}{x}-1.$ Vì $a^3-3a+1=0$ nên $$\Big(\dfrac{1}{x}-1\Big)^3-3\Big(\dfrac{1}{x}-1\Big)+1=0 \Leftrightarrow 3x^3-3x+1=0.$$
Từ đó suy ra $\dfrac{1}{1+a}, \dfrac{1}{1+b}, \dfrac{1}{1+c}$ là 3 nghiệm của phương trình trên, do đó $$\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=0.$$ Vậy $A=-3.$
b) Theo định lý Viète $a+b+c=0, ab+bc+ca=-3$ và $abc=-1.$ Đặt $P(x)=x^3-3x+1=(x-a)(x-b)(x-c),$
ta có
\begin{eqnarray*}
a^2-2+b^2-2+c^2-2=a^2+b^2+c^2-6=(a+b+c)^2-2(ab+ac+bc)-6=0.
\end{eqnarray*}
Lại có
\begin{eqnarray*}
&&(a^2-2)(b^2-2)+(b^2-2)(c^2-2)+(c^2-2)(a^2-2)\\&=& a^2b^2+b^2c^2+c^2a^2-4(a^2+b^2+c^2)+12\\&=& (ab+bc+ca)^2-2abc(a+b+c) -3.6+12\\ &=&-3.
\end{eqnarray*}
Cuối cùng
\begin{eqnarray*}
&&(a^2-2)(b^2-2)(c^2-2)\\
&=& (\sqrt{2}-a)(\sqrt{2}+a)(\sqrt{2}+c)(-\sqrt{2}-a)(-\sqrt{2}-b)(-\sqrt{2}-c) \\
&=&P(\sqrt{2})P(-\sqrt{2})\\&=&-1.
\end{eqnarray*}
Theo định lý Viète đảo ta có $a^2-2, b^2-2, c^2-2$ là nghiệm của đa thức $x^3-3x+1=0.$

Bài tập có lời giải
Bài 1.  Định $m$ sao cho $F=x^3+y^3+z^3+mxyz$ chia hết cho $x+y+z$.

Lời giải
Xem F là một đa thức theo biến $x.$ Theo giả thiết $F(x) \vdots [x-(-y-z)]$ suy ra $$F(-y-z)=0 \Leftrightarrow (-y-z)^3+y^3+z^3+m(-y-z)yz \Leftrightarrow -yz(y+z)(3+m)=0, $$ với mọi $y,z \in \mathbb{R}$. Từ đó $m=-3.$

 

Bài 2.  (Canada 2001) Cho $P(x)$ là tam thức bậc hai có các hệ số nguyên thỏa mãn đồng thời:
i) Cả hai nghiệm đều nguyên;
ii) Tổng các hệ số là một số nguyên tố;
iii) Tồn tại số nguyên $k$ sao cho $P(k)=55$.

Chứng minh rằng $P(x)$ có một nghiệm bằng 2 và hãy tìm nghiệm còn lại.

Lời giải

Gọi $r_1 \le r_2$ là hai nghiệm. Ta có $P(x)=ax^2+bx+c=a(x-r_1)(x-r_2)$, từ đó $P(1)=a+b+c=a(1-r_1)(1-r_2)=p$ nên $a \in \{\pm 1, \pm p\}$.\

Nếu $a=p$ thì $(1-r_1)(1-r_2)=1$ nên $r_1=r_2=0$ hoặc $r_1=r_2=2$ (mâu thuẫn với (c) ).\

Nếu $a=-p$ thì $(1-r_1)(1-r_2)=-1$ nên $r_1=0, r_2=2$ (cũng mâu thuẫn).\

Vì $P(k)=a(k-r_1)(k-r_2)=-5.11$ nên ta được

$$\begin{cases}
a=1&\\
k-r_1=55&\\
k-r_2=1&
\end{cases} hay \ \begin{cases}
a=1&\\
k-r_1=11&\\
k-r_2=5&
\end{cases}$$

Trong trường hợp đầu tiên ta được $r_2=r_1+54, b=-2r_1-54$ và $c=r_1(r_1+54)$ do đó $r_1^2+52r_1-(53+p)=0$ nên $$ r_1=\frac{-52 \pm \sqrt{52^2+4(53+p)}}{2}= -26 \pm \sqrt{26^2+53+p }=-26 \pm \sqrt{ 27^2+p}.$$

Đặt $h^2=27^2+p \Leftrightarrow p=(h+27)(h-27)$, vì $p$ là nguyên tố nên $h-27=1 \Rightarrow h=28$ nhưng khi dó $p=55$ không là số nguyên tố.\

Trong trường hợp thứ hai $r_2=r_1+6$ nên $b=-2r_1-6$ và $c=r_1(r_1+6)$, do đó $p=10(2r_1+6)+r_1^2+6r_1$ hoặc $$ r_1^2+4r_1-(5+p)=0 \Leftrightarrow r=-1\pm \sqrt{3^2+p}. $$

Đặt $i^2=3^2+p \Leftrightarrow p=(i+3)(i-3), $ vì $p$ là số nguyên tố nên $i=4$ và do đó $p=7 \Rightarrow r_1=2, r_2=8.$

 

Bài 3.  Cho $P(x)=x^n+a_{n-1}x^{n-1}+…+a_1x+a_0$, trong đó $a_k =\pm 1$. Biết $P(x)$ có $n$ nghiệm, chứng minh rằng $n \le 3$.

Lời giải

Giả sử $x_1,…,x_n$ là các nghiệm của $P(x)$. Ta có $\displaystyle \sum_{i=1}^{n} x_i^2=3$ và $\dfrac{1}{x_1}, …, \dfrac{1}{x_n}$ là nghiệm của đa thức $Q(x)=a_0x^n+…+a_{n-1}x+1.$ Ta có $\displaystyle \sum_{i=1}^{n} \dfrac{1}{x_i^2}=3$. Suy ra $$ 9=\Big(\sum_{i=1}^{n} x_i^2 \Big)\Big(\sum_{i=1}^{n} \dfrac{1}{x_i^2}\Big) \ge n^2. $$
Do đó $n \le 3.$

Bài 4.  Cho các số thực $a,b,c$ và phương trình $x^4+4x^3+ax^2+bx+c=0$ có 4 nghiệm thỏa mãn $x_1^{16}+x_2^{16}+x_3^{16}+x_4^{16}=4$. Tìm các nghiệm đó.

Lời giải
Theo định lý Viète ta có $x_1+x_2+x_3+x_4=-4$.\
Áp dụng liên tiếp bất đẳng thức Cauchy Schwarz, ta được
\begin{eqnarray*}16&=&(x_1+x_2+x_3+x_4)^2\\ &\le& 4(x_1^2+x_2^2+x_3^2+x_4^2)\\ &\le& 4\sqrt{4(x_1^4+x_2^4+x_3^4+x_4^4)}\\ &\le& 4 \sqrt{4\sqrt{4(x_1^8+x_2^8+x_3^8+x_4^8)}}\\ &\le& 4 \sqrt{4 \sqrt{4\sqrt{4(x_1^{16}+x_2^{16}+x_3^{16}+x_{4}^{16})}}}=16. \end{eqnarray*}

Dấu "=" xảy ra khi và chỉ khi $x_1=x_2=x_3=x_4=-1$.

Bài 5. (VMO 1991)  Giả sử đa thức $P(x)=x^{10}-10x^9+39x^8+a_7x^7+...+a_1x+a_0$ với các hệ số thực $a_7, ..., a_0$ sao cho đa thức $P(x)$ có 10 nghiệm phân biệt. Chứng minh rằng các nghiệm này thuộc đoạn $[-\frac{5}{2},\frac{9}{2}].$

Lời giải

Gọi $x_1, x_2,…, x_{10}$ là các nghiệm của $P(x)$. Theo định lý Viète ta có
$$ \sum_{i=1}^{10} x_i=10 \ \text{và} \
\sum_{1 \le i <j \le 10} x_ix_j=39.$$

Do đó $$ \Big(\sum_{i=1}^{10} x_i \Big)^2=\sum_{i=1}^{10} x_i^2+2 \sum_{1 \le i<j \le 10} x_ix_j \Rightarrow \sum_{i=1}^{10} x_{i}^2=100-2.39=22. $$

Hơn nữa $$ \sum_{i=1}^{10} (x_i-1)^2=\sum_{i=1}^{10} x_i^2-2 \sum_{i=1}^{10} x_i+10=12 \Rightarrow (x_i-1)^2 \le 12 <(3.5)^2 ,$$
với mọi $i=1,2,…,10.$
Từ đó suy ra điều phải chứng minh.

Bài 6.  Cho các số thực $a,b$ trong đó $a \ne 0.$ Chứng minh rằng tất cả các nghiệm của phương trình $$ax^4+bx^3+x^2+x+1=0$$ không đồng thời là nghiệm thực.

Lời giải
Gọi $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ lần lượt là các nghiệm của phương trình đã cho. Dễ thấy các nghiệm này đều khác 0 và có tích bằng $\dfrac{1}{a}.$ Khi đó nghiệm của phương trình $x^4+x^3+x^2+bx+a=0$ lần lượt là $$\beta_1=\dfrac{1}{\alpha_1}, \beta_2=\dfrac{1}{\alpha_2},\beta_3=\dfrac{1}{\alpha_3},\beta_4=\dfrac{1}{\alpha_4}.$$
Theo định lí Viète $$\sum_{j=1}^{4} \beta_j=-1, \sum_{1 \le j<k \le 4}\beta_j \beta_k=1.$$
Dẫn đến
$$\sum_{j=1}^{4}\beta_j^2=\Big(\sum_{j=1}^{4}\beta_j\Big)^2-2 \Big(\sum_{1 \le j<k \le 4}\beta_j \beta_k\Big)=1-2=-1.$$
Vô lí, bài toán được chứng minh xong.

Bài 7. Giả sử đa thức $ax^3-x^2+bx-1=0$ có 3 nghiệm dương phân biệt. Chứng minh rằng:

a) $0<3ab \le 1;$
b) $b \ge 9a;$
c) $b \ge \sqrt{3}.$

Lời giải
a) Gọi $x_1, x_2, x_3$ là 3 nghiệm của đa thức đã cho. Khi đó theo Định lý Viète, ta có $$x_1+x_2+x_3=\dfrac{1}{a}, x_1x_2+x_1x_3+x_2x_3=\dfrac{b}{a}, x_1x_2x_3=\dfrac{1}{a}.$$
Từ đó suy ra $a>0$ nên $b>0$, dẫn đến $ab>0.$ Từ bất đẳng thức $$(x_1+x_2+x_3)^2 \ge 3(x_1x_2+x_1x_3+x_2x_3)$$ ta được $\dfrac{1}{a^2} \ge 3.\dfrac{b}{a}$ dẫn đến $0 <3ab \le 1.$
b) Vì $(x_1+x_2+x_2)(x_1x_2+x_1x_3+x_2x_3) \ge 9x_1x_2x_3$ nên $\dfrac{b}{a^2} \ge \dfrac{9}{a},$ dẫn đến $b \ge 9a.$
c) Theo bất đẳng thức $(x_1x_2+x_1x_3+x_2x_3)^2 \ge 3x_1x_2x_3(x_1+x_2x+x_3)$ ta được $\dfrac{b^2}{a^2} \ge \dfrac{3}{a^2}$. Dẫn đến $b^2 \ge 3$ và vì $b \ge 0$ nên $b \ge \sqrt{3}.$

Bài 8.  Cho đa thức $x^3+\sqrt{3}(a-1)x^2-6ax+b=0$ có 3 nghiệm thực. Chứng minh rằng $$|b| \le |a+1|^3.$$

Lời giải
Gọi $x_1, x_2, x_3$ là 3 nghiệm của đa thức đã cho, theo định lý Viète $$x_1+x_2+x_3=-\sqrt{3}(a-1), x_1x_2+x_2x_3+x_1x_3=-6a, x_1x_2x_3=-b.$$
Ta có
\begin{eqnarray*}
\sqrt[3]{|b|}= \sqrt[3]{|x_1|.|x_2||x_3|} &\le& \sqrt{\dfrac{x_1^2+x_2^2+x_3^2}{3}} \\&=& \sqrt{\dfrac{(x_1+x_2+x_3)^2-2(x_1x_2+x_2x_3+x_1x_3)}{3}}\\&=& \sqrt{\dfrac{3(1-a)^2+12a}{3}}\\&=& |a+1|.
\end{eqnarray*}
Suy ra $|b| \le |a+1|^3,$ điều phải chứng minh.

 

Bài 9.  [Mathematical Reflections S455] Cho $a,b \in \mathbb{R}$ sao cho tất cả các nghiệm của đa thức
$$P(x)=x^4-x^3+ax+b$$ có 4 nghiệm thực.
a)  Chứng minh rằng $a+ b \ge 0;$
b) Chứng minh rằng $P \Big(-\dfrac{1}{2}\Big) \le \dfrac{3}{16}.$

Lời giải
a) Gọi $x_1, x_2, x_3, x_4$ là 4 nghiệm của đa thức đã cho. Theo định lý Viète ta có
\begin{eqnarray*}
&&x_1+x_2+x_3+x_4=1 \\&& x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4+x_3x_4=0\\&&-x_1x_2x_3x_4\Big(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{1}{x_3}+\dfrac{1}{x_4}\Big)=a\\&&x_1x_2x_3x_4=b.
\end{eqnarray*}
Từ hai phương trình đầu ta được $$x_1^2+x_2^2+x_3^2+x_4^2=1.$$
Theo bất đẳng thức Cauchy-Schwarz
$$1=x_1^2+(x_2^2+x_3^2+x_4^2) \ge x_1^2+\dfrac{1}{3}(x_2+x_3+x_4)^2=x_1^2+(1-x_1)^2.$$
Từ đó ta có $$-\dfrac{1}{2} \le x_1 \le 1.$$
Hoàn toàn tương tự $-\dfrac{1}{2}\le x_2, x_3, x_4 \le 1.$ Khi đó vì $P(x)=(x-1x_1)(x-x_2)(x-x_3)(x-x_4)$ nên dễ thấy $$P(1) \ge 0 \Leftrightarrow a+b \ge 0.$$
b) Bây giờ ta cần chứng minh $$P\Big(-\dfrac{1}{2}\Big) \le \dfrac{3}{16} \Leftrightarrow a \ge 2b.$$
Nếu $b \le 0$ thì từ $a+b \ge 0$ ta suy ra $a \ge 0$ nên hiển nhiên nhiên $a \ge 2b.$ Giả sử $b >0,$ thế thì $x_1x_2x_3x_4 >0$ và do đó ta có
$$a \ge 2b \Leftrightarrow \dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{1}{x_3}+\dfrac{1}{x_4} \le -2. \ \ \ \ (1)$$
Trong trường hợp này phải có hai nghiệm là số dương và hai nghiệm là số âm. Không mất tổng quát giả sử $x_1, x_2>0$ và $x_3, x_4<0$. Vì $-\dfrac{1}{2} \le x_4 \le 1$ nên $2x_4+1 \ge 0, 1-x_4 \ge 0$ và $x_1x_2x_3 <0$. Dẫn đến
\begin{eqnarray*}
x_4^2(1-x_4) \ge x_1x_2x_3(2x_4+1) &\Leftrightarrow& x_4^2(x_1+x_2+x_3) -x_1x_2x_3 \ge 2x_1x_2x_3x_4\\
&\Leftrightarrow& \dfrac{x_4(x_1+x_2+x_3)}{x_1x_2x_3} -\dfrac{1}{x_4} \ge 2\\ &\Leftrightarrow& \dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{1}{x_3}+\dfrac{1}{x_4} \le -2.
\end{eqnarray*}
Bất đẳng thức (1) được chứng minh xong.

Bài 10. Cho số tự nhiên $k>0$ và hai số thực $a, b$ sao cho $x^k + ax + 1$ chia hết cho $x^2 + bx + 1$ và phương trình $x^2 + bx + 1 = 0$ có hai nghiệm. Chứng minh $a(a-b)=0$.

Lời giải
Theo giả thiết tồn tại đa thức $P(x) \in \mathbb{R}[x]$ sao cho $ x^k + ax + 1 = P(x)(x^2 + bx + 1) \ (1).$ Gọi $r_1, r_2$ là hai nghiệm của phương trình $x^2 + bx + 1 = 0$. Khi đó $$(x – r_1)(x – r_2) = x^2 + bx + 1.$$

Theo định lý Viète $\begin{cases}
r_1 + r_2 = -b&\\
r_1r_2 = 1.&
\end{cases}$
Thay vào (1) ta được $$0 = \sum_{i=1}^2 \Big( r_i^k + ar_i + 1 \Big) = r_1^k + r_2^k + a(r_1 + r_2) + 2,$$
suy ra $$r_1^k + r_2^k = -a(r_1 + r_2) – 2 = ab – 2$$ và do đó $$ r_1^k + r_2^k = -a(r_1 + r_2) – 2 = ab – 2.$$
Sử dụng (1) một lần nữa ta được $$a^2r_1r_2 = (r_1^k + 1)(r_2^k + 1) = (r_1r_2)^k + r_1^k + r_2^k + 1.$$
Suy ra $a^2 . 1 = 1^k + (ab – 2) + 1 = ab \Leftrightarrow a(a-b)=0.$

Bài 11.  Cho $P(x) $ là một đa thức hệ số nguyên thỏa mãn các phương trình $P(x)=1, P(x)=2, P(x)=3$ có ít nhất một nghiệm nguyên lần lượt là $x_1, x_2, x_3$.

a) Chứng minh $x_1, x_2, x_3$ là nghiệm nguyên duy nhất của các phương trình trên.
b) Chứng minh rằng phương trình $P(x)=5$ có tối đa một nghiệm nguyên.

Lời giải

a) Vì phương trình $P(x)=2$ nhận $x=x_2$ làm nghiệm nên $$ P(x)=(x-x_2)q(x)+2 \ \ \ \ (1). $$

Vì $P(x)$ là đa thức với hệ số nguyên mà $x_2$ nguyên nên $q(x) \in \mathbb{Z}[x]$. Trong (1) lân lượt thay $x$ bởi $x_1, x_3$ ta được $$ \begin{cases}
1=P(x_1)=(x_1-x_2)q(x_1)+2&\\
3=P(x_3)=(x_3-x_2)q(x_3)+2.&
\end{cases} \Leftrightarrow \begin{cases}
(x_1-x_2)q(x_1)=-1&\\
(x_3-x_2)q(x_3)=1&
\end{cases}.$$
Hơn nữa $x_1 \ne x_3$ nên $\begin{cases}
x_1-x_2=1&\\
x_3-x_2=-1&
\end{cases}$ hoặc $\begin{cases}
x_1-x_2=-1&\\
x_3-x_2=1.&
\end{cases}$\

Trong hai trường hợp ta đều có $x_2=\dfrac{x_1+x_3}{2}$. Giả sử phương trình $P(x)=2$ còn có nghiệm nguyên $x_2′ \ne x_2$ áp dụng lại lập luận trên ta lại có $x_2’=\dfrac{x_1+x_3}{2}=x_2,$ mâu thuẫn. Vậy phương trình này chỉ có một nghiệm nguyên duy nhất là $x_2.$\

Tương tự cho hai phương trình còn lại.

b) Xét phương trình $P(x)=5$.\

Nếu phương trình này không có nghiệm nguyên thì bài toán là hiển nhiên.\

Nếu phương trình này có một nghiệm nguyên $x_5$ thì từ (1) suy ra $$ 5=P(x_5)=(x_5-x_2)q(x_5)+2 \Rightarrow (x_5-x_2)q(x_5)=3. $$

Suy ra $x_5-x_2 \in \{\pm 1, \pm 3\}$.\

Nếu $x_5-x_2=\pm 1$ thì $x_5$ phải trùng với $x_1$ hoặc $x_3$, vô lý.\

Nếu $x_5-x_2= \pm 3$. Vì phương trình $P(x)=3$ nhận $x_3$ làm nghiệm nên $$P(x)=(x-x_3)r(x)+3 \Rightarrow 5=P(x_5)=(x_5-x_3)r(x_5)+3.$$
Để ý rằng $r(x) \in \mathbb{Z}[x]$ nên từ $(x_5-x_3)r(x_5)=2$ nên $x_5-x_3 \in \{\pm 1, \pm 2\}$. Xét hai khả năng:

Trường hợp 1. $\begin{cases}
x_1-x_2=1&\\
x_3-x_2=-1&
\end{cases} \Leftrightarrow \begin{cases}
x_1=1+x_2&\\
x_3=-1+x_2&
\end{cases}$\

– Nếu $x_5-x_2=3 \Rightarrow x_5-x_3=3=(3+x_2)-(-1+x_2)=4$, mâu thuẫn.\

– Nếu $x_5-x_2=-3 \Rightarrow x_5-x_3=(-3+x_2)-(-1+x_2)=-2$, thỏa mãn.\

Tóm lại nếu $\begin{cases}
x_1-x_2=-1&\\
x_3-x_2=1&
\end{cases} \Rightarrow x_5-x_2=-3 \Rightarrow x_5=x_2-3$. Như thế $x_5$ xác định theo $x_1, x_2, x_3$ là duy nhất.\

Trường hợp 2.

Tương tự nếu $$\begin{cases}
x_1-x_2=-1&\\
x_3-x_2=1&
\end{cases} \Rightarrow x_5-x_2=3 \Rightarrow x_5=x_2+3. $$

Như vậy nghiệm nguyên của phương trình này nếu có là duy nhất, bài toán được chứng minh xong.

 

Bài tập rèn luyện

  1. Giả sử đa thức $P(x), Q(x), R(x), S(x) \in \mathbb{R}[x]$ thỏa mãn dẳng thức $$ P(x^5)+xQ(x^5)+x^2R(x^5)=(x^4+x^3+x^2+x+1)S(x).$$
    Chứng minh rằng $P(x)$ chia hết cho $x-1$.
    a) Biết tích của hai trong bốn nghiệm của phương trình $x^4-18x^3+kx^2+200x-2016=0$ là $-32.$ Tìm $k$ .
    b) Biết đa thức $$P(x)=x^n-2nx^{n-1}+2n(n-1)x^{n-2}+...+a_0$$ có $n$ nghiệm thực. Tìm tất cả các nghiệm này.
  2. Giả sử đa thức $P(x)=ax^n-ax^{n-1}+c_2x^{n-2}+...+c_{n-2}x^2-n^2bx+b$ có đúng $n$ nghiệm dương. Chứng minh rằng tất cả các nghiệm này bằng nhau.
    a) Giả sử $x_1, x_2$ là hai trong bốn nghiệm của đa thức $P(x)=x^4+x^3-1$. Chứng minh rằng $x_1x_2$ là nghiệm của đa thức $Q(x)=x^6+x^4+x^3-x^2-1$.
    b) Tìm tất cả các cặp số thực $a,b$ sao cho các đa thức $$P(x)=x^4+2ax^2+4bx+a^2 \ \text{và} \ Q(x)=x^3+ax+b$$ có chung hai nghiệm thực phân biệt.
  3. Cho đa thức $f(x)=3x^3-5x^2+2x-6$ có các nghiệm là $\alpha, \beta, \gamma$. Tính $$T=\Big(\dfrac{1}{\alpha-2}\Big)^2+\Big(\dfrac{1}{\beta-2}\Big)^2+\Big(\dfrac{1}{\gamma-2}\Big)^2.$$
  4. Gọi $r_1, r_2,...,r_7$ là các nghiệm phân biệt của đa thức $P(x)=x^7-7$. Đặt $\displaystyle K=\prod_{1 \le i<j \le 7}(r_i+r_j)$. Tính $K^2.$

 

Tài liệu tham khảo

  1. Phan Huy Khải, Đa thức.
  2. Nguyễn Hữu Điển, Đa thức và ứng dụng.
  3. Titu Andresscu, Navid Safaei, Alessandro Ventullo, Polynomial Problems.
  4. Tạp chí Mathematical Reflections.

 

So sánh hai phân số

1.So sánh hai phân số cùng mẫu.

Trong hai phân số có cùng mẫu dương, phân số nào có tử lớn hơn thì lớn hơn, phân số nào có tử nhỏ hơn thì nhỏ hơn.

Ví dụ 1. So sánh $\frac{-3}{5}$ và $\frac{-7}{5}$.
Giải
Ta có $-7<-3$ và $5>0$ nên $\frac{-7}{5}<\frac{-3}{5}$.

Chú ý: Với hai phân số có cùng một mẫu nguyên âm, ta đưa chúng về hai phân số có cùng mẫu nguyên dương rồi so sánh.

2. So sánh hai phân số khác mẫu.

Để so sánh hai phân số khác mẫu, ta đưa hai phân số đó về hai phân số có cùng mẫu dương rồi so sánh hai phân số mới nhận được.

Ví dụ 2: So sánh $\dfrac{-4}{-15}$ và $\dfrac{-2}{-9}$.
Giải
Ta có: $\dfrac{-4}{-15}=\dfrac{4}{15}=\dfrac{4.9}{15.9}=\dfrac{36}{135} ; \dfrac{-2}{-9}=\dfrac{2}{9}=\dfrac{2.15}{9.15}=\dfrac{30}{135}$.
Vì $\dfrac{36}{135}>\dfrac{30}{135}$ nên $\dfrac{-4}{-15}>\dfrac{-2}{-9}$.

3. Các ví dụ.

Ví dụ 3. So sánh:
a) $\dfrac{-21}{10}$ và 0 ;
b) 0 và $\dfrac{-5}{-2}$;
c) $\dfrac{-21}{10}$ và $\dfrac{-5}{-2}$.
Ví dụ 4. Bạn Nam rất thích ăn sô cô la. Mẹ Nam có một thanh sô cô la, mẹ cho Nam
chọn $\ddfrac{1}{2}$ hoặc $\dfrac{2}{3}$ thanh sô cô la đó. Theo em bạn Nam sẽ chọn phần nào?

4. Bài tập sách giáo khoa

Bài 1. (SGK Toán 6 tập 2 – Trang 15) So sánh hai phân số.
a) $\frac{-3}{8}$ và $\frac{-5}{24}$;
b) $\frac{-2}{-5}$ và $\frac{3}{-5}$;
c) $\frac{-3}{-10}$ và $\frac{-7}{-20}$;
d) $\frac{-5}{4}$ và $\frac{23}{-20}$.
Bài 2. (SGK Toán 6 tập 2 – Trang 15) Căn cứ vào chiều cao trung bình của học sinh, người ta đưa ra chuẩn chiều cao bàn, ghế học sinh như sau :
Chiều cao ghế bằng chiều cao cơ thể nhân với 0,27 . Chiều cao bàn bằng chiều cao cơ thể nhân với 0,46 . Em hãy tính xem, với một học sinh cao $1,5 \mathrm{~m}$ như trong hình thì chiều cao ghế và chiều cao bàn là bao nhiêu thì thích hợp. Ghi kết quả dưới dạng phân số.

Bài 3. (SGK Toán 6 tập 2 – Trang 15)

a) So sánh $\frac{-11}{5}$ và $\frac{-7}{4}$ với $-2$ bằng cách viết $-2$ ở dạng phân số có mẫu số thích hợp. Từ đó suy ra kết quả so sánh $\frac{-11}{5}$ với $\frac{-7}{4}$.
b) So sánh $\frac{2020}{-2021}$ với $\frac{-2022}{2021}$.

Bài 4. (SGK Toán 6 tập 2 – Trang 15)

Sắp xếp các số $2 ; \frac{5}{-6} ; \frac{3}{5} ;-1 ; \frac{-2}{5} ; 0$ theo thứ tự tăng dần.

Tính chất cơ bản của phân số

1. Tính chất 1.

Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số mới bằng phân số đã cho.

Ví dụ 1.

a) $\dfrac{-5}{6}=\frac{(-5) \cdot 6}{6.6}=\dfrac{-30}{36}$;

b) $\dfrac{-5}{6}=\frac{(-5) \cdot(-9)}{6 \cdot(-9)}=\dfrac{45}{-54}$.

  • Có thể biểu diễn số 12 ở dạng phân số có mẫu số là $-5$ như sau: $12=\dfrac{12}{1}=\dfrac{12 \cdot(-5)}{1 .(-5)}=\dfrac{-60}{-5}$.

Nhận xét: Có thể biểu diễn số nguyên ở dạng phân số với mẫu số (khác 0 ) tuỳ ý.

  • Áp dụng tính chất 1 , ta có thể quy đồng mẫu số hai phân số bằng cách nhân tử và mẫu của mổi phân số với số nguyên thích hợp.

Giải:

Ta thực hiện $\dfrac{7}{-6}=\dfrac{7.10}{-6.10}=\dfrac{70}{-60} ; \quad \dfrac{-15}{10}=\dfrac{-15 \cdot(-6)}{10 \cdot(-6)}=\dfrac{90}{-60}$.

Nhận xét: Mẫu số giống nhau ở hai phân số là $-60$ còn gọi là $m \tilde{a}$ áu số chung của hai phân số. Khi quy đồng mẫu số hai phân số, có thể có nhiều cách chọn mẫu số chung. Chúý: Có thể quy đồng mẫu số của nhiều phân số bằng cách tìm mẫu số chung của nhiều phân số.

Ví dụ 3. Quy đồng mẫu số của ba phân số $\dfrac{3}{4} ; \dfrac{2}{5}$ và $\dfrac{-7}{3}$.

Ta thực hiện $\dfrac{3}{4}=\dfrac{3.15}{4.15}=\dfrac{45}{60} ; \dfrac{2}{5}=\dfrac{2 \cdot 12}{5.12}=\dfrac{24}{60} ; \dfrac{-7}{3}=\dfrac{-7 \cdot 20}{3.20}=\dfrac{-140}{60}$.
Mẫu số chung của ba phân số trên là 60 .

 

2. Tính chất 2

Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số mới bằng phân số đã cho.

Ví dụ 4.
a) $\dfrac{-35}{60}=\dfrac{(-35): 5}{60: 5}=\dfrac{-7}{12}$;
b) $\dfrac{12}{-27}=\dfrac{12:(-3)}{-27:(-3)}=\dfrac{-4}{9}$.

Áp dụng tính chất 2 , ta có thể rút gọn phân số bằng cách chia cả tử và mẫu cho cùng ước
chung khác 1 và $-1$.

Ví dụ 5. Rút gọn phân số $\dfrac{12}{-52}$.

Giải.

Ta có: $\dfrac{12}{-52}=\dfrac{12: 4}{(-52): 4}=\dfrac{3}{-13}$.

3. Bài tập sách giáo khoa

Bài 1. Áp dụng tính chất 1 và tính chất 2 để tìm một phân số bằng mỗi phân số sau:
a) $\dfrac{21}{13}$;
b) $\dfrac{12}{-25}$;
c) $\dfrac{18}{-48}$;
d) $\dfrac{-42}{-24}$.

Bài 2. Rút gọn các phân số sau: $\dfrac{12}{-24} ; \dfrac{-39}{75} ; \dfrac{132}{-264}$.

Bài 3. Viết mỗi phân số dưới đây thành phân số bằng nó có mẫu số dương:
$$
\dfrac{1}{-2} ; \dfrac{-3}{-5} ; \dfrac{2}{-7}
$$
Bài 4. Dùng phân số có mẫu số dương nhỏ nhất để biểu thị xem số phút sau đây chiếm bao nhiêu phần của mộ\operatorname{tg} i ờ ? ~
a) 15 phút;
b) 20 phút;
c) 45 phút;
d) 50 phút.

Bài 5. Dùng phân số để viết mỗi khối lượng sau theo tạ, theo tấn.
a) $20 \mathrm{~kg}$;
b) $55 \mathrm{~kg}$
c) $87 \mathrm{~kg}$
d) $91 \mathrm{~kg}$.

Bài 6. Dùng phân số có mẫu số dương nhỏ nhất biểu thị phần tô màu trong mỗi hình sau.