Một số lưu ý chuẩn bị cho kì thi vào lớp 10: Toán chung

Năm nay TPHCM và PTNK thi vào lớp 10 ba môn chung: Toán, Văn, Anh. Cũng sắp tới ngày thi, giai đoạn này cần tập trung vào việc học tập, ôn luyện rèn luyện giải đề…để có một kì thi thành công, kết quả như ý. Nhân đây tôi cũng có một số điều muốn chia sẻ trong giai đoạn nước rút này.

Đại số

  • Ôn tập rút gọn các biểu thức, chú ý các hằng đẳng thức, chú ý sai dấu.
  • Phương trình: Xem lại các giải pt vô tỷ, điều kiện, phương pháp giải, phương trình tích. Hệ phương trình xe, kĩ phương pháp thế, cộng đại số, ẩn phụ.
  • Viete chú ý các xử lí biểu thức chứa biết đối xứng hay không đối xứng, điều kiện có nghiệm.

Hình học

  • Nắm chắc hệ thức lượng, tỉ số lượng giác, công thức diện tích, chú ý các bài tính toán độ dài.
  • Hình học chú ý các các tính chất tiếp tuyến, phương pháp chứng minh tiếp tuyến, tính chất 2 tiếp tuyến cắt nhau và các bài toán liên quan.
  • Phương pháp chứng minh tứ giác nội tiếp,  các loại góc, các tính chất quen thuộc.

Toán thực tế

  • Chú ý các bài toán về phần trăm, giá cả, năng suất.
  • Hỏi cái nào, đặt ẩn cái đó, tìm mối tương quan giữa các đại lượng để lập phương trình hay hệ phương trình.
  • Nắm chắc các kĩ thuật giải pt, hpt, chú ý điều kiện của  ẩn.
  • Chú ý các công thức tính chu vi, diện tích, thể tích các hình quen thuộc.

Chúc các em có mùa thi thành công!

Các bài toán tổ hợp trên dãy số

CÁC BÀI TOÁN TỔ HỢP TRÊN DÃY SỐ

Thầy Lê Phúc Lữ 

(Lớp Cao học Khoa học tự nhiên TP.HCM)

Trong bài viết nhỏ này, chúng ta sẽ cùng xét khía cạnh tổ hợp của dãy số nguyên; khi cần đếm số lượng dãy thỏa mãn một điều kiện cho trước nào đó. Các phương pháp thường gặp: truy hồi, xuống thang, cực hạn, phản chứng, …

1. Các bài toán chọn lọc

Bài tập 1.1: Tìm tất cả các bộ số nguyên dương $x_1,\ x_2,\ x_3,\ \ldots ,\ x_{2017}$ sao cho có thể đặt chúng lên vòng tròn theo thứ tự đó mà $6$ số liên tiếp bất kỳ đều có thể chia thành hai nhóm $3$ có tổng bằng nhau.

Giải

Dùng phương pháp xuống thang.

Ta có $x_i+x_{i+1}+x_{i+2}+x_{i+3}+x_{i+4}+x_{i+5} \equiv 0 \pmod{2}$ với mọi $i=1,2,3,\ldots ,2017$ nên $x_i \equiv x_{i+6}$ với mọi $i.$

Vì $(6,2017)=1$ nên suy ra tất cả các số có cùng tính chẵn lẻ. Ta xét phép biến đổi dãy số sau:

  • Nếu tất cả các số cùng chẵn thì thay bằng $y_i=\dfrac{x_i}{2}$.
  • Nếu tất cả các số cùng lẻ thì thay bằng $y_i=\dfrac{x_i+1}{2}$.

Dễ thấy dãy mới cũng thỏa và tổng $S=\sum\limits_{i=1}^{2017} a_i$ sẽ giảm ngặt nếu có một số nào đó trong dãy khác $1$; suy ra quá trình biến đổi sẽ dừng lại khi tất cả đều là $1$. Vì ta thu được một dãy toàn là $1$ nên dãy ban đầu có tất cả các số hạng bằng nhau.

Nhận xét: Bài toán trên có thể thay việc chia 2 nhóm thành $3,4,5,\ldots $ nhóm và vẫn giải được bằng cách tương tự. Ta xét các bài tương tự sau:

Bài tập 1.2 (APMO 2017): Bộ năm số nguyên là tốt nếu có thể đặt chúng là $a,b,c,d,e$ để $a-b+c-d+e=29.$ Tìm tất cả các bộ $2017$ số sao cho $5$ số liên tiếp bất kỳ trong chúng đều tốt.

Ở bài toán này, điểm khó là không biết các số đã cho có dương hay không; vì thể, đại lượng tổng ở trên không xét tiếp tục được.

Tuy nhiên, cách áp dụng vẫn tương tự như sau:

  • Trừ tất cả các số của bộ cho $29$, ta thu được điều kiện tốt trở thành $a-b+c-d+e=0.$
  • Tất cả các số đã cho cùng tính chẵn lẻ, và chính xác là cùng chẵn.
  • Xét đại lượng $S=\sum\limits_{i=1}^{2017}{\left| \frac{{{a}_{i}}}{2} \right|}$ thì thông qua phép chia 2, tổng này giảm ngặt. Từ đó suy ra tất cả các số này phải là $0$ và tất cả ban đầu phải là $29.$

Bài tập 1.3 (VMO 2014): Tìm tất cả các bộ số $2014$ số hữu tỷ không âm sao cho nếu bỏ đi bất kỳ số nào trong chúng thì các số còn lại có thể được chia thành $3$ nhóm rời nhau, mỗi nhóm có $671$ số sao cho tích các số trong mỗi nhóm là bằng nhau.

Bài này khó hơn vì: số hữu tỷ chứ không nguyên, tích chứ không phải tổng, … Ta lần lượt giải quyết điều đó như sau:

  • Quy đồng mẫu để đưa về số nguyên.
  • Xét số mũ của 1 ước nguyên tố để đưa về tổng.
  • Chú ý thêm trường hợp số 0 (nếu có 1 số thì phải có ít nhất 4 số).

Bài tập 1.4: Cho dãy số nguyên dương $({{a}_{n}})$ thỏa mãn:

$i)$ Gồm các số phân biệt nhau.

$ii)$ Với mọi $n$ thì ${{a}_{n}}\ge n.$

$iii)$ $a_1=5,\ a_2=4,\ a_3=3$.

a) Chứng minh rằng tồn tại $n>2017$ sao cho $a_n \ne n+1$?

b) Giả sử $a_n=n+2$ với mọi $n>2017$, hỏi có tất cả bao nhiêu dãy số như thế?

Giải

a) Bài toán có thể giải quyết dễ dàng bằng phản chứng và Dirichlet. Thật vậy, nếu ${{a}_{n}}=n+1$ với mọi $n>2017$ thì các số hạng ${{a}_{4}}\to {{a}_{2017}}$ sẽ nhận các giá trị trong tập hợp $6\to 2018$. Khi đó, sẽ có hai số hạng bằng nhau, không thỏa.

b) Nếu đã có ${{a}_{n}}=n+2$ với mọi $n>2017$ thì các số hạng ${{a}_{4}}\to {{a}_{2017}}$ sẽ nhận các giá trị trong tập hợp $6\to 2019.$ Nhận xét:

  • ${{a}_{2017}}\in \left\{ 2017,2018,2019 \right\}$ nên có $3$ cách chọn.
  • ${{a}_{2016}}\in \left\{ 2016,2017,2018,2019 \right\}$ nhưng vì ${{a}_{2017}}$ đã lấy một số nên cũng còn $3$ cách chọn.
  • Tương tự, đến ${{a}_{6}}$ vẫn có $3$ cách chọn. Còn lại ${{a}_{5}}$ có $2$ cách chọn và ${{a}_{4}}$ có $1$ cách chọn.

Theo nguyên lý nhân, ta có $2\cdot {{3}^{2012}}$ dãy thỏa mãn.

Bài tập 1.5: Xét lục giác $ABCDEF$ có độ dài cạnh là $1$ được điền các số như hình vẽ

Một con ếch xuất phát từ $A$ và nhảy đến các đỉnh sao cho mỗi bước nhảy đều có độ dài nguyên. Hành trình của ếch là dãy các tên đỉnh mà ếch đã nhảy qua; và hai hành trình được coi là khác nhau nếu ở một lần thứ $k$ nào đó, đỉnh mà ếch nhảy đến ở hai hành trình là khác nhau.

Gọi $m$ là số hành trình ếch nhảy sao cho tổng các số mà nó nhảy qua là $2017$. Chứng minh rằng $m$ không phải là số chính phương.

Giải

Ta thấy $ACE$ và $BDF$ là hai tam giác đều có cạnh là $\sqrt{3}$ nên mỗi lần, ếch sẽ nhảy từ tam giác đều này đến tam giác đều kia.

Chia nhóm:

  • $I=(A,C,E)$ tương ứng với các số $(0,0,1)$.
  • $II=(B,D,F)$ tương ứng với $(1,1,2)$.

Ta thấy $\left\{ x+y|x\in I,y\in II \right\}=\left\{ 1,1,1,1,2,2,2,2,3 \right\}$ chứng tỏ tổng các số trên hai bước nhảy liên tiếp của ếch sẽ nhận giá trị là $4$ số $1$, $4$ số $2$ và $1$ số $3.$ Nếu gọi ${{s}_{n}}$ là số hành trình của ếch có tổng là $n$ thông qua chẵn bước thì

$${{s}_{n}}=4{{s}_{n-1}}+4{{s}_{n-2}}+{{s}_{n-3}}.$$

Một cách tương tự, gọi ${{t}_{n}}$ là số hành trình của ếch có tổng là $n$ thông qua lẻ bước thì công thức truy hồi vẫn thế (chỉ khác ở các số hạng đầu).

Vì vậy nên nếu gọi ${{u}_{n}}={{s}_{n}}+{{t}_{n}}$ là số hành trình của ếch có tổng là $n$ thì

$${{u}_{n}}=4{{u}_{n-1}}+4{{u}_{n-2}}+{{u}_{n-3}} \text{ với } n\ge 3.$$

Ta có ${{u}_{0}}=1,{{u}_{1}}=6,{{u}_{2}}=28$ và từ công thức truy hồi thì $m={{u}_{2017}}\equiv {{u}_{1}}\equiv 2 \pmod{4}$ nên $m$ không thể là số chính phương, ta có đpcm.

Nhận xét: Bài toán có thể giải bằng cách gọi $6$ dãy truy hồi $a_n,\ b_n,\ c_n,\ d_n,\ e_n,\ f_n$ chỉ số hành trình của ếch có tổng là $n$ và kết thúc tại $A,B,C,D,E,F$. Tuy nhiên, cách tiếp cận đó khá phức tạp, đòi hỏi phải khai thác nhiều các liên hệ giữa các đường đi.

Một bài toán tương tự:

Bài tập 1.6 (Ả Rập TST 2017): Người ta đặt các số $1,2,3,4$ trên vòng tròn theo thứ tự đó. Một con kiến xuất phát từ số $1$ và ở mỗi bước, nó sẽ bò qua số bên cạnh. Hỏi con kiến có bao nhiêu cách bò sao cho tổng tất cả các số mà nó bò qua (kể cả số ban đầu) bằng 21?

Tương tự bài trên, ta cũng tìm được hệ thức truy hồi là $s_n=s_{n-3}+2s_{n-5}+s_{n-7}$. Từ đó tính được $s_{21}=167.$

Bài tập 1.7: Đếm số dãy số nguyên dương $\left( a_1,\ a_2,\ \ldots ,\ a_{12}\right) $ thỏa mãn các điều kiện sau:

a) $1\le a_1 \le a_2 \le \ldots \le a_{12} \le 2017$

b) $a_i \equiv i^2 (\bmod 12)$.

Giải

Theo giả thiết, ta có

${{a}_{1}}\equiv {{a}_{5}}\equiv {{a}_{7}}\equiv {{a}_{11}}\equiv 1\text{ }(\bmod 12) $

$ {{a}_{2}}\equiv {{a}_{4}}\equiv {{a}_{8}}\equiv {{a}_{10}}\equiv 4\text{ }(\bmod 12) $

$ {{a}_{3}}\equiv {{a}_{9}}\equiv 9\text{ }(\bmod 12) $

$ {{a}_{6}}\equiv {{a}_{12}}\equiv 0\text{ }(\bmod 12) $

Đặt ${{a}_{i}}=12{{b}_{i}}+{{r}_{i}}$ với $i=1,2,3,\ldots ,12$ và ${{r}_{i}}$ là số dư tương ứng đã chỉ ra ở trên.

Do tính không giảm của dãy nên ta phải có

$$0\le {{b}_{1}}\le {{b}_{2}}\le {{b}_{3}}<{{b}_{4}}<{{b}_{5}}<{{b}_{6}}\le {{b}_{7}}\le {{b}_{8}}\le {{b}_{9}}<{{b}_{10}}<{{b}_{11}}<{{b}_{12}}\le 168.$$

Từ đó suy ra

$0\le {{b}_{1}}<{{b}_{2}}+1<{{b}_{3}}+2<{{b}_{4}}+2<{{b}_{5}}+2<{{b}_{6}}+2\le {{b}_{7}}+3\le {{b}_{8}}+4\le {{b}_{9}}+5 $

$<{{b}_{10}}+5<{{b}_{11}}+5<{{b}_{12}}+5\le 173 $

Do các số liệt kê ở trên đều phân biệt và thuộc $[0;173]$ nên số cách chọn một bộ như thế là $C_{174}^{12}$. Đó cũng chính là số dãy cần tìm.

Nhận xét: Điều kiện thứ hai có thể thay bằng một hàm số tùy ý theo $i$ chứ không nhất thiết phải là ${{i}^{2}}$, cách giải vẫn tương tự như trên.

Bài tập 1.8: Hỏi có bao nhiêu hoán vị $a_1,\ a_2,\ …,\ a_{2017}$ của $2017$ số nguyên dương đầu tiên thỏa mãn đồng thời các điều kiện sau:

$i)$ $a_{i+1}-a_i\le 1$ với mọi $i=1,2,3,\ldots,2016.$

$ii)$ Có đúng một chỉ số $i$ với $1\le i\le 2017$ sao cho $a_i=i$?

Giải

Trước hết, ta sẽ chứng minh nhận xét rằng số hoán vị của $n$ số nguyên dương đầu tiên thỏa mãn điều kiện i), gọi là hoán vị đẹp, sẽ là ${{2}^{n-1}}$. Thật vậy,

  • Đầu tiên, ta đặt số $1$ vào hoán vị.
  • Số $2$ có thể xếp trước hoặc sau số $1$, có $2$ cách.
  • Số $3$ có thể xếp vào đầu dãy hoặc ngay sau số $2$ đã xếp trước đó, có $2$ cách.
  • Số $4$ có thể xếp vào đầu dãy hoặc ngay sau số $3$ đã xếp trước đó, cũng có $2$ cách. Cứ như thế cho đến $n.$

Do đó, có tất cả ${{2}^{n-1}}$ cách xếp, tương ứng vời ${{2}^{n-1}}$ hoán vị.

Tiếp theo, giả sử ta có ${{a}_{i}}=i$.

Khi đó ${{a}_{i+1}}\le {{a}_{i}}+1=i+1$, nhưng không thể có ${{a}_{i+1}}=i+1$ (do chỉ có 1 chỉ số thỏa mãn ii) nên ${{a}_{i+1}}\le i$, mà ${{a}_{i}}=i$ nên ${{a}_{i+1}}\le i-1$. Tiếp theo, ${{a}_{i+2}}\le {{a}_{i+1}}+1\le i$ nên ${{a}_{i+2}}\le i-1$.

Do đó, các số từ ${{a}_{i+1}}$ đến ${{a}_{2017}}$ nhận giá trị không vượt quá $i-1$.

Lập luận tương tự, các số từ ${{a}_{1}}$ đến ${{a}_{i-1}}$ phải nhận giá trị không nhỏ hơn $i+1.$

Do đó, hai đoạn hoán vị phía trước và phía sau ${{a}_{i}}$ phải có độ dài bằng nhau, tức là ${{a}_{1009}}=1009$ là số ở giữa.

Rõ ràng các hoán vị phía trước và phía sau $1009$ đều phải là hoán vị đẹp và được sắp xếp độc lập với nhau.

Vậy số hoán vị cần tìm là ${{\left( {{2}^{1007}} \right)}^{2}}={{2}^{2014}}.$

Nhận xét: Nếu đề đổi số $2017$ thành $2018$ thì sẽ tồn tại hai chỉ số $i$ như trên và chúng sẽ cách đều hai đầu $1$ và $2018$. Khi đó, đoạn ở giữa cũng sẽ cố định, tức là có $i<j$ để

${{a}_{k}}=k$ với mọi $k=i,i+1,\ldots ,j$ và $i+j=2019.$

Phần trước $i$ và phần sau $j$ sẽ đổi chỗ cho nhau với số cách xếp là ${{({{2}^{i-1}})}^{2}}$.

Bài tập 1.9: Cho dãy các số nguyên dương $(u_n)$ thỏa mãn điều kiện

$0\le u_{m+n}-u_m-u_n \le 1$ với mọi $m,n\in \mathbb{Z}^+$.

Chứng minh rằng tồn tại $a\in \mathbb{R}^+$ sao cho $-1\le u_n-\left[ an \right]\le 1$ với mọi $n=1,2,3,\ldots ,2017.$

Giải

Ta đưa điều cần chứng minh về

$$\frac{{{u}_{n}}}{n}<a<\frac{{{u}_{n}}+1}{n}.$$

Đến đây, gọi

$$m=\min \left\{ \left. \frac{{{u}_{n}}+1}{n} \right|n=1,2,3,\ldots ,2017 \right\}$$ và

$$M=\max \left\{ \left. \frac{{{u}_{n}}}{n} \right|n=1,2,3,\ldots ,2017. \right\}$$

Cần chỉ ra $m>M$ rồi chọn số $a$ nằm giữa $(m,M)$ là xong. Gọi $p,q$ lần lượt là các chỉ số nhỏ nhất để có dấu bằng xảy ra ở các đánh giá trên. Khi đó

${{u}_{p}}+1=pm$ và ${{u}_{q}}=Mq.$

Ngoài ra, ${{u}_{k}}+1>km,\forall k<p$ và ${{u}_{k}}<kq,\forall k<q.$

  • Nếu $p=q$ thì hiển nhiên đúng.
  • Nếu $p>q$, ta đặt $p=q+k$ thì $k<p$ nên ${{u}_{k}}+1>km$, vì ${{u}_{p}}\ge {{u}_{q}}+{{u}_{k}}$ (theo giả thiết) nên $pm-1>Mq+km-1\Leftrightarrow m>M.$
  • Nếu $p<q$ thì cũng chứng minh tương tự với chú ý rằng ${{u}_{q}}\le {{u}_{p}}+{{u}_{k}}+1.$

Nhận xét: Nếu đề bài đổi giả thiết thành $0\le u_{m+n}-u_m-u_n\le 2$,

ta sẽ cần đến hai số $a,b$ sao mới thỏa mãn được kết luận (vì khoảng chênh lệch của các số hạng rộng hơn một tí), cụ thể là tồn tại $a,b>0$ để

$$-1\le u_n-\left[ an \right]-\left[ bn \right]\le 1.$$

Ở bài toán trên, ta còn chứng minh được một kết quả mạnh hơn là tồn tại $a$ để $u_n=[an]$ với mọi $n.$ Một bài toán tương tự trong đề trường Đông miền Trung:

Bài tập 1.10: Cho hàm số $f:\mathbb{R}\to \mathbb{R}$ thỏa mãn $\left| f(x+y)-f(x)-f(y) \right|\le 1,\forall x,y\in \mathbb{R}$. Chứng minh rằng tồn tại hàm cộng tính $g:\mathbb{R}\to \mathbb{R}$ thỏa mãn $\left| f(x)-g(x) \right|\le 1,\forall x.$

Đây có thể nói là một phiên bản trên $\mathbb{R}$ của bài toán trên (thay vì xét trên $\mathbb{N}$).

Tiếp theo, ta xét lớp các bài toán sử dụng một định lý thú vị trong dãy số, số học. Trước hết, ta xét định lý Beatty với nội dung như sau:

Cho hai số vô tỷ dương $\alpha ,\beta $. Xét hai dãy số:

  • $[\alpha ],[2\alpha ],[3\alpha ],\ldots $ tạo thành dãy $A.$
  • $[\beta ],[2\beta ],[3\beta ],\ldots $ tạo thành dãy $B.$

Khi đó $\dfrac{1}{\alpha }+\dfrac{1}{\beta }=1$ khi và chỉ khi $A,B$ là phân hoạch của $\mathbb{Z}^+$.

Chứng minh

Định lý này có thể chứng minh bằng cách sử dụng các BĐT về phần nguyên. Dưới đây là cách chứng minh cho chiều đảo:

Với mỗi số nguyên dương $k$, gọi $m,n$ là các số nguyên dương thỏa mãn

$$[m\alpha ]\le k<[(m+1)\alpha ] \text{ và } [n\beta ]\le k<[(n+1)\beta ].$$

Đặt $A=\{[i\alpha ],1\le i\le m\}$ và $B=\{[j\beta ],1\le j\le n\}$ thì $\left| A \right|=m,\left| B \right|=n$ và $A,B$ là phân hoạch của tập hợp $\left\{ 1,2,3,\ldots ,k \right\}$ theo định nghĩa của đề bài.

Do đó $m+n=k$. Theo bất đẳng thức phần nguyên thì $m\alpha -1<k<(m+1)\alpha $ nên $\dfrac{m}{k+1}<\dfrac{1}{\alpha }<\dfrac{m+1}{k}$.

Tương tự $\dfrac{n}{k+1}<\dfrac{1}{\beta }<\dfrac{n+1}{k}.$

Suy ra $$\dfrac{m+n}{k+1}<\dfrac{1}{\alpha }+\dfrac{1}{\beta }<\dfrac{m+n+2}{k} \text{ hay } \dfrac{k}{k+1}<\dfrac{1}{\alpha}+\dfrac{1}{\beta }<\dfrac{k+2}{k}.$$

Cho $k\to +\infty $, ta thu được $\dfrac{1}{\alpha }+\dfrac{1}{\beta }=1.$

Bài tập 1.11: Hai dung dịch $A,B$ có đặc điểm: số đo thể tích của $1$ kg $A$ bằng số đo khối lượng của $1$ lít $B.$ Ngoài ra, $p$ lít $A$ nặng bằng $q$ lít $B$ với $p,q$ nguyên tố khác nhau. Mỗi dung dịch được chia cho vào các bình nhỏ giống nhau, cùng chứa $1$ lít và vỏ nặng $1$ kg. Chứng minh rằng có đúng một cách ghép các bình cùng loại ($A$ hoặc $B$) lại với nhau mà khối lượng của chúng thuộc khoảng $(2017;2018).$

Giải

Gọi $x,y$ lần lượt là khối lượng riêng của các dung dịch thì $\dfrac{1}{x}=1\cdot y,px=qy$ nên $x=\sqrt{\dfrac{q}{p}},y=\sqrt{\dfrac{p}{q}}.$

Khối lượng mỗi bình là $\alpha =1+\sqrt{\dfrac{q}{p}},\beta =1+\sqrt{\dfrac{p}{q}}$. Dễ thấy $\dfrac{1}{\alpha }+\dfrac{1}{\beta }=1$, thỏa mãn định lý Beatty.

Suy ra hai dãy $[m\alpha ],[n\beta ]$ là phân hoạch của số nguyên dương nên ta có đpcm.

Bài tập 1.12 (APMO 2006): Với mỗi số nguyên dương $n$, gọi $a_n,\ b_n$ lần lượt là số cách viết $10^n$ trong hệ nhị phân, ngũ phân. Chứng minh rằng $(a_n),(b_n)$ là phân hoạch của $\mathbb{Z}^+ \backslash \{1\}.$

Giải

Để giải bài này, chú ý rằng: số chữ số của $M$ trong hệ $p$ phân là $[{{\log }_{p}}M]+1$.

Ngoài ra, $\alpha ={{\log }_{2}}10,\beta ={{\log }_{5}}10$ thỏa mãn điều kiện của định lý Beatty.

Từ đó, ta có một nhận xét thú vị rằng: tổng số chữ số của ${{2}^{n}}$ và ${{5}^{n}}$ trong hệ thập phân là $n+1.$

Bài tập 1.13 (VN TST 2000): Cho số nguyên dương $k$. Dãy số $(u_n)$ xác định bởi: $u_1=1$ và $u_{n+1}$ là số nguyên dương nhỏ nhất không thuộc tập hợp

$$\left\{ u_1,\ u_2,\ \ldots ,\ u_n,\ u_1+k,\ u_2+2k,\ \ldots ,\ u_n+nk \right\}.$$

Chứng minh rằng tồn tại $\alpha $ vô tỷ dương sao cho $u_n=\left[ n\alpha \right]$ với mọi $n.$

Giải

Để giải bài toán này, ta xét đa thức $P(x)={{x}^{2}}+(k-2)x-k$ với $k$ là số nguyên dương đã cho thì $P(x)$ có hai nghiệm phân biệt trái dấu. Hơn nữa, ${{\Delta }_{P(x)}}={{(k-2)}^{2}}+4k={{k}^{2}}+4$, không thể là số chính phương với bất kì số k nguyên dương nào nên hai nghiệm này đều là số vô tỉ. Ta thấy $$P(1)=1+(k-2)-k=-1<0,P(2)=4+2(k-2)-k=k>0$$ nên nghiệm dương của phương trình $P(x)=0$ thuộc khoảng $(1,2)$. Gọi nghiệm đó là $a.$

Đặt $b=a+k$ thì $a,b$ đều vô tỉ và $ab=a(a+k)={{a}^{2}}+ak=2a+k=a+b$ nên $\dfrac{1}{a}+\dfrac{1}{b}=1$.

Xét $f(n)=[na],g(n)=[nb]=f(n)+kn$ với $n$ là số nguyên dương.

Ta sẽ chứng minh rằng ${{x}_{n}}=f(n)$ bằng quy nạp. Thật vậy,

– Với $n=1$, khẳng định hiển nhiên đúng vì $1<a<2.$

– Giả sử ${{x}_{n}}=f(n)$ với mọi $n=1,2,3,…,m$. Ta sẽ chứng minh rằng ${{x}_{m+1}}=f({{x}_{m+1}})$.

Ta có $f(i)={{x}_{i}},g(i)=f(i)+ik={{x}_{i}}+ik$ với mọi $i=1,2,3,…,m$ nên ta có tập hợp

$H=\left\{ {{x}_{1}},{{x}_{2}},…,{{x}_{m}},{{x}_{1}}+k,{{x}_{2}}+2k,…,{{x}_{m}}+mk \right\} $

$ =\left\{ f(1),f(2),…,f(m),g(1),g(2),…,g(m) \right\} $

Rõ ràng $f(m+1)\notin H$ và $g(n)>f(n)$ với mọi $n$, $f(n)$ là hàm số đồng biến trên $\mathbb{N}*$ nên ta thấy rằng $f(m+1)$ chính là số tự nhiên nhỏ nhất không thuộc H. Theo định nghĩa dãy số $({{x}_{n}})$ đã cho thì ta có ${{x}_{m+1}}=f(m+1)$.

Do đó, khẳng định cũng đúng với $m+1.$ Theo nguyên lí quy nạp, ta có đpcm. Vậy số tự nhiên cần tìm chính là $a$ là nghiệm dương của phương trình ${{x}^{2}}+(k-2)x-k=0$.

Nhận xét: Đây là một kết quả có từ $1959$. Ta có thể phân tích cách tiếp cận như sau:

Xuất phát từ việc $\alpha =\sqrt{2},\beta =\sqrt{2}+2$ thỏa mãn điều kiện Beatty. Ta có hai dãy với công thức

$a_n=\left[ n\sqrt{2} \right],\ b_n=a_n+2n$ là phân hoạch của $\mathbb{Z}^+$.

Từ đó, để giấu dãy $b_n$ đi, ta chỉ cần xét $a_n+2n$.

Để ý $a_1=1,\ a_2=2,\ a_3=4,\ b_1=3,\ b_2=6,\ b_3=10$ nên $a_4$ có thể định nghĩa là số nguyên dương nhỏ nhất không thuộc $\left\{ a_1,\ a_2,\ a_3,\ a_1+2,\ a_2+4,\ a_3+6 \right\}$. Đó chính là cơ sở để có bài toán trên.

Bài tập 1.14 (Dãy Wythoff): Cho chuỗi $S_1=1$. Chuỗi $S_n$ được tạo thành từ chuỗi $S_{n-1}$ bằng cách thay $1\to 01$ và $0\to 1.$ Các chuỗi $S_1,\ S_2,\ S_3,\ \ldots $ được ghép liên tiếp lại với nhau thành một chuỗi vô hạn $L$. Gọi $a_n$ là vị trí của số $1$ thứ $n$ trong chuỗi $L.$ Chứng minh rằng tồn tại $\alpha $ vô tỷ dương sao cho $a_n=\left[ n\alpha \right],\forall n.$

Ở đây, ta có nhận xét rằng số $0$ thứ $n$ được sinh ra bởi số $1$ thứ $n$ nên nếu gọi $k_n$ là số các số $0$ đứng trước số $1$ thứ $n$ và $b_n$ là vị trí của số $0$ thứ $n,$ ta sẽ có $a_n=n+k_n$ và $b_n=2n+k_n$ nên $b_n=a_n+n$.

Chú ý rằng $(a_n),\ (b_n)$ chính là phân hoạch của $\mathbb{Z}^+$ nên dễ dàng tìm được $\alpha $ là nghiệm của $\dfrac{1}{\alpha }+\dfrac{1}{\alpha +1}=1$ hay $\alpha $ chính là tỷ số vàng.

Bài tập 1.15: Cho $n$ là số nguyên dương, hỏi có bao nhiêu dãy số $a_1,\ a_2,\ \ldots ,\ a_{2n}$ sao cho

$i)$ $a_i \in \left\{ -1,1 \right\}$ với $i=1,2,3,\ldots ,2n.$

$ii)$ $\left| \sum\limits_{i=2k+1}^{2l} a_i \right|\le 2$ với $0\le k<l\le n$?

Giải

Gọi $S$ là tập hợp các dãy thỏa mãn đề bài và đặt $\left| S \right|={{s}_{n}}$. Gọi $T$ là tập hợp tất cả các tổng các ${{a}_{i}}$ lấy từ chỉ số lẻ bất kỳ đến $2n.$ Theo giả thiết thì $T\subset \left\{ \pm 2,\pm 1,0 \right\}$, tuy nhiên, tất cả các tổng trong $T$ đều có chẵn số hạng mà mỗi số hạng đều là $\pm 1$ nên tất cả phải đều chẵn. Suy ra $T\subset \left\{ \pm 2,0 \right\}$.

Nếu trong $T$ chứa cả $2$ lẫn $-2$ thì giả sử $\sum\limits_{k=2i+1}^{2n}{{{a}_{k}}}=2$ và $\sum\limits_{k=2j+1}^{2n}{{{a}_{k}}}=-2$ với $i<j$ , khi đó

\[4=\sum\limits_{k=2i+1}^{2n}{{{a}_{k}}}-\sum\limits_{k=2j+1}^{2n}{{{a}_{k}}}=\sum\limits_{k=2i+1}^{2j}{{{a}_{k}}},\] mâu thuẫn.

Ứng với $({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{2n}})\in S$, ta có phân loại sau:

  • Tất cả các tổng trong $T$ đều là $0$, đặt số lượng dãy có tính chất này là ${{a}_{n}}$.
  • Trong $T$ có chứa số $2$, đặt số lượng dãy có tính chất này là ${{b}_{n}}$.
  • Trong $T$ có chứa số $-2$, đặt số lượng dãy có tính chất này là ${{c}_{n}}$.

Từ đó, ta dễ dàng chứng minh được hệ thức truy hồi

$ {{a}_{n+1}}=2{{a}_{n}} $

${{b}_{n+1}}={{a}_{n}}+2{{b}_{n}}+{{c}_{n}} $

$ {{c}_{n+1}}={{a}_{n}}+{{b}_{n}}+2{{c}_{n}} $

Chú ý rằng ${{a}_{n}}={{2}^{n}}$ và ${{a}_{n}}+{{b}_{n}}+{{c}_{n}}={{s}_{n}}$. Cộng hai công thức cuối lại, ta có

$${{b}_{n+1}}+{{c}_{n+1}}=2{{a}_{n}}+3({{b}_{n}}+{{c}_{n}})\Leftrightarrow {{s}_{n+1}}-{{2}^{n+1}}={{2}^{n+1}}+3({{s}_{n}}-{{2}^{n}})$$ hay

$${{s}_{n+1}}=3{{s}_{n}}+{{2}^{n}}\Leftrightarrow {{s}_{n+1}}+{{2}^{n+1}}=3({{s}_{n}}+{{2}^{n}}).$$

Với $n=1$, ta có $4$ dãy là $(1,1),(-1,-1),(-1,1),(1,-1)$ nên ${{s}_{1}}=4.$

Từ đẳng thức trên, ta có ${{s}_{n}}+{{2}^{n}}={{3}^{n-1}}({{s}_{1}}+{{2}^{1}})=2\cdot {{3}^{n}}$ nên ${{s}_{n}}=2\cdot {{3}^{n}}-{{2}^{n}}$.

Nhận xét: Bài toán thoạt nhìn có vẻ quen thuộc nhưng thật không đơn giản. Điều kiện đề cho là giá trị tuyệt đối của tất cả các tổng con từ vị trí lẻ đến vị trí chẵn bất kỳ đều không vượt quá $2$ buộc ta phải có đánh giá thích hợp mới có thể truy hồi được.

2. Bài tập áp dụng

Bài 1 (TP.HCM 2018): Hỏi có bao nhiêu hoán vị $(a_1,\ a_2,\ \ldots ,\ a_{164})$ của $164$ số nguyên dương đầu tiên sao cho $a_i \ne i$ và $ a_i \equiv i\text{ }(\bmod 41)$ với mọi $i=1,2,\ldots ,164?$

Bài 2: (Bài toán phát kẹo) Cô giáo có $10$ loại kẹo (mỗi loại có nhiều viên) và cần phát cho $30$ học sinh của lớp (một em nhận không quá $1$ viên/loại), giả sử rằng các em này có học lực đôi một khác nhau. Hỏi cô giáo có bao nhiêu cách phát kẹo, biết rằng nếu học sinh $A$ giỏi hơn $B$ thì $B$ có kẹo gì là $A$ có kẹo đó (tính cả trường hợp không em nào nhận được kẹo)?

Bài 3: (Bài toán con nhện) Một con nhện có $8$ cái chân, $8$ cặp vớ – giày khác nhau (vớ chỉ dùng chung với chiếc giày tương ứng). Con nhện có bao nhiêu thứ tự mang vớ và giày để sao cho trên cùng một chân, giày phải được mang vào sau vớ?

Đa thức bất khả quy

ĐA THỨC BẤT KHẢ QUY

(Thầy Vương Trung Dũng  giáo viên trường PTNK TP Hồ Chí Minh)

1. Giới thiệu sơ lược 

Đa thức bất khả qui là một vấn đề kinh điển trong đa thức nói riêng và trong toán học nói chung. Các bài toán về đa thức bất khả qui cũng thường xuyên xuất hiện trong các kì thi Olympic về toán. Người ta quan tâm nhiều nhất về tính bất khả qui của một đa thức trên vành $\mathbb{Z}[x]$ và $\mathbb{Q}[x]$. Có nhiều cách để kiểm tra tính bất khả qui của một đa thức loại này chẳng hạn như dùng trực tiếp định nghĩa hoặc dùng các tiêu chuẩn như tiêu chuẩn Eisenstein, tiêu chuẩn Perron, tiêu chuẩn Cohn, tiêu chuẩn Dumas… tuy nhiên bài viết này chỉ đề cập đến hai phương pháp thường được sử dụng nhất là sử dụng trực tiếp định nghĩa và tiêu chuẩn Eisenstein và các dạng mở rộng của nó cùng với đó là một kĩ thuật tối quan trọng là rút gọn theo một modulo nguyên tố $p$. Các tiêu chuẩn khác hi vọng sẽ có dịp trình bày trong một bài viết khác.

Trong tài liệu này ta qui ước $\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}$ và $\mathbb{K}$ là một trong các tập $\mathbb{Z},\ \mathbb{Q},\ \mathbb{R}, \ \mathbb{Z}_p$. Khi đó, $ \mathbb{K}[x]$ (tương ứng $ \mathbb{K}[x,y]$) là các vành đa thức một biến (tương ứng 2 biến) có hệ số trong $ \mathbb{K}$.

Định nghĩa 1.1:  Đa thức $P(x)$ trong vành $\mathbb{K}[x]$ được gọi là khả qui trên $\mathbb{K}$ nếu $P(x)=f(x).g(x)$ trong đó $f(x), g(x)$ là các đa thức không khả nghịch trong $\mathbb{K}[x]$. Đa thức $P(x)$ được gọi là bất khả qui nếu $P(x)$ không khả nghịch và không khả qui.

Nói riêng, khi $\mathbb{K}$ là một trường thì một đa thức $P(x) \in \mathbb{K}[x]$ có bậc dương được gọi là khả qui trên $\mathbb{K}$ nếu có thể phân tích được thành tích hai đa thức có bậc dương trong $\mathbb{K}[x]$, ngược lại $P(x)$ được gọi là bất khả qui trên $\mathbb{K}$.

Định lí Gauss 1.1: Các vành đa thức

  • $\mathbb{R}[x], \ \mathbb{C}[x],\ \mathbb{Q}[x], \ \mathbb{Z}_p[x]$
  •  $\mathbb{Z}[x], \ \mathbb{Z}[x,y], \ \mathbb{Q}[x,y]…$

là có sự phân tích duy nhất thành các nhân tử bất khả qui và sự phân tích này là duy nhất. Nói riêng các khái niệm về đa thức bất khả qui, ước chung lớn nhất, bội chung nhỏ nhất vẫn còn đúng trên các vành này.

Lưu ý: Trong trường hợp $1$ ở trên là các đa thức có hệ số trên trường nên trên đó thuật toán Euclid hay định lí Bezout vẫn còn đúng nhưng trường hợp $2$ thì không.

2. Tính bất khả qui trên $\mathbb{C}[x]$ và $\mathbb{R}[x]$

Định lí 2.1: Mọi đa thức có bậc lớn hơn 1 đều khả qui trên $\mathbb{C}[x]$.

Chứng minh

Giả sử $degP>1$. Ta thừa nhận định lí cơ bản của đại số “Mọi đa thức $P(x) \in \mathbb{C}[x]$ có bậc lớn hơn 1 đều có ít nhất một nghiệm trên $\mathbb{C}$”. Khi đó $P(x)$ có nghiệm $x_0 \in \mathbb{C}$ nên theo Định lí Bezout $$P(x)=(x-x_0)Q(x),$$

trong đó $deg\ge 1$ nên $P(x)$ khả qui trên $\mathbb{C}[x].$

Định lí 2.2: Mọi đa thức có hệ số thực bậc lớn hơn 2 đều khả qui trên $\mathbb{R}[x]$. Nói riêng một đa thức là bất khả qui trên $\mathbb{R}[x]$ khi và chỉ khi nó là đa thức bậc nhất hoặc bậc 2 vô nghiệm.

Chứng minh

Giả sử $P \in \mathbb{R}[x]$ và $deg P >2$.

  • Nếu $\deg P$ lẻ thì $P$ có ít nhất một nghiệm thực nên nó khả qui.
  • Nếu $\deg P$ chẵn thì $P$ có một nghiệm phức $\alpha$, khi đó $\overline{\alpha}$ cũng là nghiệm của $P$ và do đó $P(x)=(x-\alpha)(x-\overline{\alpha})Q(x)$ là khả qui.

3. Tính bất khả qui trên $\mathbb{Z}[x]$ và $ \mathbb{Q}[x]$

Qua Định lí 2.1 và Định lí 2.2 ta thấy nếu $\mathbb{K}=\mathbb{C},\ \mathbb{R}$ thì tính bất khả quy là đơn giản nên ta quan tâm đến trường hợp $\mathbb{K}=\mathbb{Z}, \ \mathbb{Q}.$ Thật may mắn là bổ đề Gauss mà ta trình bày sau đây sẽ cho ta một sự tương ứng về tính bất khả qui của một đa thức hệ số nguyên trên $\mathbb{Z}[x]$ và $\mathbb{Q}[x]$.

Định nghĩa 3.1: Cho đa thức $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$, đa thức $P$ được gọi là nguyên bản nếu $gcd(a_n,…,a_0)=1$

Mệnh đề 3.1: Tích của hai đa thức nguyên bản là một đa thức nguyên bản.

Mệnh đề 3.2: Mọi đa thức $P \in \mathbb{Q}[x]$ đều viết được dưới dạng $P=cP_0(x)$, trong đó $P_0$ là một đa thức nguyên bản và $c_0 \in \mathbb{Q}.$

Định lí 3.1 (Bổ đề Gauss):  Một đa thức hệ số nguyên, có bậc dương bất khả qui trong $\mathbb{Q}[x]$ khi và chỉ khi nó bất khả qui trong $\mathbb{Z}[x]$.

Chứng minh

Hiển nhiên nếu $P(x)$ bất khả qui trên $\mathbb{Q}[x]$ sẽ bất khả qui trên $\mathbb{Z}[x]$.

Ngược lại giả sử $P(x)$ bất khả qui trên $\mathbb{Z}[x]$ mà

$P(x)=P_1(x)P_2(x)$, với $P_1, P_2 \in \mathbb{Q}[x]$ và $1\le deg \ P_1, degP_2 \le deg\ P$.

Khi đó ta viết lại $P_1=\dfrac{a_1}{b_1}Q_1(x), P_2=\dfrac{a_2}{b_2}Q_2(x)$, với $(a_i,b_i)=1$ và $Q_i$ nguyên bản, $i \in \{1,2\}$.

Suy ra $P(x)=\dfrac{a_1a_2}{b_1b_2}Q_1(x)Q_2(x)=\dfrac{p}{q}Q_1(x)Q_2(x),$ trong đó $p=a_1b_1, q=a_2b_2$ và $ (p,q)=1.$

Do $P\in \mathbb{Z}[x]$ nên các hệ số của $Q_1(x)Q_2(x)$ phải chia hết cho $q$ điều này trái với tính nguyên bản của $Q_1(x)Q_2(x)$.

Từ đó ta có điều phải chứng minh.

Định lí 3.2: Cho $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử $P$ có nghiệm hữu tỉ $x=\dfrac{p}{q}$ với $(p,q)=1$. Khi đó, $p$ là ước của $a_0$ còn $q$ là ước của $a_n.$ Nói riêng, mọi nghiệm hữu tỉ của một đa thức monic (đơn khởi, hệ số của bậc cao nhất bằng $\pm1$) với hệ số nguyên đều là nghiệm nguyên.

Chứng minh

Giả sử $P(x)$ có nghiệm hữu tỉ $\dfrac{p}{q},$ với $ (p,q)=1$. Khi đó $$a_n(\dfrac{p}{q})^n+…+a_1. \dfrac{p}{q}+a_0=0,$$

qui đồng mẫu số ta được $$a_np^n+…+a_0q^n=0.$$

Vì vế phải chia hết cho $p$ nên vế trái chia hết cho $p$, từ đó suy ra $a_0q^n$ chia hết cho $p$, lại có $(q^n,p)=1$ nên $a_0$ chia hết cho $p$. Lập luận tương tự ta được $a_n$ chia hết cho $q$.

Đinh lí 3.3: Cho $P \in \mathbb{Q}[x]$ có bậc 2 hoặc 3. Khi đó, $P(x)$ là bất khả qui khi và khi khi $P(x)$ không có nghiệm hữu tỉ.

Chứng minh

Hiển nhiên nếu $P$ có nghiệm hữu tỉ thì nó khả qui.

Đảo lại, nếu $P$ khả qui thì $P$ phân tích được thành tích của hai đa thức hữu tỉ.

Điều kiện bậc của $P$ bằng 2 hoặc 3 chứng tỏ một trong hai nhân tử trên phải có bậc 1.

Từ đó suy ra $f$ có nghiệm hữu tỉ.

Lưu ý: Định lí trên vẫn còn đúng nếu ta thay $\mathbb{Q}$ bởi một trường $\mathbb{K}$ bất kì. Tức là, đa thức $f \in \mathbb{K}[x]$ với bậc bằng 2 hoặc 3 là bất khả qui nếu và chỉ nếu nó không có nghiệm trong $\mathbb{K}.$

Dưới đây là một số ví dụ

Ví dụ 3.1 (Định lí Schur): Cho các số nguyên phân biệt $a_1, a_2,…,a_n$. Khi đó đa thức

a) $f(x)=(x-a_1)(x-a_2)…(x-a_n)-1$ là bất khả qui trên $\mathbb{Q}[x]$.

b) $f(x)=(x-a_1)(x-a_2)…(x-a_n)+1$ là bất khả qui trên $\mathbb{Q}[x]$ ngoại trừ các trường hợp

  • $(x-a)(x-a-2)+1=(x-a-1)^2$,
  • $(x-a)(x-a-1)(x-a-2)(x-a-3)+1=[(x-a-1)(x-a-2)+1]^2.$
Giải

a) Giả sử $(x-a_1)(x-a_2)…(x-a_n)-1=g(x)h(x)$, với $1 \le deg \ f, \deg \ g \le n-1$ và $g, h \in \mathbb{Z}[x].$

Ta có $g(a_i)h(a_i)=-1$ với mọi $i$, từ đó do $g(a_i), h(a_i)$ là các số nguyên nên $ (g+h)(a_i)=0,$ với mọi $i=1,2,…,n.$

Nhưng vì $deg \ (g+h) \le n-1$ triệt tiêu tại $n$ giá trị phân biệt nên $g \equiv – h$.

Từ đó $$(x-a_1)(x-a_2)…(x-a_n)-1=-(g(x))^2.$$

Đẳng thức trên là vô lí vì hệ số cao nhất ở hai vế trái dấu.

b) Lập luận hoàn toàn như trên, giả sử $f(x)$ là khả qui, bằng một phép đổi biến đơn giản ta hoàn toàn có thể viết lại $f$ dưới dạng $$f(x)=x(x-a_1)(x-a_2)…(x-a_{n-1})+1=g(x).h(x),$$ trong đó $0<a_1<a_2<…<a_{n-1}$ và $1 \le g, h \in \mathbb{Z}, \deg(g), \deg(h) \le n-1$.

Từ đẳng thức $g(a_i)h(a_i)=1$ ta suy ra $g(a_i)=h(a_i)= \pm 1$ với mọi $i$ và đẳng thức này xảy ra tại $n$ giá trị phân biệt. Điều đó dẫn dến $g(x)=h(x)$ và ta có $f(x)=g^2(x)$.

Nói cách khác, $\deg(f)=n$ là một số chẵn. Khi đó $f(\dfrac{1}{2})=\dfrac{1}{2}(\dfrac{1}{2}-a_1)…(\dfrac{1}{2}-a_{n-1})+1=1-\dfrac{1}{2^n}(2a_1-1) \ldots (2a_{n-1}-1) \le 1-\dfrac{1}{2^n}1.3 \ldots (2n-3) <0$ với mọi $n \ge 6$ (vô lí). Như vậy $n=2$ hoặc $n=4$.

  • Nếu $n=2$ thì $f(\dfrac{1}{2})=1-\dfrac{1}{4}(2a_1-1) \Rightarrow a_1 \le \dfrac{5}{2}$ và do đó $a_1=1, 2$. Giá trị $a_1$ cho ta $f(x)=x(x-1)+1$ là bất khả qui và $a_1=2$ cho ta $f(x)=x(x-2)+1=(x-1)^2$ là khả qui.
  • Nếu $n=4$ thì $f(\dfrac{1}{2})=1-\dfrac{1}{16}(2a_1-1)(2a_2-1)(2a_3-1) \Rightarrow 0 \le \dfrac{1}{16}(2-1)(3-1)(2a_3-1) \Rightarrow a_3 \le \dfrac{19}{6}$. Xét trường hợp $a_1=1, a_2=2, a_3=3$ ta được $$f(x)=x(x-1)(x-2)(x-3)+1=(x^2-3x+1)^2$$ là khả qui.

Bài toán được chứng minh xong.

Ví dụ 3.2: Cho $a_1, a_2,…,a_n$ là các số nguyên dương phân biệt. Chứng minh rằng đa thức $$P(x)=(x-a_1)^2(x-a_2)^2…(x-a_n)^2+1$$ là bất khả qui trên $\mathbb{Z}.$

Giải

Giả sử $P(x)$ là khả qui, tức tồn tại hai đa thức $G(x), H(x) \in \mathbb{Z}[x]$ có bậc không bé hơn 1 sao cho $P(x)=G(x).H(x)$.

Ta có $P(a_i)=G(a_i).H(a_i)$ với $i=1,2,…,n$ nên $G(a_i)=H(a_i)= \pm 1.$ Ta xét các trường hợp

  • Nếu $deg \ G= \ deg \ H$ thì $deg(G-H) \le n-1 \Rightarrow G \equiv H.$ Từ đó $P(x)=(G(x))^2 \Leftrightarrow 1= \Big(G(x)-(x-a_1)…(x-a_n) \Big)\Big(G(x)+(x-a_1)…(x-a_n) \Big)$ , vô lí vì bậc vế phải luôn không nhỏ thua 1.
  • Nếu $degH<deg G$ thì $degH<n$ mà $H(a_i)= \pm1, i=1,2,…,n$ dẫn đến $H$ là đa thức hằng, vô lí.

Vậy $P(x)$ bất khả qui.

4. Rút gọn modulo $p$ nguyên tố

Kĩ thuật rút gọn modulo $p$ nguyên tố là một kĩ thuật tối quan trọng trong việc chứng minh một đa thức là bất khả qui trên $\mathbb{Z}$. Nó đưa các hệ số từ một trường vô hạn các phần tử về một trường hữu hạn các phần từ, từ đó các tính toán của ta có thể được đơn giản hơn.

Định nghĩa 4.1: Cho $P(x)= \sum \limits_{i=0}^n a_ix_i \in \mathbb{Z}[x], a_n \ne 0$ và $p$ là số nguyên tố. Giả sử $p$ không phải là ước của $gcd(a_1,a_2,…,a_n)$. Ta kí hiệu $\overline{P}$ là đa thức nhận được từ $P$ bằng cách rút gọn các hệ số theo modulo $p$ (lúc này $P(x) \in \mathbb{Z}_p[x]$). Khi đó ta gọi $\overline{P}$ là \textit{đa thức rút gọn theo modulo} $p$ của $P.$

Từ định nghĩa trên ta có sự kiện sau là hiển nhiên $$\overline{P+Q}=\overline{P}+\overline{Q}$$

$$\overline{PQ}=\overline{P}. \ \overline{Q}$$

Định nghĩa 4.2: Nếu đa thức rút gọn modulo $p$ của P bất khả qui thì ta nói đa thức $P$ bất khả qui $mod \ p.$

Định lí 4.1: Với mỗi $P(x) \in \mathbb{Z}[x]$, tồn tại các đa thức $P_1(x), P_2(x), …, P_k(x) \in \mathbb{Z}_p[x]$ sao cho $$\overline{P}(x)=P_1(x).P_2(x)…P_k(x),$$

sự phân tích này là duy nhất theo modulo $p$.

Định lí 4.2: Cho $P(x)= \sum \limits_{i=0}^n a_ix_i \in \mathbb{Z}[x], a_n \ne 0$ và $p$ không là ước của $a_n$. Khi đó, nếu $P(x)$ là bất khả qui $mod \ p$ thì $P(x)$ là bất khả qui. Điều ngược lại của định lí nói chung không đúng.

Chứng minh

Giả sử $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$ và $p$ không là ước của $a_n$.

Giả sử $P(x)=f(x).g(x)$ với $f, g \in \mathbb{Z}[x]$ với $deg \ f, g \ge 1$.

Khi đó $\overline{P}=\overline{f}. \overline{g}$. Do $p$ không là ước của $a_n$ nên bậc của các đa thức $P, f, g$ không thay đổi sau khi rút gọn theo modulo $p$.

Điều này chứng tỏ $\overline{P}$ khả qui theo modulo $p$, vô lí. Ta có điều phải chứng minh.

Ngược lại dễ thấy đa thức $P(x)=x^4+1$ bất khả qui trên $\mathbb{Z}[x]$ nhưng khả qui modulo $p$ với mọi số nguyên tố $p$.

Ví dụ 4.1: Chứng minh đa thức $P(x)=x^5+4x^4+2x^3+5x^2-7$ là bất khả qui.

Giải
  •  Rút gọn theo modulo 2 ta được $\overline{P}(x)=x^5+x^2+1.$
  •  Giả sử $\overline{P}(x)=f(x). g(x)$, với $f, g \in \mathbb{Z}_2$.
  •  Nếu $deg \ f=1$ hoặc $deg \ g=1$ dễ thấy là vô lí vì $\overline{P}$ không có nghiệm trong $\mathbb{Z}_2$.
  •  Suy ra $\overline{P}(x)=(x^2+ax+b)(x^3+cx^2+dx+e)$, với $a,b,c,d,e \in \mathbb{Z}_2$. Đồng nhất hệ số hai vế ta được điều vô lí. Từ đó suy ra điều phải chứng minh.

Ta có thể liệt kê ra các đa thức bất khả qui modulo 2 trong một số trường hợp bậc nhỏ như sau

  • Trường hợp $n=1$ gồm các đa thức: $x, x+1$.
  •  Trường hợp $n=2$ chỉ gồm một đa thức: $1+x+x^2$.
  •  Trường hợp $n=3$ gồm các đa thức: $1+x+x^3, 1+x^2+x^3$.
  •  Trường hợp $n=4$ gồm các đa thức: $1+x+x^4, 1+x+x^2+x^3+x^4$.
  •  Trường hợp $n=5$ gồm các đa thức:

$1+x+x^2+x^4+x^5$,

$1+x+x^3+x^4+x^5$,

$1+x^2+x^3+x^4+x^5$,

$1+x+x^2+x^3+x^5$,

$1+x^3+x^5, 1+x^2+x^5.$

5. Tiêu chuẩn Eisenstein và một số dạng mở rộng

Khi kiểm tra đa tính bất khả qui của một đa thức trên $\mathbb{Z}[x]$ tiêu chuẩn Eisenstein cung cấp cho ta một công cụ hiệu quả.

Định lí 5.1 (Tiêu chuẩn Eisenstein): Cho đa thức $P(x)= \sum \limits_{i=0}^na_ix^i \in \mathbb{Z}[x], a_n \ne 0$. Khi đó nếu tồn tại số nguyên tố $p$ thỏa đồng thời các điều kiện

  • $p$ không là ước của $a_n$;
  • $p$ là ước của $a_i$ với mọi $i\in \{1,2,…,n-1\}$;
  • $p^2$ không là ước của $a_0.$

Khi đó $P(x)$ là đa thức bất khả qui trên $\mathbb{Q}[x].$

Chứng minh

Có rất nhiều cách chứng minh cho tiêu chuẩn Eisenstein, ở đây ta sẽ trình bày chứng minh bằng cách rút gọn theo một modulo $p$ nguyên tố bất kì.

Giả sử $f$ khả qui, tức $f(x)=g(x).h(x)$, với $f, g \in \mathbb{Z}[x]$ và $deg \ f, g \ge 1.$ Rút gọn theo modulo $p$ nguyên tố ta được đẳng thức trong $\mathbb{Z}_p[x]$ dưới dạng $$\overline{f}=\overline{g}. \overline{h}.$$

Từ điều kiện $p$ là ước của $a_0, …, a_{n-1}$ nhưng không là ước của $a_n$ ta suy ra $\overline{f}=\overline{a_n}x^n.$

Từ đó suy ra $\overline{g}= \overline{b_k}x^k, \overline{h}=\overline{b_m}x^m$. Điều này có nghĩa là $\overline{b_0} \equiv…\equiv \overline{b_{k-1}} \equiv \overline{c_0} \equiv… \equiv \overline{c_{m-1}} \equiv 0 \ mod(p)$. Nhưng khi đó $a_0=b_0c_0 \equiv0 \ (mod \ p^2)$ (vô lí). Từ đó ta có điều phải chứng minh. $\square$

Ví dụ 5.1: Chứng minh đa thức $P(x)=x^4-x^2+2x+1$ bất khả qui trên $\mathbb{Z}$.

Giải

Đặt $Q(x)=P(x+1)=x^4+3x^3+3x^2+3x+3$. Khi đó theo tiêu chuẩn Eisenstein với $p=3$ ta có điều phải chứng minh.

Định lí 5.2 (Dạng mở rộng thứ nhất của tiêu chuẩn Eisenstein):

Cho $f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử tồn tại số nguyên tố $p$ thỏa mãn với một số tự nhiên $k \le n$ nào đó mà

  • p không là ước của $a_k$;
  • $p$ là ước của $a_0, …, a_{k-1}$;
  • $p^2$ không là ước của $a_0$.

Thế thì $f(x)$ có một nhân tử bất khả qui bậc $ \ge k$ ( và do đó nếu không bất khả qui sẽ có một nhân tử bậc $\le n-k$)

Chứng minh: Bạn đọc có thể tự chứng minh như trong trường hợp nguyên bản của định lí.

Ví dụ 5.2: Chứng minh đa thức $f(x)=x^{101}+101x^{100}+102$ là bất khả qui.

Giải

Áp dụng tiêu chuẩn Eisenstein mở rộng cho $p=2, k=100$ ta thấy, nếu $f$ là khả qui thì nó phải có một nhân tử bậc 1 và do đó $f$ phải có nghiệm hữu tỉ. Nói riêng vì hệ số bậc cao nhất bằng 1 nên nghiệm hữu tỉ này phải là nghiệm nguyên. Dễ thấy điều này là không xảy ra. bài toán được chứng minh xong.

 

Định lí 5.3 (Dạng mở rộng thứ hai của tiêu chuẩn Eisenstein):

Cho $f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử tồn tại số nguyên tố $p$ thỏa mãn với một số tự nhiên $k \le n$ nào đó mà

  • p không là ước của $a_n$;
  • $p$ là ước của $a_0, …, a_{n-1}$;
  • $p^2$ không là ước của $a_k$.

Thế thì, hoặc $f(x)$ là bất khả qui, hoặc $f$ có một nhân tử bất khả qui bậc $ \le k.$

Tương tự như trên, chứng minh được dành cho bạn đọc.

6. Các bài toán áp dụng

Bài tập 6.1 (IMO 1993): Cho số tự nhiên $n>1$. Chứng minh đa thức $f(x)=x^n+5x^{n-1}+3$ là bất khả qui trên $\mathbb{Z}[x]$.

Giải

Áp dụng dạng mở rộng thứ nhất của tiêu chuẩn Eisenstein với $p=3, k=n-1$ ta có điều phải chứng minh.

Bài tập 6.2 (China TST 1994): Cho số tự nhiên $n \ge 3$ và hai số nguyên tố $p, q$ phân biệt. Tìm tất cả các số nguyên $a$ sao cho đa thức $P(x)=x^n+ax^{n-1}+pq$ bất khả qui trên $\mathbb{Z}.$

Giải

Nếu $p|a$ hoặc $q|a$ thì theo tiêu chuẩn Eisenstein $P(x)$ là bất khả qui. Xét trường hợp $p,q$ đều không là ước của $a$. Giả sử $P$ khả qui, áp dụng dạng mở rộng thứ nhất của tiêu chuẩn Eisenstein ta suy ra $P(x)$ phải có nhân tử bậc 1 và do đó $P$ có một nghiệm nguyên $x_0$.

Từ đó suy ra $pq=-x_0^{n-1}(x_0+a)$. Vì $n \ge 3$ nên $pq \ \vdots \ x_0^2$ nhưng vì $p \ne q$ nên $x_0=\pm 1.$

Vì $1+a+pq=0$ và $(-1)^n+a(-1)^{n-1}+pq=0$ nên $a=-1-pq$ hoặc $a=1+(-1)^npq.$

Bài tập 6.3 (Rumani TST 1998): Chứng minh rằng đa thức $P(x)=(x^2+x)^{2^n}+1$ là bất khả qui với mọi số tự nhiên $n$.

Giải

Bằng qui nạp ta chỉ ra rút gọn modulo 2 thì đa thức đã cho trở thành $(x^2+x+1)^{2^n}$. Chú ý rằng đa thức $x^2+x+1$ là bất khả qui modulo 2.

Giả sử $P(x)$ khả qui, tức tồn tại hai đa thức $f,h$ đơn khởi với $f, g \in \mathbb{Z}[x], deg \ f,g \ge 1$ sao cho $P(x)=f(x).g(x)$. Khi đó $\overline{f}=(x^2+x+1)^k, \overline{g}=(x^2+x+1)^{2^n-k}$ và $$f(x)=(x^2+x+1)^k+2f_0(x), g(x)=(x^2+x+1)^{2^n-k}+2g_0(x),$$

với $f_0, g_0 \in \mathbb{Z}[x]$.

Gọi $j$ là một căn bậc 3 khác 1 của đơn vị. Thay $j$ vào đẳng thức $P(x)=f(x).h(x)$ ta được $$P(j)=g(j).h(j) \Leftrightarrow 2=4f_0(j)g_0(j).$$

Từ đó suy ra $f_0(j).g_0(j)=\dfrac{1}{2}$.

Do $f_0(j)g_0(j)$ luôn viết được dưới dạng $aj+b; a, b \in \mathbb{Z}$ và đẳng thức này không thể xảy ra. Ta có điều phải chứng minh.

Một số bài toán tương tự như sau:

Bài 1: Với $n \ge 1$ là số tự nhiên, chứng minh các đa thức sau là bất khả qui trên $\mathbb{Z}$

a) $P(x)=(x^3+x)^{2^n}-3$

b) $P(x)=(x^2+ax)^{2^n}+1$ với $ a \in \mathbb{Z}$

Bài 2: Cho $p$ là một số nguyên tố có dạng $4k+3$. Chứng minh rằng với mọi số nguyên dương $n$ đa thức $P(x)=(x^2+1)^n+p$ bất khả qui trên $\mathbb{Z}[x]$.

Bài 3: Cho $p$ là một số nguyên tố và $a$ là một số nguyên không chia hết cho $p$. Chứng minh đa thức $P(x)=x^p-x+a$ bất khả qui trên $\mathbb{Z}[x].$

Bài tập 6.4 (Japan 99): Chứng minh rằng đa thức $f(x)=(x^2+1^2)(x^2+2^2)…(x^2+n^2)+1$ là bất khả qui trên $\mathbb{Z}$

Giải

Giả sử $n \ge 2$ vì trường hợp $n=1$ là tầm thường và giả sử $f(x)=g(x).h(x)$ với $ f, g \in \mathbb{Z}[x]$ và $1 \le deg \ f, g \le n-1$. Khi đó $$1=f(\pm ki)=g(\pm ki) h(\pm ki).$$

Vì $f, g \in \mathbb{Z}[x]$ nên $g(\pm ki), h(\pm ki)$ có dạng $a + bi$ . Từ đó suy ra $$1=g(ki)h(ki)=1.1=(-1).(-1)=i.(-i)=(-i).i$$

Như vậy trong tất cả $4$ trường hợp ta đều có $g(ki)=\overline{h(ki)}=h(-ki),$ với $k=1,2,…,n$. Như vậy đa thức $P(x)=g(x)-h(-x)$ có $2n$ nghiệm phân biệt nhưng có bậc nhỏ hơn $2n$ nên là đa thức 0 và do đó $g(x)=h(-x)$. Suy ra $\deg(g)=\deg(h)=n $.

Vì $f$ đơn khởi nên $g,h$ cũng đơn khởi. Khi đó $g^2-h^2$ có bậc không quá $2n-1$ nhưng lại có ít nhất $2n$ nghiệm $ki$, với $i \in \{-n, -n-1,…,-1,1,…,n\}$ nên $g^2=h^2$.

Nhưng dễ thấy $g=-h$ không xảy ra do đó $g\equiv h$. Khi đó $$f(x)=g(x)^2 \Rightarrow f(0)=(g(0))^2=(n!)^2+1,$$ vô lí. Bài toán được chứng minh xong.

Ta có bài toán tổng quát hơn là: Cho $p$ là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên $n$ đa thức $$P(x)=(x^p+1^2)(x^p+2^2)…(x^p+n^2)+1$$ bất khả qui trên $\mathbb{Z}[x].$

Bài tập 6.5: Cho $m, n, a$ là các số nguyên dương và số nguyên tố $p$ thỏa mãn $p<a-1$. Chứng minh rằng đa thức $P(x)=x^m(x-a)^n+p$ bất khả qui trên $\mathbb{Z}$.

Giải

Giả sử $P(x)$ khả qui và $P(x)=G(x).H(x)$, với $G, H \in \mathbb{Z}[x]$. Vì $P(0)=p$ nên $|G(0)|=1$ hoặc $|H(0)|=1$. Không mất tổng quát ta giả sử $G(x)=x^k+a_{k-1}x^{k-1}+…+a_0$ và $|G(0)|=1, m+n-1 \ge k \ge 1.

Gọi $x_1,…,x_k$ là nghiệm của $G(x)$. Ta viết $G(x)$ dưới dạng $G(x)=(x-x_1)…(x-x_k)$, dẫn đến $|x_1…x_k|=1$ và $P(x_i)=0 \Leftrightarrow x_i^m(x_i-a)^n=-p$.

Cho $i=\overline{1,k}$ và nhân các vế của đẳng thức lại ta được $$ |G(x)|^n=p^k \ \text{nên} \ |G(a)|^n=p^k.$$

Mặt khác $P(a)=G(a).H(a)=p$ nên ta suy ra $|G(a)|=p$. Do đó $|G(a)-G(0)|=p \pm 1$ chia hết cho $a$.

Vì thế nên $p-1 \ge a$ hoặc $p+1 \ge a$ (mâu thuẫn với giả thiết $p<a-1$).

Vậy $P(x)$ là bất khả qui.

Bài tập 6.6 (Rumani 1999): Cho số nguyên $a$ và số nguyên dương $n$ và $p$ là một số nguyên tố thoả $p>|a|+1$. Chứng minh rằng đa thức $P(x)=x^n+ax+p$ bất khả qui trên $\mathbb{Z}[x]$.

Giải

Giả sử $P(x)=g(x).h(x)$, với $g, h \in \mathbb{Z}[x]$ và $1 \le deg f, deg g \le n-1$. Vì $P(0)=p=g(0).h(0)$ nên không mất tổng quát giả sử $g(0)=\pm 1, h(0)= \pm p.$

Khi đó $g(x)=\pm x^m+T(x)\pm 1, T \in \mathbb{Z}[x], deg T \le m-1.$

Gọi $z_1, z_2,\ldots,z_m$ là nghiệm của $g(x)$. Theo định lí Viet $1=|g(0)|=|z_1z_2…z_m|$ nên $|z_i| \le 1, i=1,2,…,m.$

Lại có $0=f(z_i)=z_i^n+az_i+p$ nên $$p=-z_i^n+az_i \le |z_i|^n+|a|.|z_i| \le 1+|a|,$$

vô lí. Vậy ta có điều phải chứng minh.

Bài tập 6.7: Cho $p, q$ là hai số nguyên tố lẻ sao cho $q$ không là ước của $p-1$ và gọi $a_1, a_2,…,a_n$ là các số nguyên phân biệt sao cho $q|(a_i-a_j)$ với mọi cặp $(i,j)$. Chứng minh rằng $$P(x)=(x-a_1)(x-a_2)…(x-a_n)-p$$ là bất khả qui trên $\mathbb{Z}[x]$ với mọi $n \ge 2.$

Giải

Giả sử $f$ khả qui trên $\mathbb{Z}[x]$. Khi đó tồn tại $Q(x), R(x) \in \mathbb{Z}[x]$ sao cho $Q(x)R(x)=P(x)$ và $1 \le deg Q(x), \le deg R(x).$ Nói riêng $degQ(x) \le \dfrac{n}{2}$.

Ta có $Q(a_i)=R(a_i)=-p,$ với $1 \le i \le n$ từ đó suy ra $Q(a_i), R(a_i) \in \{-1,1,-p,p \}$ với mọi $1 \le i \le n$. Với mọi hằng số $c$ đa thức $Q(x)-c$ nhận nhiều nhất $degQ(x) \le \dfrac{n}{2}$ nghiệm. Do đó $Q(a_i)$ nhận ít nhất hai giá trị phân biệt (và ít nhất $3$ giá trị phân biệt nếu $degQ(x)< \dfrac{n}{2}$).

Vì $q|(a_i-a_j)$ nên $q|(Q(a_i)-Q(a_j)$. Để ý rằng $q$ là số nguyên tố lẻ nên $Q(a_i)$ không thể nhận hai giá trị $1$ và $-1$ (vì nếu ngược lại thì $q|1-(-1)=2$). Tương tự $Q$ cũng không thể nhận hai giá trị là $p -p$ vì khi đó $R(a_i)$ nhận hai giá trị là $1,-1$.

Từ giả thiết $q$ không là ước của $p-1$ suy ra $Q(a_i)$ không thể nhận hai giá trị $1$ và $p$ hoặc $-1$ và $-p$. Do đó $Q(a_i)$ chỉ có thể nhận được nhiều nhất hai giá trị là $1$ và $-p$ hoặc $-1$ và $p$. Giả sử trường hợp đầu tiên xảy ra.

Vì $Q(a_i)$ chỉ nhận hai giá trị nên $degQ(a_i)=\dfrac{n}{2}$ và $Q$ nhận mỗi giá trị $1$ và $-p$ đúng $\dfrac{n}{2}$ lần. Chia tập $(a_i)_{i=1}^n$ thành hai tập $(b_i)_{i=1}^n$ và $(c_i)_{i=1}^n$ sao cho $Q(b_i)=1$ và $Q(c_i)=-p$. Khi đó $$Q(x)=(x-b_1)(x-b_2)…(x-b_{\frac{n}{2}})+1=(x-c_1)(x-c_2)…(x-c_{\frac{n}{2}})-p.$$

Vì ta cũng có $degR(x)=\dfrac{n}{2}$ nên $R(a_i)=-p$ khi $Q(a_i)=1$. Do đó $$R(x)=(x-b_1)(x-b_2)…(x-b_{\frac{n}{2}})-p=(x-c_1)(x-c_2)…(x-c_{\frac{n}{2}})+1.$$

Nhưng khi đó để ý rằng trong đẳng thức thứ nhất cho ta $Q(x)-R(x)=1+p$ còn đẳng thức thứ 2 cho ta $Q(x)-R(x)=-p-1$ điều đó dẫn đến $p=-1$. Vô lí. Bài toán được chứng minh xong.

Bài tập 6.8: Tìm tất cả các cặp số nguyên dương $(m,n)$ sao cho đa thức $$P(x,y)=(x+y)^2(mxy+n)+1$$ khả qui trên $\mathbb{Z}[x,y]$. Khi đó hãy phân tích $f$ thành các nhân tử bất khả qui.

Giải

Đặt $S=x+y$ ta viết lại $f$ dưới dạng $$f(x,S)=S^2(mx(S-x)+n)+1=-mS^2x^2+mS^3x+(nS^2+1).$$

Ta xem $f$ là một tam thức bậc 2 theo biến $x$. Khi đó $f$ khả qui khi và chỉ khi $f$ phân tích được thành tích của hai đa thức bậc nhất. Khi đó biệt thức $$\Delta =m^2S^6+4mS^2(nS^2+1)=mS^2(mS^4+4nS^2+4)$$ là một bình phương.

Dễ thấy điều này xảy ra khi và chỉ khi $m=n^2$, lúc này $$\Delta= (nS(nS^2+2))^2$$ và $f$ có hai nghiệm là $x=\dfrac{-1}{nS}$ hoặc $x=\dfrac{nS^2+1}{nS}$.

Khi đó $$f(x)=(nSx+1)(-nSx+nS^2+1)=(nx^2+nxy+1)(ny^2+nxy+1).$$

 

7. Bài tập tự luyện

Bài 1: Với $n \ge 2$ là một số nguyên và $r=\sqrt[n]{2}$. Chứng minh rằng không tồn tại các số hữu tỷ $a_0, a_1,…,a_{n-1}$ không đồng thời bằng $0$ sao cho $$ a_0+a_1r+a_2r^2+…+a_{n-1}r^{n-1}=0 $$

Bài 2: Tìm số nguyên dương $n$ nhỏ nhất sao cho đa thức $P(x)=x^{n-4}+4n$ có thể phân tích được thành tích của 4 đa thức hệ số nguyên và không là đa thức hằng.

Bài 3: Cho $P(x), Q(x)$ là hai đa thức đơn khởi, bất khả quy trên trường số hữu tỷ. Giả sử $P, Q$ có hai nghiệm tương ứng là $\alpha, \beta$ sao cho $\alpha +\beta$ là số hữu tỷ. Chứng minh $P^2(x)-Q^2(x)$ có nghiệm hữu tỷ.

Bài 4: Chứng minh đa thức $P(x)=(1+x+x^2+…+x^n)^2-x^n$ khả qui trên $\mathbb{Z}[x].$

Bài 5: Chứng minh rằng đa thức $P(x)=x^n+4$ khả qui trên $\mathbb{Z}$ khi và chỉ khi $n$ là bội của $4.$

Bài 6 (IMO Longlist 1989): Cho $n \ge 4$ và các số nguyên phân biệt $a_1,a_2,…,a_n$. Chứng minh đa thức $$P(x)=(x-a_1)(x-a_2)…(x-a_n)-2$$ bất khả qui trên $\mathbb{Q}[x].$

Bài 7 (VMO 2014): Cho $n$ là số nguyên dương. Chứng minh rằng đa thức $P(x)=(x^2-7x+6)^n+13$ không thể biểu diễn được thành tích của $n+1$ đa thức khác hằng với hệ số nguyên.

Bài 8: Chứng minh rằng đa thức $x^n-x-1$ bất khả qui trên $\mathbb{Q}[x]$, với mọi $n \ge 2.$

Bài 9: Cho $n>m>1$ là hai số nguyên lẻ. Chứng minh đa thức $P(x)=x^n+x^m+x+1$ bất khả qui trên $\mathbb{Z}[x]$.

Bài 10: Cho $p$ là số nguyên tố. Chứng minh rằng đa thức $$P(x)=x^{p-1}+2x^{p-2}+…+(p-1)x+p$$ bất khả qui trên $\mathbb{Z}$.

Bài 11: Cho đa thức $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x], (a_n \ne 0, n \ge 2)$. Chứng minh rằng tồn tại vô số số nguyên tố $k$ sao cho đa thức $P(x)+k$ bất khả qui.

Bài 12: Tìm tất cả các số nguyên $n$ sao cho đa thức $P(x)=x^5-nx-n-2$ là khả qui trên $\mathbb{Z}[x]$.

Bài 13: Cho $p$ là một số nguyên tố và $n$ là một số nguyên nhỏ hơn 4. Chứng minh rằng nếu $a$ là một số nguyên không chia hết cho $p$ thì đa thức $P(x)=ax^n-px^2+px+p^2$ bất khả qui trên $\mathbb{Z}[x].$

Bài 14: Cho $p$ là số nguyên tố. Chứng minh rằng đa thức $P(x)=x^p+(p-1)!$ bất khả qui trên $\mathbb{Z}[x]$.

Bài 15: Tồn tại hay không đa thức $f \in \mathbb{Q}[x]$ sao cho $f(1) \ne -1$ và $x^nf(x)+1$ là khả qui với mọi $n \in \mathbb{N}$.

Bài 16: Cho $a$ là một số nguyên dương và $p \ge 2 $ là một số nguyên tố thỏa mãn $(a,p)=1$. Chứng minh rằng đa thức $P(x)=x^p-mx+a$ bất khả qui trên $\mathbb{Z}[x]$ với $m \equiv \ 1 \ (mod \ p)$.

Bài 17: Cho $p$ là một số nguyên tố lẻ. Chứng minh đa thức $P(x)= \sum \limits_{i=0}^{p-2}(p-1-i)x^i$ bất khả qui trên $\mathbb{Q}[x].$

Bài 18 (Rumani TST 2003): Cho $P(x) \in \mathbb{Z}[x]$ là một đa thức monic bất khả qui trên $\mathbb{Z}[x]$ sao cho $P(0)$ không là số chính phương. Chứng minh rằng $Q(x)=P(x^2)$ cũng bất khả qui trên $\mathbb{Z}[x].$

Bài 19 (China TST 2006): Cho số nguyên $n \ge 2$. Chứng minh rằng tồn tại đa thức $P(x)=x^n+a_{n-1}x^{n-1}+…+a_1x+a_0$ thỏa mãn

a) $a_0, a_1,…,a_{n-1}$ khác 0.

b) $P(x)$ bất khả qui.

c) Với mọi số nguyên $x$ thì $|P(x)|$ không là số nguyên tố.

Bài 20: Biết $f \in \mathbb{Z}[x]$ là một đa thức bất khả qui có bậc lẻ và lớn hơn 3. Giả sử rằng các nghiệm của $P$ đều có modun lớn hơn 1 và $f(0)$ không có ước chính phương. Chứng minh rằng đa thức $g(x)=f(x^3)$ cũng là đa thức bất khả qui.

Bài 21: Cho $f \in \mathbb{Z}[x]$ là một đa thức monic với bậc lớn hơn 1. Giả sử $f(x^n)$ bất khả qui trên $\mathbb{Z}[x]$ với mọi $n \ge 2$. Hỏi $f$ có bất khả qui trên $\mathbb{Z}[x]$ hay không?

Bài 22: Cho $1 \ne f \in \mathbb{Z}[x]$ sao cho có vô hạn số nguyên $a$ thỏa $f(x^2+ax)$ bất khả qui trên $\mathbb{Q}[x]$. Hỏi $f$ có bất khả qui trên $\mathbb{Q}[x]$ hay không?

Bài 23: Cho $f(x) \ne \pm x$ là một đa thức bất khả qui trên $\mathbb{Z}[x]$. Hỏi $f(x.y)$ có bất khả qui trên $\mathbb{Z}[x,y]$ hay không?

Tài liệu tham khảo

[1] Nguyễn Tiến Quang, NXB Giáo dục, Đại số đại cương

[2] Đoàn Duy Cường, 2015, Bài giảng bồi dưỡng giáo viên chuyên toán năm

[3] Nguyễn Chu Gia Vượng,2015,  Đa thức bất khả qui

[4] Exploration-Creativity 2012,  Irreducible polynomials

[5] Yufei Zhao, Integer polynomial 

[6] Dusan Djukic, Polynomials in one variable 

[7] Gabriel D.Carroll, Polynomials 

[8] Victor V.Prasolov, Polynomials

[9] Titu Andresscu, Gabriel Dospinescu, Problems from the book

[10] U298, Mathematical Reflections

[11] https://artofproblemsolving.com/community/c89 

Phương pháp ánh xạ trong các bài toán tổ hợp

Bài viết dựa vào bài giảng của NCS. Vương Trung Dũng (trường PTNK-ĐHQG) trong lớp chuyên đề 10 toán tại Star Education.

 

Ánh xạ là một khái niệm khó và quan trọng trong toán học, có vai trò trong hầu hết các lĩnh vực toán học. Trong bài giảng này ta xét ứng dụng của ánh xạ trong các bài toán tổ hợp.

Ánh xạ và một số tính chất

Định nghĩa. Cho hai tập hợp $X$ và $Y$ khác rỗng. Một ánh xạ $f$ từ tập $X$ đến tập $Y$ là một quy tắc đặt tương ứng mỗi phần tử $x$ của $X$ với một và chỉ một phần tử $y$ của $Y$, kí hiệu là $y = f(x)$.

Kí hiệu $f: X \longrightarrow Y$.

$f(x) = y$.

Các khái niệm: Cho ánh xạ $f: X \longrightarrow Y$.

  • $y = f(x)$ được gọi là ảnh của $x$.
  • $f(X) = \{f(x)|x \in X\}$ tập ảnh của $f$.
  • $y \in Y$ thì $f^-1(y) = \{x\in X|f(x) = y\}$ được gọi là tạo ảnh của $y$.

Đơn ánh, toàn ánh, song ánh

  1. Ánh xạ $f: X \longrightarrow Y$ được gọi là đơn ánh nếu với $a,b \in X$ mà $a \ne b$ thì $f(a) \ne f(b)$. Nói một cách khác ánh xạ $f$ là một đơn ánh nếu và chỉ nếu với $a, b \in X$ mà $f(a)=f(b)$ thì suy ra $a=b.$
  2. Ánh xạ $f:X \longrightarrow Y$ được gọi là toàn ánh nếu với mỗi phần tử $y \in Y$ đều tồn tại một phần tử $x \in X$ sao cho $f(x)=y$. Như vậy $f$ là toàn ánh nếu và chỉ nếu $f(X)=Y$.
  3. Ánh xạ $f: X \longrightarrow Y$ được gọi là song ánh giữa $X$ và $Y$ nếu và chỉ nếu nó vừa là đơn ánh và vừa là toàn ánh. Như vậy $f$ là song ánh nếu với mỗi $y \in Y$ tồn tại duy nhất một phần tử $x \in X$ sao cho $y=f(x).$

Ánh xạ và tập hợp

Cho $A = { 1, 2,\cdots, n }$. $X$ là tập khác rỗng. Nếu có một song ánh từ tập $X$ đến $A$ thì ta nói $X$ có $n$ phần tử và kí hiệu $|X| = n$.

Nếu không tồn tại song ánh thì ta nói $X$ có vô hạn phần tử.

  • Nếu tồn tại một song ánh từ $X$ vào tập các số tự nhiên, ta nói $X$ có lực lượng đếm được, ngược lại thì ta nó $X$ có lực lượng không đếm được.
  • Các tập số tự nhiên, số nguyên và hữu tỷ là các tập có lực lượng đếm được.

Định lý Cho $A$ và $B$ là hai tập hợp hữu hạn.

  • Nếu có một đơn ánh $f: X \longrightarrow Y$ thì $|X| \le |Y|.$
  • Nếu có một toàn ánh $f: X \longrightarrow Y$ thì $|X| \ge |Y|.$
  • Nếu có một song ánh $f: X \longrightarrow Y$ thì $|X| = |Y|.$

Ánh xạ và các bài toán đếm, đẳng thức tổ hợp.

Ví dụ 1. Cho tập $X_n = {1, 2, \cdots, n}$, gọi $P(X_n)$ là tập các tập con của $X_n$, và $S_n$ là tập các dãy nhị phân có độ dài $n$. Tìm một song ánh từ $P(X_n)$ vào $S_n$, suy ra số tập con của $X_n$.

Gợi ý

Định nghĩa một ánh xạ $f: P(X_n) \longrightarrow S_n$ như sau:
Với mỗi $S \in P(X_n)$ (tức là $S \subset X_n$) ta đặt $$ f(S)=y_1y_2 \dots y_n$$
trong đó
$$y_i=\begin{cases}
1, y_i \in S&\\
0, y_i \notin S.&
\end{cases}
$$
Ví dụ , nếu $X=\{1; 2; 3; 4; 5\}, S_1=\{4\}, S_2=\{2; 3; 5\}$ thì $f(S_1)=00010, f(S_2)=01101, f(\emptyset)=00000, f(X)=11111$ .
Dễ dàng kiểm tra đây là một song ánh từ $P(X)$ vào $Y$.
Do đó theo nguyên lý song ánh ta có $|P(X)|=|Y|=2^n$.

Ví dụ 2. Hãy tính trung bình cộng của tất cả các số N gồm 2014 chữ số thỏa mãn N chia hết cho 9 và các chữ số của N được lập từ $X={1,2,…,8}$

Gợi ý

Gọi M là tập các số thỏa yêu cầu đề bài.

Ta xây dựng một ánh xạ đi từ M đến M như sau: Với mỗi $N=\overline{a_1a_2…a_{2014}} \in M$ dặt $f(N)=\overline{b_1,b_2,…,b_{2014}}$ với $b_i=9-a_i$ với mọi $i=1,2,…,2014$. Vì $N+f(N)=99…9$ (2014 số 9) chia hết cho 9 và N chia hết cho 9 nên suy ra $f(N)$ cũng chia hết cho 9. Do đó $f$ là một ánh xạ đi từ M vào M. Hơn nữa dễ thấy $f$ là một song ánh. Từ đó suy ra $$ 2\sum_{N \in M}N=\sum_{N \in M}(N+f(N))=|M|.99…9 .$$ Vậy trung bình cộng của các số trong M là $99…9:2.$

Ví dụ 3. Cho tập S gồm tất cả các số nguyên dương trong đoạn $[1,2,…,2002]$. Gọi T là tập hợp tất cả các tập con khác rỗng của S. Với mỗi X thuộc T ký hiệu m(X) là trung bình cộng các phần tử thuộc X. Tính $$ m=\frac{\sum_{X \in T}m(X)}{|T|}. $$

Gợi ý

Xây dựng song ánh $f: T \longrightarrow T$ như sau: với mọi $X \in T $ đặt tương ứng $f(X)=\{2003-x: x \in X\}$.\\
Khi đó $m(X)+m(f(X))=2003$. Do đó $$2 \sum m(X)=\sum (m(X)+m( f(X)))=|T|.2003 \Rightarrow m=\dfrac{\sum m(X)}{|T|}=\dfrac{2003}{2}$$

Ví dụ 4.  Cho $X={1,2,…,n}$. Có bao nhiêu tập con $k$ phần tử của X sao cho trong mỗi tập con không chứa 2 số nguyên liên tiếp.

Gợi ý

Gọi A là tập tất cả các tập con $k $ phần tử của X mà trong mỗi tập không chứa 2 số nguyên liên tiếp và B là tập tất cả các tập con của tập $Y=\{1,2,…, n-(k-1) \}$. Ta xây dựng song ánh từ A đến B như sau: Lấy $S=\{s_1,s_2,…,s_k \} \in A$ (không mất tổng quát có thể giả sử $s_1<s_2<…<s_k$) đặt tương ứng với $f(S)=\{s_1, s_2-1, s_3-2,…, s_k-(k-1) \}$. Dễ chứng minh đây là một song ánh. Từ đó có $C^k_{n-k+1}$ tập thoả yêu cầu đề bài.

Bài tập rèn luyện 

Bài 1. Cho $X={ 1,2,..,n}$. Một tập con $S={s_1,s_2,…,s_k }$ của X ($s_1<s_2<…<s_k$) được gọi là \textit{m- tách được} $(m \in \mathbb{N})$ nếu $s_i-s_{i-1} \ge m; i=1,2,…,k$. Có bao nhiêu tập con m- tách được gồm $k$ phần tử của X, trong đó $0 \le k \le n-(m-1)(k-1)$.

Bài 2. Cho $X={1,2,…,n}$, với mỗi tập con khác rỗng $A_i={a_1,a_2,…,a_i }$ (không mất tổng quát giả sử $a_1>a_2>…>a_i$) ta định nghĩa \textit{tổng hỗn tạp} của $A_i$ là số $m(A_i)=a_1-a_2+a_3-… \pm a_i$. Tính $\sum \limits_{A_i \subset X} m(A_i)$.

Bài 3. Cho số nguyên dương $n$ và $d$ là một ước dương của $n$. Gọi S là tập tất cả những bộ $(x_1,x_2,…,x_n)$ nguyên dương thỏa $0 \le x_1 \le x_2 \le… \le x_n \le n$ và $d| x_1+x_2+…+x_n$. Chứng minh rằng có đúng một nửa các phần tử của S có tính chất $x_n=n$.

Bài 4. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 5. Cho các số tự nhiên $k, n, m$ thỏa điều kiện $1<k \le n, m>1$. Hỏi có bao nhiêu chỉnh hợp chập $k: (a_1,a_2,…,a_k)$ của $n$ số tự nhiên đầu tiên mà mỗi chỉnh hợp đều thỏa mãn ít nhất một trong hai điều kiện sau:

i) Tồn tại $i, j \in {1,2,…,k}$ sao cho $i < j$ và $a_i>a_j$.

ii) Tồn tại $i \in {1,2,…,k}$ sao cho $a_i-i$ không chia hết cho $m$.

Bài 6. Cho các số nguyên dương $n, k, p$ với $k \ge 2$ và $k(p+1) \le n.$ Cho $n$ điểm phân biệt cùng nằm trên một đường tròn. Tô tất cả $n$ điểm đó bởi hai màu xanh, đỏ (mỗi điểm được tô bởi một màu) sao cho có đúng $k$ điểm được tô bởi màu xanh và trên mỗi cung tròn mà hai đầu mút là hai điểm màu xanh liên tiếp (tính theo chiều quay kim đồng hồ) đều có ít nhất $p$ điểm được tô màu đỏ. Hỏi có tất cả bao nhiêu cách tô khác nhau?

Bài 7. Gọi $a_n$ là số các xâu nhị phân độ dài $n$ không chứa ba bit 0, 1, 0 liên tiếp. Gọi $b_n$ là số các xâu nhị phân độ dài $n$ chứa bốn bit 0, 0, 1, 1 hoặc 1, 1, 0, 0 liên tiếp. Chứng minh rằng $b_{n+1}=2a_n$ với mọi số nguyên dương $n$.

Bài 8. Trong một hội nghị có $n$ nhà toán học. Biết rằng nếu hai nhà toán học nào đó quen nhau thì họ không quen chung thêm một người nào nữa, còn nếu hai nhà toán học này không quen nhau thì họ quen chung với đúng hai nhà toán học khác nữa. Chứng minh rằng $8n-7$ là số chính phương.

Bài 9. Trong một trại hè toán học có 40 học sinh. Biết rằng cứ 19 học sinh bất kỳ thì đều viết thư hỏi bài một học sinh khác (Nếu học sinh A viết thư hỏi bài học sinh B thì không nhất thiết học sinh B phải viết thư hỏi bài học sinh A và dĩ nhiên A cũng không viết thư hỏi chính mình). Chứng minh rằng trong trại hè này tồn tại một tập $T_0$ gồm 20 học sinh sao cho với mỗi $P \in T_0$ thì 19 người còn lại không đồng thời viết thư hỏi bài P.

Bài 10. Gọi M là số số nguyên dương trong hệ thập phân có $2n$ chữ số trong đó có $n$ chữ số 1 và $n$ chữ số 2. Gọi N là số số nguyên dương có $n$ chữ số trong hệ thập phân trong đó chỉ có các chữ số 1, 2, 3, 4 và số chữ số 1 bằng số chữ số 2. Chứng minh $|M|=|N|.$

(Hết phần 1)

Một số bài toán số học ôn thi vào 10 – P1

Bài 1. Tìm tất cả các số nguyên tố $p$ sao cho tổng các ước dương của $p^4$ là một số chính phương.

Lời giải

  • Theo đề ta có phương trình $1+p+p^2+p^3+p^4 = x^2$.
  • Ta có $(2p^2+p)^2< 4x^2 < (2p^2+p+2)$.
  • Do đó $4x^2 = (2p^2+p+1) = 4p^2+4p^3+4p^2+4p+4$
  • $p^2 -2p – 3 = 0 \Leftrightarrow p=3$.

Bài 2.  Cho $m,n$ là các số nguyên dương thỏa $m+m+1$ là một ước nguyên tố của $2(m^2+n^2)-1$. Chứng minh rằng $m.n$ là một số chính phương.

Lời giải

Ta có $2m^2+2n^2 -1 = (m+n)^2+(m-n)^2 -1 = (m+n-1)(m+n+1) + (m-n)^2$ chia hết cho $m+n-1$,

suy ra $(m-n)^2$ chia hết cho $m+n+1$.

Mà $m+n+1$ nguyên tố, suy ra $(|m-n|,m+n+1) = 1$, do đó $m=n$, suy ra $mn = m^2$ là số chính phương.

Bài 3.  Chứng minh rằng nếu tích của hai số nguyên tố cùng nhau là một số chính phương thì mỗi số cũng là số chính phương.

Lời giải

Cho $ab = x^2$, trong đó $(a,b)=1$.\
Đặt $d = (a,x), a=a’d, x=x’d$ ta có $a’b = x’^2d$. \
Do $(a’,x’^2)=1$ nên $b$ chia hết cho $x’^2$. \
Mặt khác do $(a,b) = 1$ nên $(b,d) = 1$, suy ra $x’^2$ chia hết cho $b$.\
Do đó $b=x’^2$, $a’=d$. Từ đó ta có $a=a’^2, b= x’^2$ là các số chính phương.\
\textbf{Nhận xét} Tương tự nếu $(a,b) = 1$ và $ab = x^k$ thì $a, b$ là lũy thừa bậc $k$ của một số nguyên.\
Đây là một bổ đề rất hay sử dụng.

Bài 4. Cho các số nguyên dương $a, b$ thỏa $2{a^2} + a = 3{b^2} + b$.
a) Tìm $a, b$ biết $a$ và $b$ là hai số nguyên tố cùng nhau.
b) Chứng minh $a-b$ và $2a + 2b + 1$ là các số chính phương.

Lời giải

a) $a(2a+1) = b(3b+1)$. Ta có $3b +1$ chia hết cho $a$ và $2a+1$ chia hết cho $b$.
Đặt $2a + 1 = kb$, suy ra $3b+1 = ka$. Suy ra $6ab + 2a+3b+1 = k^2ab$, suy ra $k = 1, 2$.
Nếu $k = 1$ ta có $2a+1 = b, 3b+1 = a$ (Vô nghiệm).
Nếu $k = 2$ ta có $2a+1 = 2b, 3b+1 = 2a$. (Vô nghiệm).
Phương trình vô nghiệm.
b) Ta có $(a-b)(2a+2b+1) = b^2$.
Giả sử $p$ là ước nguyên tố của $a-b, 2a+2b+1$, suy ra $p|b^2 \Rightarrow p|b$, suy ra $p|a$, suy ra $p|1$ (vô lý).\
Do đó $(a-b,2a+2b+1) = 1$.
Từ đó ta có $a-b, 2a+2b+1$ là các số chính phương.

Bài 5. Tìm tất cả số tự nhiên $a$ để tồn tại các số nguyên tố $p, q, r$ thỏa $$a=\dfrac{p+q}{r}+
\dfrac{q+r}{p}+ \dfrac{p+r}{q}$$.

Lời giải

  •  Nếu trong 3 số có đúng 2 số bằng nhau, giả sử $p = q \neq r$. Khi đó ta có $a = 2(\dfrac{p}{r}+\dfrac{r}{p}) + 2$. Suy ra $\dfrac{2(p^2+r^2)}{pr} = a-2$.

Suy ra $pr|2(p^2+r^2)$, mà $(p,r) = 1$, suy ra $p|2$, suy ra $p=2$. Vô lý.

  • Nếu 3 số đều khác nhau. Ta có $apqr = pq(p+q) + qr(q+r) + pr(p+r)$. Suy ra $p|qr(q+r)$, suy ra $p|p+q+r$.
    Tương tự ta có $q|p+q+r, r|p+q+r$. Suy ra $pqr|p+q+r$.
    Ta có $pqr > 4r$, suy ra $3pqr > 4(p+q+r) > 4pqr$. Vô lý.
  • 3 số bằng nhau, thì $a = 6$.

Bài tập

Bài 1. Cho $m,n$ và $d$ là các số nguyên dương. Chứng minh rằng nếu $mn^2 + 1$ và $m^2n+1$ cùng chia hết cho $d$ thì $m^3+1$ và $n^3+1$ cũng chia hết cho $d$.

Bài 2. Cho $n \geq 3$ là số tự nhiên sao cho $3n+1$ là số chính phương. Chứng minh rằng có thể tìm được các số nguyên dương $a,b, c$ sao cho $$x = \sqrt{1+\dfrac{3n+3}{a^2+b^2+c^2}} $$
là một số nguyên.

Bài 3. Tìm tất cả các số nguyên $n$ sao cho $n = q(q^2-q-1) = r(2r+1)$ với $p, r$ là các số nguyên tố.

Bài tập hình học ôn thi vào 10 – P1

Bài 1. Cho đường tròn tâm $O$ đường kính $AB$. Tiếp tuyến tại $A$ là $d$, tiếp tuyến tại $B$ là $d’$. $C$ là một điểm thuộc đường tròn, tiếp tuyến tại $C$ cắt $d$ và $d’$ lần lượt tại $D$ và $E$, $BC$ cắt $d$ tại $F$.
a) Chứng minh $D$ là trung điểm của $AF$.
b) Gọi $I$ là giao điểm của $BD$ và $CE$. $CI$ cắt $AB$ tại $G$. Chứng minh $CG^2 = GA.GB$.
c) Đường thẳng qua $A$ song song $EG$ cắt đường thẳng qua $B$ song song với $DG$ tại $H$. Chứng minh $D, H, E$ thẳng hàng.

Lời giải

a) Theo tích chất hai tiếp tuyến cắt nhau thì: $DA = DC$,

tam giác $DAC$ cân tại $D$ nên $\angle DCA = \angle DAC$, mà $\angle DAC + \angle DCF = \angle DAC + \angle DFC= 90^0$.

Do đó $\angle DCF = \angle DFC$, suy ra $DC = DF$. \Vậy $DF = DA$, hay $D$ là trung điểm của AF.

b) Ta có $AD||BE$ nên $\dfrac{ID}{IB} = \dfrac{AD}{BE}$, mà $AD = CD, BE = CE$, suy ra $\dfrac{ID}{IB} = \dfrac{CD}{CE}$. Từ đó ta có $CI || BE$, suy ra $IC \bot AB$.

Tam giác ACB vuông tại C, có CG là đường cao nên: $CG^2 = GA.GB$.

c) Ta có $\dfrac{GA}{GB} = \dfrac{CD}{CE} = \dfrac{AD}{BE}$, suy ra $\triangle ADG \backsim \triangle BEG$, do đó: $\angle AGD = \angle BGC$.
$GJ$ cắt $AD$ tại $J$. Ta có $\angle AGD =\angle BDE = \angle AGJ$.
Suy ra $GEJ$ cân tại $G$ và $A$ là trung điểm của $DJ$.
Gọi $H’$ là trung điểm của $DE$. Suy ra $AH’ || GE$.
Tương tự thì $H’B || GD$. Do đó $H’ \equiv H$.
Vậy $H, D, E$ thẳng hàng.

Bài 2. Cho tam giác $ABC (AB <AC)$ có 3 góc nhọn nội tiếp đường tròn tâm $O$. Vẽ 2 đường cao $AD$ và $CE$ của tam giác $ABC$ . Tiếp tuyến tại $A$ của $(O)$ cắt $BC$ tại $M$ . Từ $M$ kẻ tiếp tuyến thứ hai đến $(O)$ ($N$ là tiếp điểm ). Vẽ $CK$ vuông góc với $AN$ tại $K$. Chứng minh $DK$ đi qua trung điểm của đoạn thẳng $BE$.

Lời giải 

Gọi $Q$ là trung điểm đoạn $BC$.
Ta có $\angle AKD = \angle ACB = \angle ANB$, suy ra $DK || BN$, suy ra $\angle ATK = \angle ABN$.

Ta có 5 điểm $A, M, N, O, Q$ cùng thuộc đường tròn. Suy ra $\angle AQM = \dfrac{1}{2}\angle AON = \angle ACN$.

Suy ra $\angle ABN = 180^\circ- \angle ACN = 180^\circ – \angle AQM =\angle AQC$.

Suy ra $\angle ATK = \angle AQC$. Suy ra $ATDQ$ nội tiếp. Suy ra $AT \bot TQ$. Suy ra $T$ là trung điểm BE.

Bài 3. Cho đường tròn $(O)$ ngoại tiếp tam giác $ABC (AB < AC)$. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $M$ là trung điểm cạnh $BC$. Gọi $Q$ là điểm đối xứng của $I$ qua $M$, tia $OM$ cắt $(O)$ tại $D$ và $QD$ cắt $(O)$ tại $T$ ($T$ thuộc cung $BD$ không chứa $A$).
a) Chứng minh rằng $DI = DB = DC$.
b) Đường thẳng qua $I$ song song $QD$ cắt $DO$ tại $K$. Chứng minh $DK.DO = DB^2$.
c) Chứng minh $\angle ACT = \angle DOI$.

Lời giải

b) Vẽ đường kính $DE$. Ta có $DB^2 = DM\cdot  DE $

$IKQD$ là hình bình hành, suy ra $DK = 2DM$.

Mặt khác $DO = \dfrac{1}{2}DE$

Nên $BD^2 = DK\cdot DO$

c)Vì $DB = DI$ nên ta có $DI^2 = DK\cdot DO$, suy ra $\triangle DIK \backsim \triangle DOI$.

Suy ra $\angle DOI = \angle DIK$ ,

mà $\angle DIK = \angle ADT = \angle ACT$.

Bài tập luyện tập

Bài 1. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A vẽ đến (O) các tiếp tuyến AB và AC với B, C là các tiếp điểm. Trên tia đối của BA lấy điểm D, đường tròn ngoại tiếp ACD cắt (O) tai điểm thứ hai là E. DE cắt (O) tại F khác E. Gọi I là hình chiếu của B trên CD, H là giao điểm của OB và CD.
a) Chứng minh $CF||AC$.
b) Chứng minh tứ giác $IHEF$ nội tiếp.
c) Chứng minh $\angle IED = 2\angle ADC$.

Bài 2. Cho hình vuông ABCD cạnh a. E, F là các điểm thay đổi trên các cạnh CD và BC sao cho $\angle EAF = 45^0$. Gọi G, H lần lượt là giao điểm của AE, AF với BD.
a) Chứng minh rằng 5 điểm C,E, G, H, F cùng thuộc một đường tròn.
b) Chứng minh EF tiếp xúc với một đường tròn cố định.
c) Chứng minh $GH^2 = DG^2 + BH^2$.
d) Chứng minh chu vi tam giác CEF không đổi. Tìm giá trị lớn nhất diện tích của tam giác CEF.

Bài 3. Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Gọi D là hình chiếu của A trên BC và E là điểm đối xứng của A qua O. Gọi F là điểm chính giữa cung BC không chứa A.
a) Chứng minh rằng AF là phân giác góc $\angle DAE$.
b) Chứng minh $AD.AE = AB.AC$ và $S_{ABC} = \dfrac{AB.AC.BC}{4R}$.
c) Vẽ đường kính FG, đường tròn ngoại tiếp tam giác OAG cắt AB và AC tại M, N. Chứng minh BM = CN.

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2020

Đề thi vào lớp 10 TPHCM năm 2020

Bài 1. Cho parabol $ (P): y=\dfrac{1}{4}x^2$ và đường thẳng $ (d): y=-\dfrac{1}{2}x+2 $

a) Vẽ $ (P) $ và $ (d) $ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $ (P) $ và $ (d) $ bằng phép tính.

Giải

a) Bảng giá trị của $(d)$:

Bảng giá trị của $(P)$:

Đồ thị:

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$:

$\dfrac{1}{4}x^2 = -\dfrac{1}{2}x +2 \Leftrightarrow \dfrac{1}{4}x^2 +\dfrac{1}{2}x-2=0\Leftrightarrow \left[ \begin{array}{l} x=2\Rightarrow y=1\\ x=-4\Rightarrow y=4 \end{array}\right. $

Vậy tọa độ giao điểm $\left( 2;\, 1\right) $, $\left( -4;\, 4\right) $

Bài 2. Cho phương trình: $ 2x^2-5x-3=0 $ có 2 nghiệm $ x_1; x_2 $.

Không giải phương trình, hãy tính giá trị của biểu thức: $ A=(x_1+2x_2)(x_2+2x_1) $.

Giải

Ta có: $\Delta = \left( -5\right) ^2-4\cdot 2\cdot (-3)=49>0\Rightarrow $ Phương trình có hai nghiệm phân biệt.

Áp dụng định lý Viete ta có: $\left\{ \begin{array}{l} S=x_1+x_2=\dfrac{5}{2}\\ P=x_1x_2=-\dfrac{3}{2} \end{array} \right. $

Ta có: $A=\left( x_1+2x_2\right) \left( x_2+2x_1\right)=2\left( x_1^2 +x_2^2\right) +5x_1x_2=2\left( S^2-2P\right) +5P=11 $

Vậy $A=11$

Bài 3. Quy tắc sau đây cho ta biết CAN, CHI của năm X nào đó.

Để xác định CAN, ta tìm số dư $ r $ trong phép chia $X$ cho $10$ và tra vào bảng $1$.

Để xác định CHI, ta tìm số dư $ s $ trong phép chia $X$ cho $12$ và tra vào bảng $2$.

Ví dụ: năm $2020$ có CAN là Canh, có CHI là Tí.

Bảng 1

Bảng 2

a) Em hãy sử dụng quy tắc trên để xác định CAN, CHI của năm $2005$?

b) Bạn Hằng nhớ rằng Nguyễn Huệ lên ngôi hoàng đế, hiệu là Quang Trung vào năm Mậu Thân nhưng không nhớ rõ đó là năm bao nhiêu mà chỉ nhớ là sự kiện trên xảy ra vào cuối thế kỉ $18$. Em hãy giúp Hằng xác định chính xác năm đó là năm bao nhiêu?

Giải

a) Năm $2005$ có CAN là Ất, có CHI là Dậu.

b) Vì năm hoàng đế Nguyễn Huệ lên ngôi là cuối thế kỉ $18$ nên năm đó có dạng $\overline{17ab}$ với $a,\ b\in \mathbb{N}$ và $0\le a,\ b\le 9$

Năm đó có CAN là Mậu nên ta có $\overline{17ab}$ chia $10$ dư $8$ suy ra chữ số tận cùng $b=8$

Năm đó có CHI là Thân nên ta có $\overline{17a8}$ chia hết cho $12$. Suy ra $\overline{17a8}$ chia hết cho $3$.

Khi đó: $1+7+a+8= 16+a\ \vdots \ 3 \Rightarrow a\in \left\{ 2;\ 5;\ 8\right\} $

Với $a=2\Rightarrow 1728$ chia $10$ dư $8$ và $1728$ chia $12$ dư $0$.

Với $a=5\Rightarrow 1758$ chia $10$ dư $8$ và $1758$ chia $12$ dư $6$ (loại).

Với $a=8\Rightarrow 1788$ chia $10$ dư $8$ và $1788$ chia $12$ dư $0$.

Vì sự kiện xảy ra vào cuối thế kỉ $18$ nên năm đó là năm $1788$.

Bài 4. Cước điện thoại $ y $ (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc vào lượng thời gian gọi $ x $ (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất $ y=ax+b. $ Hãy tìm $ a,b $ biết rằng nhà bạn Nam trong tháng $5$ đã gọi $100$ phút với số tiền là $40$ nghìn đồng và trong tháng $6$ đã gọi $40$ phút với số tiền $28$ nghìn đồng.

Giải

Với $x=100$ và $y=40$ ta có $40=100a+b$

Với $x=40$ và $y=28$ ta có $28=40a+b$

Ta có hệ phương trình: $\left\{ \begin{array}{l} 100a+b=40\\ 40a+b=28 \end{array}\right. $ $\Leftrightarrow \left\{ \begin{array}{l} a=\dfrac{1}{5}\\ b=20  \end{array}\right. $

Vậy $a=\dfrac{1}{5}$ và $b=20$

Bài 5. Theo quy định của cửa hàng xe máy, để hoàn thành chỉ tiêu trong $1$ tháng, mỗi nhân viên phải bán được trung bình một chiếc xe máy trong một ngày. Nhân viên nào hoàn thành chỉ tiêu trong một tháng thì nhận được lương cơ bản là $8 000 000$ đồng. Nếu trong tháng nhân viên nào bán vượt chỉ tiêu thì được hưởng thêm $8\%$ tiền lời của số xe máy bán vượt chỉ tiêu đó. Trong tháng $5$ (có $31$ ngày), anh Thành nhận được số tiền là $9 800 000$ đồng (bao gồm cả lương cơ bản và tiền thưởng thêm của tháng đó). Hỏi anh Thành đã bán được bao nhiêu chiếc xe máy trong tháng $5$, biết rằng mỗi xe máy bán ra thì cửa hàng thu lời được $2 500 000$ đồng.

Giải

Tháng $5$ có $31$ ngày nên số xe máy tiêu chuẩn phải bán được là $31$ xe.

Gọi $x$ ($x>0$) là số xe máy anh Thành đã bán vượt chỉ tiêu.

Số tiền anh Thành được thưởng thêm là: $8\% \cdot 2\, 500\, 000 \cdot x = 200\, 000x$

Ta có phương trình: $200\, 000x = 9\, 800\, 000 -8\, 000\, 000 \Rightarrow x=9$

Vậy anh Thành đã bán được $40$ xe máy trong tháng $5$.

Bài 6. Anh Minh vừa mới xây một cái hồ trữ nước cạnh nhà có hình dạng hộp chữ nhật có kích thước $2m \times 2 m \times 1 m$. Hiện hồ chưa có nước nên anh Minh phải ra sông lấy nước. Mỗi lần ra sông anh gánh được $1$ đôi nước đầy gồm $2$ thùng hình trụ bằng nhau có bán kính đáy $0,2 \ m$, chiều cao $0,4 \ m$.

a)Tính lượng nước ($m^3$) anh Minh đổ vào hồ sau mỗi lần gánh (ghi kết quả làm tròn đến $2$ chữ số thập phân). Biết trong quá trình gánh nước về thì lượng nước bị hao hụt khoảng $10\%$ và công thức tính thể tích hình trụ là $V = \pi R^2h$.

b) Hỏi anh Minh phải gánh ít nhất bao nhiêu lần để đầy hồ? Bỏ qua thể tích thành hồ.

Giải

a) Thể tích nước anh gánh được trong hai thùng là: $V = 2\cdot \pi R^2h =\dfrac{4\pi }{125}$ ($m^3$)

Lượng nước anh Minh đổ vào hồ sau mỗi lần gánh là: $90\% \cdot V=\dfrac{18\pi }{625}\approx 0,09$ ($m^3$)

b) Thể tích hồ trữ nước là: $V_{\text{hồ}}=2\cdot 2\cdot 1=4$ ($m^3$)

Ta có: $\dfrac{V_{\text{hồ}}}{V}\approx 44,21 $

Vậy anh Minh phải gánh ít nhất $45$ lần để đổ nước đầy hồ.

Bài 7. Sau buổi sinh hoạt ngoại khóa nhóm bạn của Thư rủ nhau đi ăn kem ở một quán gần trường. Do quán mới khai trương nên có khuyến mãi, bắt đầu từ ly thứ $5$ giá mỗi ly kem được giảm $1 500$ đồng so với giá ban đầu. Nhóm của Thư mua $9$ ly kem với số tiền là $154 500$ đồng. Hỏi giá của một ly kem ban đầu?

Giải

Gọi $x$ (đồng) là giá tiền của một ly kem khi chưa giảm (ĐK: $x \geq 1 500$ đồng)

$ \Rightarrow$ Giá tiền ly kem từ ly thứ 5 trở đi là: $x-1 500$ (đồng)

Theo bài ra ta có:  $4.x+5 (x- 1500)= 154 500 \Leftrightarrow x=18 000$ ( đồng)

Vậy giá tiền ly kem ban đầu là: $18000$ đồng.

Bài 8. Cho đường tròn tâm $O$; bán kính $R$ và điểm $A$ nằm ngoài đường tròn sao cho $OA>2R$. Từ $A$ kẻ $2$ tiếp tuyến $AD$; $AE$ đến đường tròn ($O$) ($D$; $E$ là hai tiếp điểm). Lấy điểm $M$ nằm trên cung nhỏ $DE$ sao cho $MD >ME$. Tiếp tuyến của đường tròn (O) tại $M$ cắt $AD$; $AE$ lần lượt tại $I$; $J$. Đường thẳng $DE$ cắt $OJ$ tại $F$ .

a) Chứng minh: $OJ$ là đường trung trực của đoạn thẳng $ME$ và $\angle OMF=\angle OEF$.

b) Chứng minh: tứ giác $ODIM$ nội tiếp và $5$ điểm $I;\ D; \ O;\ F;\ M$ cùng nằm trên một đường tròn.

c) Chứng minh: $\angle JOM=\angle IOA$ và $\sin \angle IOA=\dfrac{MF}{IO}$

Giải

a)

  • Ta có: $ \left\lbrace \begin{array}{l} OM=OE (=R)\\ MJ=EJ \end{array} \right. \Rightarrow OJ$ là đường trung trực của đoạn $ME$
  • Ta có: $OJ$ là tia phân giác của góc $\angle EOM \Rightarrow \angle EOJ =\angle MOJ$

Xét $\triangle EOF $ và $\triangle MOF$ ta có: $OF$ chung, $OM=OE$, $\angle EOF= \angle MOF$

$\Rightarrow \triangle EOF = \triangle MOF \Rightarrow \angle OMF =\angle OEF$.

b)

  • Tứ giác $ODIM$ có: $\angle ODI +\angle OMI =90^{\circ} +90^{\circ}= 180^{\circ}$

$\Rightarrow $ Tứ giác $ODIM$ là tứ giác nội tiếp $(1)$.

  • Ta có: $\angle ODE =\angle OED$ và $\angle OEF =\angle OMF$

$ \Rightarrow \angle ODF =\angle OMF \Rightarrow $ Tứ giác $ODMF$ là tứ giác nội tiếp $(2)$.

Từ $(1)$, $(2)$ ta có: $5$ điểm $I,D,O,F,M$ cùng thuộc một đường tròn.

c)

  • Tứ giác $IDFM$ nội tiếp nên ta có: $\angle IOF =\angle IDF = \dfrac{1}{2}$ sđ cung $IF$ $(3)$

Tứ giác $ADOE$ nội tiếp nên : $\angle ADE =\angle AOE$ $(4)$

Từ $$(3)$, $(4)$ ta có: $\angle IOF =\angle AOE$

Mà ta có: $ \angle IOF =\angle IOA+ \angle AOF$

$ \angle AOE=\angle AOF +\angle EOF$

Suy ra: $ \angle EOF =\angle IOA$

Mặt khác $\angle EOF =\angle JOM$ ( do $OJ$ là tia phân giác$ EOM$ )

Vậy $\angle JOM =\angle IOA$ $(5)$

  • Ta có: $\triangle JMF \backsim \triangle JOI$ (g.g) $\Rightarrow \dfrac{JM}{JO} =\dfrac{MF}{OI}$ $(6)$

Xét tam giác $OMJ$ vuông tại $M$ nên: $\sin \angle JOM =\dfrac{MJ}{OJ}$ (7)

Từ $(5), (6), (7)$ suy ra: $ \sin \angle IOA=\dfrac{MF}{IO}$

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2019

Đề thi vào lớp 10 TPHCM năm 2019

Bài 1. Cho parabol $(P): y= -\dfrac{1}{2} x^2 $ và đường thẳng $(d): y= x-4$.

a) Vẽ $(P)$ và $(d)$ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $(P)$ và $(d)$ bằng phép tính.

Giải

a) Bảng giá trị:

  • $y=x-4$

  • $y=-\dfrac{1}{2}x^2$

(Học sinh tự vẽ)

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$:

$-\dfrac{1}{2}x^2 = x-4 \Leftrightarrow x^2 +2x-8=0 \Leftrightarrow (x+4)(x-2)=0 \Leftrightarrow \left[ \begin{array}{l} x=-4 \Rightarrow y=-8 \\ x=2 \Rightarrow y=-2 \end{array} \right. $

Vậy tọa độ giao điểm của $(P)$ và $(d)$ là $(-4;-8)$ và $(2;-2)$.

Bài 2. Cho phương trình: $2x^2 -3x-1 =0$ có 2 nghiệm là $x_1$, $x_2$.

Không giải phương trình, hãy tính giá trị của biểu thức: $A=\dfrac{x_1-1}{x_2+1} + \dfrac{x_2-1}{x_1+1}$

Giải

Ta có: $\Delta = 9+8=17 >0$

$\Rightarrow $ Phương trình đã cho luôn có hai nghiệm phân biệt $x_1$, $x_2$.

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} x_1 + x_2 = \dfrac{3}{2} \\ x_1x_2 = – \dfrac{1}{2} \end{array} \right. $

$A= \dfrac{x_1-1}{x_2+1} + \dfrac{x_2 -1}{x_1 +1}$

$= \dfrac{x_1^2 -1 + x_2^2-1}{x_1x_2 +x_1+x_2+1} $

$= \dfrac{\left( x_1 + x_2 \right) ^2 – 2x_1x_2 -2}{-\dfrac{1}{2}+ \dfrac{3}{2}+ 1} $

$= \dfrac{\dfrac{9}{4}+1-2}{2} = \dfrac{5}{8} $

Bài 3. Quy tắc sau đây cho ta biết được ngày $n$, tháng $t$, năm $2019$ là ngày thứ mấy trong tuần. Đầu tiên, ta tính giá trị của biểu thức $T=n+ H$, ở đây $H$ được xác định bởi bảng sau:

Sau đó, lấy $T$ chia cho $7$ ta được số dư $r$ ($0 \le r \le 6$)

Nếu $r=0$ thì ngày đó là ngày thứ Bảy.

Nếu $r=1$ thì ngày đó là ngày Chủ Nhật.

Nếu $r=2$ thì ngày đó là ngày thứ Hai.

Nếu $r=6$ thì ngày đó là ngày thứ Sáu.

Ví dụ: Ngày $31/12/2019$ có $n=31$; $t=12$; $H=0 \Rightarrow T=31+0=31$; số $31$ chia cho $7$ có số dư là $3$, nên ngày đó là thứ Ba.

a) Em hãy sử dụng quy tắc trên để xác định các ngày $02/09/2019$ và $20/11/2019$ là thứ mấy?

b) Bạn Hằng tổ chức sinh nhật của mình trong tháng $10/2019$. Hỏi sinh nhật của bạn Hằng là ngày mấy? Biết rằng ngày sinh nhật của Hằng là một bội số của $3$ và là thứ Hai.

Giải

a)

  • Ngày $02/09/2019$ có $n=2$, $t=9$; $H= 0$ suy ra $T= 2+0= 2$; 2 chia $7$ dư $2$ nên đó là ngày thứ Hai.
  • Ngày $20/11/2019$ có $n=20$, $t= 11$, $H=-2$ suy ra $T= 20 -2 =18$; $18$ chia $7$ dư $4$ nên đó là ngày thứ Tư.

b) $t=10$; $H=2$ suy ra $T= n+2$

Vì sinh nhật Hằng là thứ Hai nên $T$ chia $7$ dư $2$, suy ra $n$ chia hết cho $7$

Suy ra $n \in \left\{ 7;14;21;28 \right\} $

Lại có $n$ chia hết cho $3$ nên $n=21$

Vậy sinh nhật của Hằng là $21/10/2019$.

Bài 4. Tại bề mặt đại dương, áp suất nước bằng áp suất khi quyển và là $1$ atm (atmosphere). Bên dưới mặt nước, áp suất nước tăng thêm $1$ atm cho mỗi $10$ mét sâu xuống. Biết rằng mối liên hệ giữa áp suất $y$ (atm) và độ sâu $x$ (m) dưới mặt nước là một hàm số bậc nhất có dạng $y=ax+b$

a) Xác định các hệ số $a$ và $b$

b) Một người thợ lặn đang ở độ sâu bao nhiêu nếu người ấy chịu một áp suất là $2,85$ atm?

Giải

a) Ta có: $y= 1+ \dfrac{x}{10}$

Vậy $a= \dfrac{1}{10}$ và $b=1$

b) Ta có: $2,85= 1+ \dfrac{x}{10} \Rightarrow x= 18,5$ (m)

Vậy người thợ lặn ở độ sâu $18,5$ mét.

Bài 5. Một nhóm gồm $31$ bạn học sinh tổ chức một chuyến đi du lịch (chi phí chuyển đi được chia đều cho mỗi bạn tham gia). Sau khi đã hợp đồng xong, vào giờ chót có $3$ ban bận việc đột xuất không đi được nên họ không đóng tiền. Cả nhóm thống nhất mỗi bạn còn lại sẽ đóng thêm $18 000$ đồng so với dự kiến ban đầu để bù lại cho $3$ bạn không tham gia. Hỏi tổng chi phí chuyến đi là bao nhiêu?

Giải

Tổng số tiền $28$ bạn còn lại đã đóng thêm:

$$ 18000 \cdot 28 = 504000 \text{ (đồng)}$$

Số tiền trên chính là tổng số tiền $3$ bạn phải đóng lúc đầu nếu vẫn đi du lịch, nên số tiền mỗi bạn phải đóng lúc đầu nếu đi đủ $31$ bạn là:

$$ 504000 : 3= 168000 \text{ (đồng)}$$

Tổng chi phí chuyến đi là:

$$ 168000 \cdot 31 = 5208000 \text{ (đồng)}$$

Bài 6. Cuối năm học, các bạn lớp $9A$ chia làm hai nhóm, mỗi nhóm chọn một khu vườn sinh thái ở Bắc bán cầu để tham quan. Khi mở hệ thống định vị GPS, họ phát hiện một sự trùng hợp khá thú vị là hai vị trí mà nhóm chọn đều nằm trên cùng một kinh tuyến và lần lượt ở các vĩ tuyến $47^\circ $ và $72^\circ $.

a) Tính khoảng cách (làm tròn đến hàng trăm) giữa hai vị trí đó, biết rằng kinh tuyến là một cung tròn nối liền hai cực của trái đất và có độ dài khoảng $20 000$ km.

b) Tính (làm tròn đến hàng trăm) độ dài bán kính và đường xích đao của trái đất. Từ kết quả của bán kính (đã làm tròn), hãy tính thể tích của trái đất, biết rằng trái đất có dạng hình cầu và thể tích của hình cầu được tính theo công thức $V= \dfrac{4}{3} \cdot 3,14 \cdot R^3$ với $R$ là bán kính hình cầu.

Giải

a) Ta có: $\angle AOB = 72^\circ – 47^\circ = 25^\circ $

Khoảng cách giữa hai vị trí tham quan: $20000 \cdot \dfrac{25}{180} \approx 2800$ (km)

b) Gọi $R$ là bán kính trái đất.

Độ dài đường xích đạo bằng $2$ lần độ dài đường kinh tuyến và bằng: $40000$ km

$\Rightarrow 2R \cdot 3,14 = 40000 \Rightarrow R \approx 6400$ (km)

Thể tích trái đất: $V = \dfrac{4}{3} \cdot 3,14 \cdot R^3 = 1097509546667 \; (km^3)$

Bài 7. Bạn Dũng trung bình tiêu thụ $15$ ca-lo cho mỗi phút bơi và $10$ ca-lo cho mỗi phút chạy bộ. Hôm nay, Dũng mất $1,5$ giờ cho cả hai hoạt động trên và tiêu thụ hết $1200$ ca-lo. Hỏi hôm nay bạn Dũng mất bao nhiêu thời gian cho mỗi hoạt động?

Giải

$1,5$ giờ $= 90$ phút

Gọi $x$, $y$ (phút) lần lượt là thời gian Dũng mất cho việc bơi và chạy bộ. ($x,y>0$)

Ta có hệ phương trình:

$\left\{ \begin{array}{l} x+ y =90 \\ 15x+ 10y= 1200 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x= 60 \\ y=30 \end{array} \right. $

Vậy Dũng đã bơi $60$ phút và chạy bộ $30$ phút.

Bài 8. Cho tam giác nhọn $ABC$ ($AB<AC$) nội tiếp đường tròn $(O)$. Hai đường cao $BD$ và $CE$ của tam giác $ABC$ cắt nhau tại $H$. Đường thẳng $AH$ cắt $BC$ và $(O)$ lần lượt tại $F$ và $K$ ($K\ne A$). Gọi $L$ là hình chiếu của $D$ lên $AB$.

a) Chứng minh rằng tứ giác $BEDC$ nội tiếp và $BD^2 = BL \cdot BA$

b) Gọi $J$ là giao điểm của $KD$ và $(O)$ ($J \ne K$). Chứng minh $\angle BJK = \angle BDE$

c) Gọi $I$ là giao điểm của $BJ$ và $ED$. Chứng minh tứ giác $ALIJ$ nội tiếp và $I$ là trung điểm của $ED$.

Giải

a) Tứ giác $BEDC$ có $\angle BEC= \angle BDC = 90^\circ$ nên tứ giác $BEDC$ nội tiếp đường tròn đường kính $BC$.

Tam giác $BDA$ vuông tại $D$ có $DL \bot BA$ nên ta có $BD^2=BL \cdot BA$

b) Có $ \angle BJK = \angle BCK =\angle BAK$ mà tứ giác $ADHE$ nội tiếp đường tròn đường kính $AH$ nên $\angle EAH= \angle BDE$ suy ra $\angle BJK =\angle BDE$.

c) Có $\angle BJK=\angle BDE$ suy ra $\Delta BDI \sim \Delta BJD (g-g)$ ta thu được $BD^2=BI \cdot BJ$

mà theo câu a) ta có $BD^2=BL \cdot BA$ nên $\Delta BIL \sim \Delta BAJ (c-g-c)$ suy ra $\angle BLI = \angle BJA$ do đó tứ giác $ALIJ$ nội tiếp.

Có $\angle LEI=\angle ACB=\angle AJB =\angle ELI$ suy ra tam giác $LEI$ cân tại $I$ nên $IL=IE$.

Tương tự $IL=ID$ suy ra $IE=ID (dpcm)$.

 

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2018

Đề thi vào lớp 10 TPHCM năm 2018

 

Bài 1.  Cho parabol $(P):y=x^2$ và đường thẳng $(d):y=3x-2$.

a) Vẽ $(P)$ và $(d)$ trên cùng hệ trục tọa độ.

b) Tìm tọa độ giao điểm của $(P)$ và $(d)$ bằng phép tính.

Giải

a) Học sinh tự vẽ hình.

b) Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:

$x^2=3x-2 \Leftrightarrow x^2 -3x+2 =0 \Leftrightarrow (x-1)(x-2)=0 \Leftrightarrow \left[ \begin{array}{l} x=1 \\ x=2 \end{array} \right. $

  • Với $x=1$, suy ra $y=1$
  • Với $x=2$, suy ra $y=4$

Vậy giao điểm của $(P)$ và $(d)$ là $(1;1)$ và $(2;4)$

Bài 2. Cho phương trình: $3x^2-x-1=0$ có hai nghiệm $x_1$, $x_2$.

Không giải phương trình, hãy tính giá trị của biểu thức $A=x_1^2+x_2^2$.

Giải

$3x^2-x-1=0$

Ta có: $\Delta = 1-4.3.(-1)=13>0$ nên phương trình trên luôn có hai nghiệm $x_1$, $x_2$.

Theo định lý Viete, ta có: $\left\{ \begin{array}{l} S=x_1+x_2=-\dfrac{b}{a}=\dfrac{1}{3} \\ P=x_1.x_2= \dfrac{c}{a}= -\dfrac{1}{3} \end{array} \right. $

$A=x_1^2 + x_2^2 = \left( x_1 +x_2 \right) ^2 -2x_1x_2 = \left( \dfrac{1}{3} \right) ^2 -2. \dfrac{-1}{3} = \dfrac{7}{9}$

Bài 3. Mối quan hệ giữa thang đo nhiệt độ $F$ (Fahrenheit) và thang đo nhiệt độ $C$ (Celsius) được cho bởi công thức $T_F=1,8T_C +32$, trong đó $T_C$ là nhiệt độ tính theo độ $C$ và $T_F$ là nhiệt độ tính theo độ $F$.

Ví dụ: $T_C= 0^\circ C$ tương ứng với $T_F=32^\circ F$.

a) Hỏi $25^\circ C$ ứng với bao nhiêu độ $F$?

b) Các nhà khoa học đã tìm ra mối liên hệ giữa $A$ là số tiếng kêu của một con dế trong một phút và $T_F$ là nhiệt độ cơ thể của nó bởi công thức: $A=5,6.T_F-275$, trong đó nhiệt độ $T_F$ tính theo độ $F$. Hỏi nếu con dế kêu $106$ tiếng trong một phút thì nhiệt độ của nó khoảng bao nhiêu độ $C$? (làm tròn đến hàng đơn vị)

Giải

a) Với $T_C= 25^\circ C$ thì: $T_F=1,8.25+32=77 \left( ^\circ F \right) $

b) Nếu con dế kêu 106 tiếng trong một phút thì ta có:

$106=5,6.T_F-275 \Leftrightarrow T_F=\dfrac{1905}{28} \left( ^\circ F \right) $

Nhiệt độ con dế tính theo độ $C$:

$T_F = 1,8. T_C +32 \Leftrightarrow \dfrac{1905}{28}=1,8 .T_C +32 \Leftrightarrow T_C \approx 20,02 \left( ^\circ C \right) $

Bài 4. Kim tự tháp Kheops – Ai Cập có dạng hình chóp đều, đáy là hình vuông, các mặt bên là tam giác cân chung đỉnh (hình vẽ). Mỗi cạnh bên của kim tự tháp dài $214 \; m$, cạnh đáy của nó dài $230 \; m$.

a) Tính theo mét chiều cao $h$ của kim tự tháp (làm tròn đến chữ số thập phân thứ nhất).

b) Cho biết thể tích của hình chóp được tính theo công thức $V=\dfrac{1}{3}S.h$, trong đó $S$ là diện tích mặt đáy, $h$ là chiều cao của hình chóp. Tính theo $m^3$ thể tích của kim tự tháp này (làm tròn đến hàng nghìn).

Giải

a) Xét $\triangle BCD$ vuông tại $C$, ta có:

$BD^2 = BC^2 + CD^2$

$\Leftrightarrow BD^2 = 230^2 + 230^2 $

$\Leftrightarrow BD = 230\sqrt{2} \; (m)$ $

$\Rightarrow DO = \dfrac{BD}{2}= 115\sqrt{2} \; m$

$\triangle  SOD$ vuông tại $O$ có:

$SO^2 + OD^2 = SD^2 $

$\Leftrightarrow h^2 + \left( 115\sqrt{2} \right) ^2 = 214^2 $

$\Leftrightarrow h^2 = 19346 \Leftrightarrow h \approx 139,1 \; m$

Vậy $h \approx 139,1 \; m$

b) $S_{ABCD} = BC^2 = 230^2 \; \left( m^2 \right) $

Suy ra: $V_{ABCD} = \dfrac{1}{3}. S_{ABCD}.h= \dfrac{1}{3}. 230^2 .\sqrt{19346} \approx 2453000 \; \left( m^3 \right) $

Bài 5. Siêu thị $A$ thực hiện chương trình giảm giá cho khách hàng mua loại túi bột giặt $4kg$ như sau: Nếu mua $1$ túi thi được giảm $10 000$ đồng so với giá bán niêm yết. Nếu mua $2$ túi thì túi thứ nhất được giảm $10 000$ đồng và túi thứ hai được giảm $20 000$ đồng so với giá niêm yết. Nếu mua từ $3$ túi trở lên thì ngoài $2$ túi đầu được hưởng như chương trình giảm giá như trên, từ túi thứ ba trở đi, mỗi túi sẽ được giảm $20\%$ so với giá niêm yết.

a) Bà Tư mua $5$ túi bột giặt loại $4kg$ ở siêu thị $A$ thì phải trả số tiền là bao nhiêu, biết rằng loại túi bột giặt bà Tư mua có giá niêm yết là $150 000$ đồng/túi.

b) Siêu thị $B$ lại có hình thức giảm giá khác cho loại túi bột giặt nêu trên là: nếu mua từ $3$ túi trở lên thì sẽ giảm giá $15\%$ cho mỗi túi. Nếu bà Tư mua $5$ túi bột giặt thì bà Tư nên mua ở siêu thị nào để số tiền phải trả là ít hơn? Biết rằng giá niêm yết của hai siêu thị là như nhau.

Giải

a) Giá bà Tư phải trả cho túi thứ nhất:

$$ 150 000-10000=140000 \text{ (đồng)} $$

Giá bà Tư phải trả cho túi thứ hai:

$$ 150 000-20000=130000 \text{ (đồng)} $$

Giá bà Tư phải trả cho từ túi thứ 3 đến túi thứ 5:

$$3. 150 000. \left( 100\% -20\% \right) =360000 \text{ (đồng)} $$

Tổng số tiền bà Tư phải trả ở siêu thị $A$:

$$ 140000+130000+360000=630000 \text{ (đồng)}$$

b) Số tiền bà Tư phải trả khi mua 5 túi ở siêu thị $B$:

$$5.150000.\left( 100\% -15\% \right) = 637500 \text{ (đồng)}$$.

Vậy bà Tư nên mua ở siêu thị $A$.

Bài 6. Nhiệt độ sôi của nước không phải lúc nào cũng là $100^\circ C$ mà phụ thuộc vào độ cao của nơi đó so với mực nước biển. Chẳng hạn, Thành phố Hồ Chí Minh có độ cao xem như ngang mực nước biển ($x=0m$) thì nước sôi ở nhiệt độ là $y=100^\circ C$, nhưng ở thủ đô La Paz của Bolivia, Nam Mỹ có độ cao $x=3600m$ so với mực nước biển thì nhiệt độ sôi của nước là $y=87^\circ C$. Ở độ cao trong khoảng vài $km$, ngườu ta thấy mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất $y=ax+b$ có đồ thị như sau:

trong đó $x$ là đại lượng biểu thị cho độ cao so với mực nước biển, $y$ là đại lượng biểu thị cho nhiệt độ sôi của nước.

a) Xác định các hệ số $a$ và $b$.

b) Thành phố Đà Lạt có độ cao $1500m$ so với mực nước biển. Hỏi nhiệt độ sôi của nước ở thành phố này là bao nhiêu?

Giải

a) Ta có: $y=ax+b$ $(1)$.

Dựa vào đồ thị, ta có:

  • Với $x=0$ thì $y=100$, thay vào $(1)$, ta có:

$100=a.0+b \Leftrightarrow b=100$

Suy ra hàm số: $y=ax+100$ $(2)$

  • Với $x=3600$ thì $y=87$, thay vào $(2)$, ta có:

$87=a.3600+100 \Leftrightarrow a=\dfrac{-13}{3600}$

Vậy mối liên hệ là hàm số: $y=-\dfrac{13}{3600}x+100$, hay $a=-\dfrac{13}{3600}$ và $b=100$

b) Nhiệt độ sôi ở Đà Lạt ($x=1500$) là:

$y=-\dfrac{13}{3600}.1500+100 \approx 94,6 \; \left( ^\circ C \right) $

Bài 7. Năm học $2017-2018$, Trường THCS Tiến Thành có ba lớp $9$ gồm $9A$, $9B$, $9C$ trong đó lớp $9A$ có $35$ học sinh và lớp $9B$ có $40$ học sinh. Tổng kết cuối năm học, lớp $9A$ có $15$ học sinh đạt danh hiệu học sinh giỏi, lớp $9B$ có $12$ học sinh đạt danh hiệu học sinh giỏi, lớp $9C$ có $20\%$ đạt danh hiệu học sinh giỏi và toàn khối $9$ có $30\%$ đạt danh hiệu học sinh giỏi. Hỏi lớp $9C$ có bao nhiêu học sinh?

Giải

Gọi $x$ (học sinh) là số học inh của lớp $9C$. ($x\in \mathbb{N}^*$)

Tổng số học sinh giỏi của khối $9$ là: $15+12+x.20\% = 27 + \dfrac{x}{5}$ (học sinh)

Tổng số học sinh của khối $9$: $35+40+x=75+x$ (học sinh)

Ta có:  $\dfrac{27+\dfrac{x}{5}}{75+x}=30\% $

$\Leftrightarrow 27 + \dfrac{x}{5} = \dfrac{3}{10} \left( 75+x \right) $

$\Leftrightarrow 27 + \dfrac{x}{5}= \dfrac{45}{2}+ \dfrac{3}{10}x $

$\Leftrightarrow \dfrac{1}{10}x= \dfrac{9}{2} $

$\Leftrightarrow x=45$ (nhận)

Vậy lớp $9C$ có $45$ học sinh.

Bài 8. Cho tam giác $ABC$ có $BC=8cm$. Đường tròn tâm $O$ đường kính $BC$ cắt $AB$, $AC$ lần lượt tại $E$ và $D$. Hai đường thẳng $BD$ và $CE$ cắt nhau tại $H$.

a) Chứng minh: $AH$ vuông góc với $BC$.

b) Gọi $K$ là trung điểm của $AH$. Chứng minh tứ giác $OEKD$ nội tiếp.

c) Cho $\angle BAC = 60^\circ $. Tính độ dài đoạn $DE$ và tỉ số diện tích hai tam giác $AED$ và $ABC$.

Giải

a) $\triangle ABC$ có:  $\left. \begin{array}{l} CH\bot AB \\ BH \bot AC \end{array} \right\} \Rightarrow H$ là trực tâm của $\triangle ABC \Rightarrow  $AH \bot BC$.

b) $\triangle AEH$ và $\triangle ADH$ lần lượt vuông tại $E$ và $D$

Nên $4$ điểm $A, E, H, D$ cùng nằm trên đường tròn đường kính $AH$ hay đường tròn tâm $K$.

$\Rightarrow \angle BAC = \dfrac{1}{2} \angle EKD$.

Lại có $\angle ABD = \dfrac{1}{2} \angle DOE$ nên

$\angle BAC + \angle ABD = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow 180^\circ – ADB = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow 90^\circ = \dfrac{1}{2} \left( \angle EKD + \angle DOE \right) $

$\Rightarrow \angle EKD + \angle DOE = 180^\circ $

Vậy $KDOE$ nội tiếp.

c) $\angle A =60^\circ \Rightarrow \angle EKD = 120^\circ \Rightarrow \angle DOE = 60^\circ$

$\triangle DOE$ cân tại $O$ có $\angle DOE =60^\circ $ nên $\triangle DOE$ đều.

$\Rightarrow DE=DO=EO=4cm$

Lại có $\triangle ADE \backsim \triangle ABC$ $(g-g)$ nên

$\dfrac{S_{ADE}}{S_{ABC}}= \left( \dfrac{AD}{AB} \right) ^2 = \left( \cos \angle BAC \right) ^2 = \left( \cos 60^\circ \right) ^2 = \dfrac{1}{4}$

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2011

Đề thi vào lớp 10 TPHCM Năm 2011

Bài 1. Giải các phương trình và hệ phương trình sau:

a) $3 x^{2}-2 x-1=0$

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8\end{array}\right.$

c) $x^{4}+5 x^{2}-36=0$

d) $3 x^{2}-x\sqrt{3}+\sqrt{3}-3=0$.

Giải

a) Vì phương trình $3x^2-2x-1 =0$ có $a+b+c=0$ nên

$(a) \Leftrightarrow x=1$ hoặc $x=\dfrac{-1}{3}$.

b)  $\left\{\begin{array}{l}5 x+7 y=3 \\ 5 x-4 y=-8 \end{array} \right. \Leftrightarrow \left\{\begin{array}{l}11 y=11 \\ 5 x-4 y=-8\end{array} \right.$

$\quad((1)-(2))$ $\Leftrightarrow\left\{\begin{array}{l}y=1 \\ 5 x=-4\end{array} \\ \Leftrightarrow\left\{\begin{array}{l}x=-\dfrac{4}{5} \\ y=1\end{array}\right.\right.$.

c)  Đặt $\mathrm{u}=\mathrm{x}^{2} \geq 0,$ phương trình thành $: \mathrm{u}^{2}+5 \mathrm{u}-36=0$

$(*)$ có $\Delta=169,$ nên

$(*) \Leftrightarrow u=\dfrac{-5+13}{2}=4$ hay $u=\dfrac{-5-13}{2}=-9\ ($loại$)$

Do đó, phương trình có nghiệm $ \mathrm{x}=\pm 2$.

Cách khác $:(\mathrm{c}) \Leftrightarrow\left(\mathrm{x}^{2}-4\right)\left(\mathrm{x}^{2}+9\right)=0 \Leftrightarrow \mathrm{x}^{2}=4 \Leftrightarrow \mathrm{x}=\pm 2$.

d) $(d)$ có $: \mathrm{a}+\mathrm{b}+\mathrm{c}=0$ nên

$(\mathrm{d}) \Leftrightarrow \mathrm{x}=1$ hay $x=\dfrac{\sqrt{3}-3}{3}$.

Bài 2.

a) Vẽ đồ thị $(P)$ của hàm số $y=-x^{2}$ và đường thẳng $(\mathrm{D}): y=-2 x-3$ trên cùng một hệ trục toạ độ.

b) Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.

Giải

a) Đồ thị tự vẽ.

Lưu ý: $(P)$ đi qua $\mathrm{O}(0 ; 0),(\pm 1 ;-1),(\pm 2 ;-4)$

$(D)$ đi qua $(-1 ;-1),(0 ;-3)$.

b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là

$-x^{2}=-2 x-3 \Leftrightarrow x^{2}-2 x-3=0 \Leftrightarrow x=-1$ hay $x=3($vì $a-b+c=0)$

$y(-1)=-1, y(3)=-9$.

Vậy toạ độ giao điểm của $(P)$ và $(D)$ là $(-1 ;-1),(3 ;-9)$.

Bài 3. Thu gọn các biểu thức sau:

$$A=\sqrt{\dfrac{3 \sqrt{3}-4}{2 \sqrt{3}+1}}+\sqrt{\dfrac{\sqrt{3}+4}{5-2 \sqrt{3}}} $$

$$B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16)  $$

Giải

Ta có: $A=\sqrt{\dfrac{(3 \sqrt{3}-4)(2 \sqrt{3}-1)}{11}}-\sqrt{\dfrac{(\sqrt{3}+4)(5+2 \sqrt{3})}{13}} $

$=\sqrt{\dfrac{22-11 \sqrt{3}}{11}} -\sqrt{\dfrac{26+13 \sqrt{3}}{13}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}} $

$=\dfrac{1}{\sqrt{2}}(\sqrt{4-2 \sqrt{3}}-\sqrt{4+2 \sqrt{3}})=\dfrac{1}{\sqrt{2}}\left(\sqrt{(\sqrt{3}-1)^{2}}-\sqrt{(\sqrt{3}+1)^{2}}\right) $

$=\dfrac{1}{\sqrt{2}}[\sqrt{3}-1-(\sqrt{3}+1)]=-\sqrt{2}$

 

Ta có: $B=\dfrac{x \sqrt{x}-2 x+28}{x-3 \sqrt{x}-4}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} \quad(x \geq 0, x \neq 16) $

$=\dfrac{x \sqrt{x}-2 x+28}{(\sqrt{x}+1)(\sqrt{x}-4)}-\dfrac{\sqrt{x}-4}{\sqrt{x}+1}+\dfrac{\sqrt{x}+8}{4-\sqrt{x}} $

$=\dfrac{x \sqrt{x}-2 x+28-(\sqrt{x}-4)^{2}-(\sqrt{x}+8)(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{x \sqrt{x}-2 x+28-x+8 \sqrt{x}-16-x-9 \sqrt{x}-8}{(\sqrt{x}+1)(\sqrt{x}-4)}=\dfrac{x \sqrt{x}-4 x-\sqrt{x}+4}{(\sqrt{x}+1)(\sqrt{x}-4)} $

$=\dfrac{(\sqrt{x}+1)(\sqrt{x}-1)(\sqrt{x}-4)}{(\sqrt{x}+1)(\sqrt{x}-4)}=\sqrt{x}-1$

Bài 4. Cho phương trình $x^{2}-2 m x-4 m-5=0$ ($x$ là ẩn số)

a) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi $m$.

b) Gọi $x_1, x_2$ là các nghiệm của phương trình. Tìm $m$ để biểu thức $A=x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}$ đạt giá trị nhỏ nhất.

Giải

a) Phương trình $(1)$ có $\Delta^{\prime}=\mathrm{m}^{2}+4 \mathrm{~m}+5=(\mathrm{m}+2)^{2}+1>0$ với mọi $m$ nên phương trình $(1)$ có $2$ nghiệm phân biệt với mọi $m$.

b) Do đó, theo Viet, với mọi $\mathrm{m},$ ta có: $\mathrm{S}=-\dfrac{b}{a}=2 m ; \mathrm{P}=\dfrac{c}{a}=-4 m-5$

$\begin{array}{l} \Rightarrow \mathrm{A}=\left(x_{1}+x_{2}\right)^{2}-3 x_{1} x_{2}=4 m^{2}+3(4 m+5)=(2 m+3)^{2}+6 \geq 6, \text { với mọi } \mathrm{m} . \\ \text { Và } \mathrm{A}=6 \text { khi } \mathrm{m}=\dfrac{-3}{2} \end{array} $

Vậy $A$ đạt giá trị nhỏ nhất là 6 khi $\mathrm{m}=\dfrac{-3}{2}$

Bài 5. Cho đường tròn $(O)$ có tâm $O$, đường kính $BC$. Lấy một điểm $A$ trên đường tròn $(O)$ sao cho $\mathrm{AB}>\mathrm{AC}$. Từ $A$, vẽ $\mathrm{AH}$ vuông góc với $\mathrm{BC}$ ($H$ thuộc $\mathrm{BC}$ ). Từ $\mathrm{H},$ vẽ $\mathrm{HE}$ vuông góc với $\mathrm{AB}$ và $\mathrm{HF}$ vuông góc với $\mathrm{AC}$ (E thuộc $\mathrm{AB}, \mathrm{F}$ thuộc $\mathrm{AC}$ ).

a) Chứng minh rằng $AEHF$ là hình chữ nhật và OA vuông góc với EF.

b) Đường thắng $EF$ cắt đường tròn $(O)$ tại $\mathrm{P}$ và $\mathrm{Q}$ ($E$ nằm giữa $\mathrm{P}$ và $\mathrm{F}$ ). Chứng minh $\mathrm{AP}^{2}=\mathrm{AE} . \mathrm{AB}$. Suy ra $APH$ là tam giác cân.

c) Gọi $D$ là giao điểm của $\mathrm{PQ}$ và $\mathrm{BC} ; \mathrm{K}$ là giao điểm cùa $AD$ và đường tròn $(O)$ ($K$ khác $A$). Chứng minh $AEFK$ là một tứ giác nội tiếp.

d) Gọi $I$ là giao điểm của $\mathrm{KF}$ và $\mathrm{BC}$. Chứng minh $\mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.

Giải

a) Tứ giác $AEHF$ là hình chữ nhật vì có $3$ góc vuông.

$\angle HAF = \angle EFA$ ($AEHF$ là hình chữ nhật),

$\angle OAC=\angle OCA$ ($\triangle OAC$ cân)

Do đó: $\angle OAC+\angle AFE=90^{\circ}$

$\Rightarrow$ $OA$ vuông góc với $EF$.

b) $OA$ vuông góc $\mathrm{PQ} \Rightarrow$ cung $\mathrm{PA}=$ cung $\mathrm{AQ}$

Do đó: $\triangle \mathrm{APE}\backsim \triangle \mathrm{ABP}$

$\Rightarrow \dfrac{A P}{A B}=\dfrac{A E}{A P} \Rightarrow \mathrm{AP}^{2}=\mathrm{AE} \cdot \mathrm{AB}$.

Ta có : $\mathrm{AH}^{2}=$ AE.AB (hệ thức lượng $\Delta \mathrm{HAB}$ vuông tại $\mathrm{H}$, có $\mathrm{HE}$ là chiều cao) $\Rightarrow \mathrm{AP}=\mathrm{AH} \Rightarrow \triangle \mathrm{APH}$ cân tại $\mathrm{A}$

c) $\mathrm{DE.DF}=\mathrm{DC.DB}, \mathrm{DC.DB}=\mathrm{DK.DA} \Rightarrow \mathrm{DE.DF}=\mathrm{DK.DA}$.

Do đó $\Delta \mathrm{DFK}\backsim \Delta \mathrm{DAE} \Rightarrow$ $\angle \mathrm{DKF}= \angle \mathrm{DEA} \Rightarrow$ tứ giác $AEFK$ nội tiếp.

d) $\angle ICF = \angle AEF = \angle DKF$ vậy ta có: $IC\cdot ID=IF\cdot IK$ ( $\triangle \mathrm{ICF}$ đồng dạng $\triangle \mathrm{IKD})$ và $\mathrm{IH}^{2}=IF.IK$ (từ $\triangle \mathrm{IHF}$ đồng dạng $\left.\triangle \mathrm{IKH}\right) \Rightarrow \mathrm{IH}^{2}=\mathrm{IC} . \mathrm{ID}$.