Category Archives: Toán phổ thông

Đề thi chọn đội Dự Tuyển PTNK năm học 2020-2021

Kì thi chọn Dự tuyển trường Phổ thông Năng khiếu tham dự kì thi 30/04 được tổ chức vào tháng 01 năm 2021, đề gồm 4 bài, làm trong 120 phút.

Đề bài

Bài 1. Cho các số thực không âm $a, b, c$ thỏa mãn $a^{2}+b^{2}+c^{2}=1$. Tìm giá trị lớn nhất của biểu thức $$P=\frac{7}{2} a+(1-a)(\sqrt{a}+\sqrt{b}+\sqrt{c})+a^{2} b^{2} c^{2}$$

Bài 2. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn $f(x-f(y))=4 f(x)+3 x+f(y)$ với mọi $x, y \in \mathbb{R}$.

Bài 3. Cho $n$ là số nguyên dương và $A=\left\{m \in \mathbb{N}^{*} \mid \operatorname{gcd}(m, 6)=1, m<30 n\right\}$ với $|A|=8 n+1$. Chứng minh rằng tồn tại 2 số phân biệt $a, b \in A$ sao cho $a \mid b$.
Bài 4. Cho điểm $M$ di động trên đường thẳng $d$ cố định và $O$ là điểm cố định nằm ngoài đường thẳng $d$. Gọi $A$ là hình chiếu của $O$ lên $d$, và $H$ là hình chiếu của $A$ trên $O M$. Gọi $D$ là trung điểm $H M$.
(a) Chứng minh rằng đường thẳng qua $H$, vuông góc với $A D$ luôn đi qua một điểm cố định. Gọi điểm đó là $N$.
(b) Chứng minh rằng tâm đường tròn $(H M N)$ luôn thuộc một đường thẳng cố định. Từ đó tính tỷ số $\frac{A M}{A O}$ để $(H M N)$ và $(O A H)$ tiếp xúc với nhau.

Ánh xạ – Bài tập

Bài giảng ánh xạ

Bài 1 Trong các quy tắc sau, quy tắc nào là ánh xạ?

a) Xét quy tắc $f$ từ tập các số nguyên $\mathbb{Z}$ vào $X = \{-1, 0 , 1\}$ sao cho với mỗi $x\in \mathbb{Z}$ thì:
$f\left( x \right) = \left\{ \begin{gathered}
– 1 \,\, khi\,\,\,x < 0 \hfill \\
0 \,\, khi\,\,\,x = 0 \hfill \\
1 \,\, khi\,\,\,x > 0 \hfill \\
\end{gathered} \right.$

a)Xét quy tắc cho tương ứng mỗi số thực dương $x$ với số thực $y$ sao cho $y^2 = x$.
b)Cho tương ứng các điểm $M$ thuộc mặt phẳng với các điểm $M’$ thuộc mặt phẳng sao cho $\overrightarrow{MM’} = \overrightarrow{u}$ cho trước.
c)Trong mặt phẳng cho tương ứng điểm $M$ với điểm $M’$ sao cho $MM’ = r > 0$ cho trước.
d)Trong mặt phẳng cho đường thẳng $d$. Quy tắc cho tương ứng $M$ thuộc $d$ ứng với $M$, $M$ không thuộc $d$ ứng với $M’$ sao cho $MM’ \bot d$.
e)Quy tắc cho tương ứng mỗi số hữu tỷ ứng với 1, mỗi số vô tỷ ứng với 0.

Bài 2 Trong các ánh xạ ở bài trên, ánh xạ nào là đơn ánh, song ánh, toàn ánh?

Bài 3 Trong các ánh xạ sau, ánh xạ nào là đơn ánh, toàn ánh, song ánh?

a)Ánh xạ $f: \mathbb{R} \to \mathbb{R}$ thỏa $f(x) = x^3$.
b)Ánh xạ $f: \mathbb{Z} \to \mathbb{N}$ thỏa $f(x) = |x|$.
c)Cho tương ứng mỗi số thực với phần nguyên của nó.

Bài 4 Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}: f(x) = x^2+3x+1$.

a)$f$ có là đơn ánh?
b)$f$ có là toàn ánh không?

Bài 5 Cho $f: (0;1) \to (0;+\infty) $ thỏa $f(x) = \dfrac{x}{1-x}$.

a)Tìm $f(f(x))$.
b)Chứng minh $f$ là song ánh.
c)Tìm ánh xạ ngược của $f$.

Bài 6 Cho $A, B, C, D$ là các tập con của $X$. Đặt ${\chi _D}\left( x \right) = \left\{ \begin{gathered}
1\,\,\,\,\,khi\,\,\,x \in D \hfill \\
0\,\,\,\,khi\,\,\,x \notin D \hfill \\
\end{gathered} \right.$.
Chứng minh rằng:

a)Quy tắc trên là ánh xạ từ $X$ vào ${0, 1}$.
b)$\chi A\cdot \chi _A = \chi_A,\chi{X\backslash A} = 1 – \chi_A$
c)$\chi {A \cap B} = \chi_A.\chi _B,\chi{A \cup B} = \chi_A+ \chi_B – \chi_A\cdot \chi_B$
d)$\chi_A \geqslant \chi _B \Leftrightarrow B \subset A,\chi_A \equiv 0 \Leftrightarrow A = \emptyset $

Bài 7 Cho $f: X \to Y$. $A, B$ là các tập con của $X$; $C, D$ là các tập con của $Y$. Đặt $f(A) = {f(x)|x \in A}$ là tập ảnh của $A$; $f^{-1}(C) = {x \in X|f(x) \in X}$ là tạo ảnh của $C$.

a)Chứng minh nếu $A \subset B$ thì $f(A) \subset f(B)$.
b)Nếu $C \subset D$ thì $f^{-1}(C) \subset f^{-1}(D)$.
c)$f(A\cup B) = f(A) \cup f(B)$.
c)$f(A \cap B) \subset f(A) \cap f(B)$. Và $f(A \cap B) = f(A) \cap f(b)$ khi $f$ là đơn ánh.
d)$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ và $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
e)$A \subset f^{-1}(f(A))$.

Bài 8 Cho $h: A \to B$, $g:B \to C$ và $f: C \to D$.

a)Chứng minh rằng nếu $f\circ g$ là đơn ánh và $f$ toàn ánh thì $g$ đơn ánh.
b)Nếu $f \circ g$ là toàn ánh thì $f$ cũng là toàn ánh.
c)Nếu $f, g$ là đơn ánh(toàn ánh, song ánh) thì $f \circ g$ cũng là đơn ánh (toàn ánh, song ánh).
d)Nếu $h$ là song ánh thì $h^{-1}$ cũng là song ánh.
e)Nếu $f \circ g$ và $g \circ h$ là song ánh thì $f, h, g$ cũng là song ánh.

Bài 9 Cho ánh xạ$f:\mathbb{R} \mapsto \left\{ {0,1} \right\}$

$f\left( x \right) = \left\{ \begin{gathered}
1\,\,\,khi\,\,x \in \mathbb{Q} \hfill \\
0\,\,khi\,\,x \notin \mathbb{Q} \hfill \\
\end{gathered} \right.$

a) Tìm tập ảnh của $f$.
b)Tìm ${f^{ – 1}}\left( 1 \right),{f^{ – 1}}\left( 0 \right)$
c)$f$ có là song ánh không? Vì sao?

Bài 10 Cho $A$ và $B$ là hai tập hợp sao cho có một đơn ánh từ $A$ vào $B$. Chứng minh rằng có một toàn ánh từ $B$ vào $A$.

Bài 11 Cho $A$ và $B$ là hai tập hợp sao cho có một toàn ánh từ $A$ vào $B$. Chứng minh rằng có một đơn ánh từ $B$ vào $A$.

Bài 12 Tìm một song ánh từ tập tập các số tự nhiên chẵn đến tập các số tự nhiên lẻ.

Bài 13 Tìm một đơn ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 14 Tìm một song ánh từ tập các số tự nhiên đến tập các số nguyên.

Bài 15 Tìm một song ánh từ tập $\mathbb{N} \times \mathbb{N}$ đến $\mathbb{N}^*$.

Bài 16 Gọi tập X là tập gồm các khoảng có dạng $\left( {a,b} \right)$ thỏa $0 \leqslant a < b \leqslant 1$.
Xét ánh xạ $X \to \left( {0,1} \right),f\left( {\left( {a,b} \right)} \right) = \frac{{a + b}}{2}$

a)$f$ có phải đơn ánh không? Vì sao?
b)$f$ có phải toàn ánh không? Vì sao?

Bài 17 Cho $X$ là tập khác rỗng, $P(X)$ là tập tất cả các tập con của $X$. Có tồn tại hay không một song ánh đi từ $X$ đến $P(X)$?

Bài 18 Tìm một song ánh từ tập $(0;1)$ đến tập các số thực.

Bài 19 Cho $m$ là số nguyên dương và tập $X = \{-m, -m+1, …, -1, 0, 1, …,m\}$. \Ánh xạ $f: X \to X$ thỏa $f(f(n)) = -n$ với mọi $n \in X$.\
Chứng minh $m$ là số chẵn.

Trắc nghiệm lớp 11 – Đại số – Học kì 1

Chương 1. Hàm số lượng giác – Phương trình lượng giác

Bài 1. Hàm số lượng giác

[WpProQuiz 73]

Bài 2. Phương trình lượng giác cơ bản

Bài 3. Phương trình lượng giác không mẫu mực

Bài 4. Ôn tập chương

Chương 2. Tổ hợp – Xác suất

 

Bài 1. Quy tắc cộng – Quy tắc nhân

Bài 2. Chỉnh hợp  – Hoán vị – Tổ hợp

Bài 3. Nhị thức Newton

Bài 4. Xác suất – Các quy tắc xác suất

Bài 5. Ôn tập chương

[WpProQuiz 20]

Chương 3. Dãy số – Cấp số

Bài 1. Dãy số – Tính chất của dãy số

Bài 2. Cấp số cộng

Bài 3. Cấp số nhân

Bài 4. Ôn tập chương

Bài tập Tập hợp

Lí thuyết

Bài 1. Cho các tập $A, B, C, A’, B’, C’$ là tập con của $X$ thỏa:
a) $A \cup B \cup C = X$;
b) $A \cap B = A’ \cap B’, A \cap C = A’ \cap C’, B \cap C = B’ \cap C’$.
c) $A \subset A’, B\subset B’, C\subset C’$.

Chứng minh $A= A’, B = B’, C = C’$.

Bài 2. Cho $A, B$ là các tập con của $X$, ta kí hiệu đối xứng $A \triangle B = (A \cap (X \setminus B)) \cup (B \cap (X \setminus A))$. Chứng minh rằng:
a) $A \triangle \emptyset = A$.
b) $A \triangle A = \emptyset$.
c) $A \triangle X = X \setminus A$.

Bài 3. Cho tập hợp $E$, $P$ là một phân hoạch của $E$, $\mathscr{A}$ là một bộ phận của $P$. Đặt $F = \{x\in E|\exists A\in \mathscr{A},x\in A\}$. Chứng minh $\mathscr{A}$ là một phân hoạch của $F$.

Bài 4. Cho $E$ là một tập hợp, $n\in \mathbb{N}^*$, $A_o, A_1, \cdots, A_n$ là tập con của $E$ sao cho $$\emptyset \subsetneq A_o \subsetneq A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_n = E$$
Đặt $B_o = A_o, B_1 = A_1 \setminus A_o, B_n = A_n \setminus A_{n-1}$.
Chứng minh $B_o, B_1, B_2, \cdots, B_n$ là một phân hoạch của $E$.

Bài 5. Cho $X = \{1, 2, \cdots, n\}$. Cho $F$ là một họ các tập con của $X$, mỗi tập có $r$ phần tử sao cho bất kì $r+1$ tập nào thuộc $F$ thì giao khác rỗng. Chứng minh rằng giao của tất cả các tập trong $F$ cũng khác rỗng.

Bài 6. Cho $A$ là tập con của tập các số hữu tỷ dương thỏa:
a) $1 \in A$.
b) Nếu $x \in A$ thì $x +1 \in A$.
c) Nếu $x \in A$ thì $\dfrac{1}{x} \in A$.
Chứng minh $A$ là tập các số hữu tỷ dương.

Bài 7. Một tập hợp hữu hạn có ít nhất 3 số nguyên dương phân biệt được gọi là tập cân nếu bỏ đi một phần tử bất kì thì các số còn lại có thể chia thành hai tập hợp mà tổng các số trong hai tập hợp đó bằng nhau. Tìm số phần tử nhỏ nhất của một tập cân.

Bài 8.  Cho các số thực $x, y, z$ khác 0 thỏa $xy, yz, xz$ là các số hữu tỉ.
a) Chứng minh $x^2 + y^2 + z^2 $ là số hữu tỉ.
b) Giả sử $x^3+y^3+z^3$ cũng là số hữu tỉ. Chứng minh $x, y, z$ là các số hữu tỉ.

Bài 9. Tìm tất cả các bộ số hữu tỉ dương $(x, y, z)$ sao cho $x+\dfrac{1}{y}, y + \dfrac{1}{z}, z+\dfrac{1}{x}$ là các số nguyên.

Bài 10. Tìm các tập con $A$ khác rỗng của tập ${2,3,4,5,6,…}$ sao cho với mọi $n \in A$ thì cả $n^2+4$ và $\lfloor \sqrt{n} \rfloor +1$ cũng thuộc $A$.

Bài 11. Giả sử tập các số tự nhiên được phân hoạch thành hai tập $A$ và $B$. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại $a, b$ sao cho $a, b, a+b \in A$ hoặc $a, b, a+b \in B$.

Bài 12. Tập hợp $M$ chứa 4 số nguyên phân biệt được gọi là tập liên kết nếu với mỗi $x \in M$ thì ít nhất một trong hai số $x-1, x+1$ thuộc $M$. Gọi $U_n$ là số tập con liên kết của tập $\{1,2,…,n\}$ .

a) Tính $U_7$.
b) Xác định giá trị nhỏ nhất của $n$ sao cho $U_n \ge 2019.$

Bài tập trắc nghiệm đại số 10 – Học kì 1

Chương 1. Mệnh đề – Tập hợp

Bài 1. Mệnh đề

[WpProQuiz 50]

Bài 2. Tập hợp

 

Bài 3. Tổng hợp

[WpProQuiz 72]

Chương 2. Hàm số

Bài 1. Đại cương hàm số

[WpProQuiz 76]

Bài 2. Hàm số bậc nhất

 

Bài 3. Hàm số bậc hai

 

Bài 4. Tổng hợp

Chương 3. Phương trình – Hệ phương trình

Bài 1. Phương trình bậc nhất

 

Bài 2. Phương trình bậc hai – bậc cao

 

Bài 3. Phương trình chứa trị tuyệt đối, chứa căn

 

Bài 4. Hệ phương trình bậc nhất 2 ẩn

 

Bài 5. Hệ phương trình bậc cao

 

Đối xứng trục – Đối xứng tâm

Đối xứng trục

Hai điểm được gọi là đối xứng nhau qua đường thẳng $d$ nếu $d$ là trung trực của đoạn thẳng nối hai điểm đó.

Hai hình được gọi là đối xứng nhau qua đường thẳng $d$ nếu mỗi điểm thuộc hình này đối xứng qua $d$ thì thuộc hình kia và ngược lại.

Đường thẳng $d$ được gọi là trục đối xứng của hình $H$ nếu mỗi điểm thuộc hình $H$ lấy đối xứng qua $d$ cũng thuộc hình $H$.

Hình thang cân có trục đối xứng là đường thẳng qua trung điểm của hai đáy.

Đối xứng tâm

Hai điểm gọi là đối xứng nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.\
– Quy ước: Điểm đối xứng với điểm $O$ qua điểm $O$ cũng là điểm $O$

Điểm $O$ gọi là tâm đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua điểm $O$ cũng thuộc hình $H$. Trong trường hợp này, ta còn nói rằng hình $H$ có tâm đối xứng $O$.

Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. $X$ là một điểm nằm trong tam giác. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $X$ qua $M, N, P$. Chứng minh $AA’, BB’$ và $CC’$ đồng quy.

Bài 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D$ là điểm đối xứng của $H$ qua $AB$, $E$ là điểm đối xứng của $H$ qua $AC$.

a) Chứng minh $A$ là trung điểm của đoạn $DE$.
b) Tứ giác $BDEC$ là hình gì? Tại sao?
c) Gọi $F$ là trung điểm cạnh $BC$. Chứng minh rằng tam giác $FDE$ cân.
d) $EH$ cắt $BD$ tại $G$. Chứng minh $BG = BD$.

Bài 3. Cho tam giác $ABC$ nhọn, về phía ngoài tam giác $ABC$ dựng các tam giác $BAD$ vuông cân tại $A$, $CAE$ vuông cân tại $A$. Dựng hình bình hành $ADFE$.

a) Chứng minh $CD = BE$ và $CD \perp BE$.
b) Chứng minh $AF = BC$ và $AF \perp BC$
c) Gọi $M$ là trung điểm của $BC$. Chứng minh $AM \perp DE$ và $AM = \dfrac{1}{2} DE$.

Bài 4. Cho tam giác $ABC$ nhọn, điểm $D$ thuộc cạnh $BD$. Tìm các điểm $E$ thuộc $AB$ và $F$ thuộc $AC$ sao cho tam giác $DEF$ có chu vi nhỏ nhất.

Bài 5. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $B$, tam giác $ACE$ vuông cân tại $C$. Vẽ đường cao $AH$. Trên tia đối của tia $AH$ lấy điểm $D$ sao cho $AP = BC$. Chứng minh rằng $BE$, $CD$ và $PH$ đồng quy.

Bài 6. Cho tam giác $ABC$ có các đường cao $AD$, $BE$ và $CF$ cắt nhau tại $H$. Đường thẳng qua $B$ vuông góc $AB$, đường thẳng qua $C$ vuông góc $AC$ cắt nhau tại $K$. Gọi $P$ là điểm đối xứng của $H$ qua $BC$.
a) Tứ giác $BHCK$ là hình gì? Tại sao?
b) Tứ giác $BPKC$ là hình gì? Tại sao?

Hình bình hành

Định nghĩa. Hình bình hành là tứ giác có 2 cặp cạnh đối song song.

Tính chất và dấu hiệu nhận biết.

Một tứ giác là hình bình hànnh khi và chỉ khi:

  • Có 2 cặp cạnh đối song song.
  • Có hai cặp cạnh đối bằng nhàu.
  • Có một cặp cạnh đối vừa song song vừa bằng nhau.
  • Có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Bài tập rèn luyện.

Bài 1. Cho tứ giác $ABCD $ có $AC \bot BD$. Dựng các hình bình hành BCED và BDCF. \begin{enumerate}
a) Chứng minh $C$, $E$, $F$ thẳng hàng.
b) Chứng minh tam giác $AEF$ cân.

Gợi ý

Bài 2. Cho tứ giác $ABCD$. Chứng minh các đoạn nối trung điểm các cạnh đối diện và các đoạn nối trung điểm của hai đường chéo đồng qui.

Gợi ý

Bài 3. Cho tam giác $ABC$, các đường cao $BD$ và $CE$ cắt nhau tại $H$. Đường thẳng qua $C$ vuông góc $AC$ và đường thẳng qua $B$ vuông góc $AB$ cắt nhau tại $F$.

a)Tứ giác $HBFC$ là hình gì? Tại sao?
b) Gọi $M$ là trung điểm của $BC$. Chứng minh $H$, $M$, $F$ thẳng hàng.
c) Đường thẳng qua $F$ song song $BC$ cắt $AH$ tại $G$. Tứ giác $BGFC$ là hình gì? Tại sao?

Gợi ý

Bài 4. Cho tam giác $ABC$, trung tuyến $BM$ và $CN$. Trên tia đối của tia $MB$, $NC$ lấy các điểm $D$ và $E$ sao cho $DM = MB, NE = NC$.

a) Tứ giác $ABCD$, $ACBE$ là hình gì? Tại sao?
b) Chứng minh $A$ là trung điểm của $DE$.

Gợi ý

Bài 5. Cho hình bình hành ABCD và đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Gọi $M, N, P$ là hình chiếu vuông góc của $B$, $C$ , $D$ trên $d$. Chứng minh $BM + DP = 2CN$.

Gợi ý

Đường trung bình

Định nghĩa. Trong tam giác đoạn thẳng nối hai trung điểm của hai cạnh của tam giác được gọi là đường trung bình của tam giác đó.

Tính chất.

  • Đường trung bình của tam giác là đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
  • Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Định nghĩa. Trong một hình thang, đoạn thẳng nối trung điểm hai cạnh bên đường gọi là đường trung bình của hình thang.

Tính chất.

  • Đường trung bình của hình thang thì song song với hai đáy và có độ dài bằng nửa tổng hai đáy.
  • Đường thẳng qua trung điểm của một cạnh bên và song song với hai đáy thì qua trung điểm của cạnh bên còn lại.

Bài tập rèn luyện

Bài 1. Cho tứ giác $ABCD$ có $AD = BC$. Gọi $M$, $N$ lần lượt là trung điểm của $AB$ và $CD$; đường thẳng $MN$ cắt các đường thẳng $AD$ và $BC$ tại $P$ và $Q$. Chứng minh rằng $ \widehat{DPN} = \widehat{CQN} $.

Bài 2. Cho tam giác $ABC$ cân tại $A$, trên tia $BA$ và tia đối $CA$ lấy điểm $M$, $N$ thay đổi sao cho $BM = CN$.

a) Chứng minh rằng $BC$ đi qua trung điểm đoạn $MN$.
b) Gọi $H$, $K$ là hình chiếu vuông góc của $M$, $N$ trên đường thẳng $BC$. Chứng minh rằng $HK$ có độ dài không đổi.

Bài 3. Cho hình thang cân $ABCD$ có $AB // CD$, $AB < CD$, $ \widehat{ACD} = 45^\circ $. Gọi $H$ là trực tâm của tam giác $ACD$. Chứng minh rằng $CH = CB$.

Bài 4. Cho tam giác $ABC$, $M$ là trung điểm của cạnh $BC$. Trên cạnh $AC$ ta lấy điểm $D$ và $E$ sao cho $AD = DE = EC$. Gọi $I$ là giao điểm của $AM$ và $BD$.

a) Chứng minh $ME // BD$.
b) Chứng minh $I$ là trung điểm của $AM$.
c) Chứng minh $IB =3ID$.
d) Lấy trên $AB$ một điểm $F$ sao cho $ AF = \dfrac{1}{3}AB $. Chứng minh ba điểm $C$, $I$, $F$ thẳng hàng.

Bài 5. Cho tam giác $ABC$ cân tại $A$, $M$ là trung điểm $BC$, vẽ $MH \bot AC$ ($H$ thuộc $AC$). Gọi $N$ là trung điểm $MH$, chứng minh $AN$ vuông góc $BH$.

Hình thang

Định nghĩa 1. Hình thang là tứ giác có 2 cạnh đối song song.

Trong hình 2, hình thang $ABCD$ có cạnh đối $AB\parallel CD$.

  • $AB, CD$ là cạnh đáy.
  • $AD, BC$ cạnh bên.

Định nghĩa 2.

1) Hình thang vuông là hình thang có một góc vuông.

2) Hình thang cân. Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Định lý 1. Trong một hình thang cân thì 2 đường chéo bằng nhau và 2 cạnh bên bằng nhau.

Chứng minh.

Định lý 2. Hình thang có 2 đường chéo bằng nhau là hình thang cân.

Dấu hiệu nhận biết hình thang cân.

  • Hình thang có hai góc kề đáy bằng nhau là hình thang cân.
  • Hình thang có hai đường chéo bằng nhau là hình thang cân.

Bài tập rèn luyện.

Bài 1. Chứng minh tứ giác $ABCD$ là hình thang trong các trường hợp sau:

a) $\angle A +\angle D= \angle B+ \angle C$.
b) $\angle A = 2\angle D = 3\angle B$ và $C = 140^\circ$.

Bài 2. Cho tứ giác $ABCD$ có $AB = AD$ và đường chéo $DB$ cũng đồng thời là phân giác góc $D$. Chứng minh $ABCD$ là hình thang.

Bài 3. Cho tam giác $ ABC $ có $ AH $ là đường cao. Tia phân giác của góc $ B $ cắt $ AC $ tại $ M $. Từ $ M $ kẻ đường thẳng vuông góc với $ AH $ cắt $ AB $ tại $ N $.

a)Chứng minh rằng tứ giác $ BCMN $ là hình thang.
b) Chứng minh rằng $ BN = MN. $

Gợi ý

Bài 4. Cho hình thang $ ABCD $ ($ AB $ và $ CD $ là hai đáy và $ AB < CD $), $ AD = BC = AB $, $ \widehat{BDC}= 30^\circ. $ Tính các góc của hình thang.

Gợi ý

Bài 5. Cho tam giác $ ABC $ $ (AB < AC) $. Trên tia $ AC $ lấy điểm $ N $ sao cho $ AN = AB $, trên tia $ AB $ lấy điểm $ M $ sao cho $ AM = AC $. Chứng minh rằng tứ giác $ BMCN $ là hình thang.

Gợi ý

Bài 6. Cho tam giác $ABC$ vuông góc tại đỉnh $A$. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $D$ và $AEC$ vuông cân tại $E$.

a) Chứng minh $BDEC$ là hình thang vuông.
b) Chứng minh $ED\sqrt{2} = BD + CE$.

Gợi ý

Bài 7. Cho tam giác $ABC$ vuông góc tại $A$. Kẻ đường cao $AH$. Một điểm $M$ thuộc cạnh huyền $BC$ sao cho $CM = CA$. Đường thẳng qua $M$ song song với $CA$ cắt $AB$ tại điểm $I$.

a) Chứng minh tứ giác $ACMI$ là hình thang vuông.
b) Chứng minh $MI = MH$ và $AI = AH$.
c) Chứng minh bất đẳng thức $AB + AC < AH + BC$.

Gợi ý

Bài 8. Cho tam giác $ABC $ vuông cân tại $A $. Trên các cạnh $AB $, $AC $ lấy các điểm $M $, $N $ sao cho $AM = AN $

a)Tứ giác $BMNC $ là hình gì? Vì sao?
b) Gọi $I $ là giao điểm của $BN $ và $CM $. Chứng minh $ IA \bot MN. $

Gợi ý

Bài 9. Cho hình thang cân $ABCD $ có $AB // CD$, $CD = 3AB$. Gọi $H$, $K $là hình chiếu của $A $, $B $ trên $CD $.

a) Chứng minh $DH = CK $.
b) Tứ giác $ABCK $ là hình gì? Vì sao?
c) Gọi $I $ là giao điểm của $BD $ và $AH $, $O $ là giao điểm của $AC $ và $ BK $. Chứng minh rằng đường thẳng $IO $ đi qua trung điểm $AD $, $BC $.

Gợi ý

Định lý Carnot

Ta bắt đầu với định lí 4 điểm, được sử dụng trong việc chứng minh các đường thẳng vuông góc.

Định lý 1. Cho các đoạn thẳng $AB$ và $CD$. Chứng minh rằng $AB$ vuông góc $CD$ khi và chỉ khi $$AC^2 – AD^2 = BC^2 – BD^2$$

Chứng minh. Chứng minh định lí ta có thể dụng định lí pitago  hoặc có thể dùng trục đẳng phương (thực ra cũng tương đương như dùng pitago)

Xét các đường tròn $(C;CA)$ và $(D;DA)$ ta có $BC^2 – CA^2 = BD^2 – BD^2$
hay $P_{B/(C;CA)} = P_{B/(D;DA)}$.
Do đó $AB$ là trục đẳng phương của $(C)$ và $(D)$ nên $AB \bot CD$.

Định lý 2. (Định lý Carnot) Cho tam giác $ABC$, các điểm $M, N, P$ lần lượt thuộc các đường thẳng $BC, AC$ và $AB$. Khi đó đường thẳng qua $M, N, P$ lần lượt vuông góc $BC, AC$ và $AB$ đồng quy khi và chỉ khi $$MB^2 – MC^2 + NC^2 – NA^2 + PA^2 -PB^2 = 0$$

Chứng minh.

Gọi $X$ là giao điểm của đường thẳng qua $P$ vuông góc $AB$ và đường thẳng qua $N$ vuông góc $AC$. Theo định lí 4 điểm ta có
$XA^2 – XB^2 = PA^2 – PB^2$ và $XC^2 – XA^2= NC^2 – NA^2$
Khi đó $PA^2-PB^2 + NC^2- NA^2 = XC^2-XB^2$.\
Do đó $XM$ vuông góc với $BC$ khi và chỉ khi $XC^2-XB^2 = MC^2 -MB^2$\
hay $PA^2-PB^2 +NC^2+NA^2 = MC^2-MB^2 \Leftrightarrow MB^2 – MC^2 + NC^2 – NA^2 + PA^2 -PB^2 = 0$.