Category Archives: Toán phổ thông

Bài tập Tập hợp

Lí thuyết

Bài 1. Cho các tập $A, B, C, A’, B’, C’$ là tập con của $X$ thỏa:
a) $A \cup B \cup C = X$;
b) $A \cap B = A’ \cap B’, A \cap C = A’ \cap C’, B \cap C = B’ \cap C’$.
c) $A \subset A’, B\subset B’, C\subset C’$.

Chứng minh $A= A’, B = B’, C = C’$.

Bài 2. Cho $A, B$ là các tập con của $X$, ta kí hiệu đối xứng $A \triangle B = (A \cap (X \setminus B)) \cup (B \cap (X \setminus A))$. Chứng minh rằng:
a) $A \triangle \emptyset = A$.
b) $A \triangle A = \emptyset$.
c) $A \triangle X = X \setminus A$.

Bài 3. Cho tập hợp $E$, $P$ là một phân hoạch của $E$, $\mathscr{A}$ là một bộ phận của $P$. Đặt $F = \{x\in E|\exists A\in \mathscr{A},x\in A\}$. Chứng minh $\mathscr{A}$ là một phân hoạch của $F$.

Bài 4. Cho $E$ là một tập hợp, $n\in \mathbb{N}^*$, $A_o, A_1, \cdots, A_n$ là tập con của $E$ sao cho $$\emptyset \subsetneq A_o \subsetneq A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_n = E$$
Đặt $B_o = A_o, B_1 = A_1 \setminus A_o, B_n = A_n \setminus A_{n-1}$.
Chứng minh $B_o, B_1, B_2, \cdots, B_n$ là một phân hoạch của $E$.

Bài 5. Cho $X = \{1, 2, \cdots, n\}$. Cho $F$ là một họ các tập con của $X$, mỗi tập có $r$ phần tử sao cho bất kì $r+1$ tập nào thuộc $F$ thì giao khác rỗng. Chứng minh rằng giao của tất cả các tập trong $F$ cũng khác rỗng.

Bài 6. Cho $A$ là tập con của tập các số hữu tỷ dương thỏa:
a) $1 \in A$.
b) Nếu $x \in A$ thì $x +1 \in A$.
c) Nếu $x \in A$ thì $\dfrac{1}{x} \in A$.
Chứng minh $A$ là tập các số hữu tỷ dương.

Bài 7. Một tập hợp hữu hạn có ít nhất 3 số nguyên dương phân biệt được gọi là tập cân nếu bỏ đi một phần tử bất kì thì các số còn lại có thể chia thành hai tập hợp mà tổng các số trong hai tập hợp đó bằng nhau. Tìm số phần tử nhỏ nhất của một tập cân.

Bài 8.  Cho các số thực $x, y, z$ khác 0 thỏa $xy, yz, xz$ là các số hữu tỉ.
a) Chứng minh $x^2 + y^2 + z^2 $ là số hữu tỉ.
b) Giả sử $x^3+y^3+z^3$ cũng là số hữu tỉ. Chứng minh $x, y, z$ là các số hữu tỉ.

Bài 9. Tìm tất cả các bộ số hữu tỉ dương $(x, y, z)$ sao cho $x+\dfrac{1}{y}, y + \dfrac{1}{z}, z+\dfrac{1}{x}$ là các số nguyên.

Bài 10. Tìm các tập con $A$ khác rỗng của tập ${2,3,4,5,6,…}$ sao cho với mọi $n \in A$ thì cả $n^2+4$ và $\lfloor \sqrt{n} \rfloor +1$ cũng thuộc $A$.

Bài 11. Giả sử tập các số tự nhiên được phân hoạch thành hai tập $A$ và $B$. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại $a, b$ sao cho $a, b, a+b \in A$ hoặc $a, b, a+b \in B$.

Bài 12. Tập hợp $M$ chứa 4 số nguyên phân biệt được gọi là tập liên kết nếu với mỗi $x \in M$ thì ít nhất một trong hai số $x-1, x+1$ thuộc $M$. Gọi $U_n$ là số tập con liên kết của tập $\{1,2,…,n\}$ .

a) Tính $U_7$.
b) Xác định giá trị nhỏ nhất của $n$ sao cho $U_n \ge 2019.$

Bài tập trắc nghiệm đại số 10 – Học kì 1

Chương 1. Mệnh đề – Tập hợp

Bài 1. Mệnh đề

[WpProQuiz 50]

Bài 2. Tập hợp

 

Bài 3. Tổng hợp

[WpProQuiz 72]

Chương 2. Hàm số

Bài 1. Đại cương hàm số

[WpProQuiz 76]

Bài 2. Hàm số bậc nhất

 

Bài 3. Hàm số bậc hai

 

Bài 4. Tổng hợp

Chương 3. Phương trình – Hệ phương trình

Bài 1. Phương trình bậc nhất

 

Bài 2. Phương trình bậc hai – bậc cao

 

Bài 3. Phương trình chứa trị tuyệt đối, chứa căn

 

Bài 4. Hệ phương trình bậc nhất 2 ẩn

 

Bài 5. Hệ phương trình bậc cao

 

Đối xứng trục – Đối xứng tâm

Đối xứng trục

Hai điểm được gọi là đối xứng nhau qua đường thẳng $d$ nếu $d$ là trung trực của đoạn thẳng nối hai điểm đó.

Hai hình được gọi là đối xứng nhau qua đường thẳng $d$ nếu mỗi điểm thuộc hình này đối xứng qua $d$ thì thuộc hình kia và ngược lại.

Đường thẳng $d$ được gọi là trục đối xứng của hình $H$ nếu mỗi điểm thuộc hình $H$ lấy đối xứng qua $d$ cũng thuộc hình $H$.

Hình thang cân có trục đối xứng là đường thẳng qua trung điểm của hai đáy.

Đối xứng tâm

Hai điểm gọi là đối xứng nhau qua điểm $O$ nếu $O$ là trung điểm của đoạn thẳng nối hai điểm đó.\
– Quy ước: Điểm đối xứng với điểm $O$ qua điểm $O$ cũng là điểm $O$

Điểm $O$ gọi là tâm đối xứng của hình $H$ nếu điểm đối xứng với mỗi điểm thuộc hình $H$ qua điểm $O$ cũng thuộc hình $H$. Trong trường hợp này, ta còn nói rằng hình $H$ có tâm đối xứng $O$.

Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.

Bài tập rèn luyện

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. $X$ là một điểm nằm trong tam giác. Gọi $A’, B’, C’$ lần lượt là điểm đối xứng của $X$ qua $M, N, P$. Chứng minh $AA’, BB’$ và $CC’$ đồng quy.

Bài 2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D$ là điểm đối xứng của $H$ qua $AB$, $E$ là điểm đối xứng của $H$ qua $AC$.

a) Chứng minh $A$ là trung điểm của đoạn $DE$.
b) Tứ giác $BDEC$ là hình gì? Tại sao?
c) Gọi $F$ là trung điểm cạnh $BC$. Chứng minh rằng tam giác $FDE$ cân.
d) $EH$ cắt $BD$ tại $G$. Chứng minh $BG = BD$.

Bài 3. Cho tam giác $ABC$ nhọn, về phía ngoài tam giác $ABC$ dựng các tam giác $BAD$ vuông cân tại $A$, $CAE$ vuông cân tại $A$. Dựng hình bình hành $ADFE$.

a) Chứng minh $CD = BE$ và $CD \perp BE$.
b) Chứng minh $AF = BC$ và $AF \perp BC$
c) Gọi $M$ là trung điểm của $BC$. Chứng minh $AM \perp DE$ và $AM = \dfrac{1}{2} DE$.

Bài 4. Cho tam giác $ABC$ nhọn, điểm $D$ thuộc cạnh $BD$. Tìm các điểm $E$ thuộc $AB$ và $F$ thuộc $AC$ sao cho tam giác $DEF$ có chu vi nhỏ nhất.

Bài 5. Cho tam giác $ABC$ nhọn. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $B$, tam giác $ACE$ vuông cân tại $C$. Vẽ đường cao $AH$. Trên tia đối của tia $AH$ lấy điểm $D$ sao cho $AP = BC$. Chứng minh rằng $BE$, $CD$ và $PH$ đồng quy.

Bài 6. Cho tam giác $ABC$ có các đường cao $AD$, $BE$ và $CF$ cắt nhau tại $H$. Đường thẳng qua $B$ vuông góc $AB$, đường thẳng qua $C$ vuông góc $AC$ cắt nhau tại $K$. Gọi $P$ là điểm đối xứng của $H$ qua $BC$.
a) Tứ giác $BHCK$ là hình gì? Tại sao?
b) Tứ giác $BPKC$ là hình gì? Tại sao?

Hình bình hành

Định nghĩa. Hình bình hành là tứ giác có 2 cặp cạnh đối song song.

Tính chất và dấu hiệu nhận biết.

Một tứ giác là hình bình hànnh khi và chỉ khi:

  • Có 2 cặp cạnh đối song song.
  • Có hai cặp cạnh đối bằng nhàu.
  • Có một cặp cạnh đối vừa song song vừa bằng nhau.
  • Có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Bài tập rèn luyện.

Bài 1. Cho tứ giác $ABCD $ có $AC \bot BD$. Dựng các hình bình hành BCED và BDCF. \begin{enumerate}
a) Chứng minh $C$, $E$, $F$ thẳng hàng.
b) Chứng minh tam giác $AEF$ cân.

Gợi ý

Bài 2. Cho tứ giác $ABCD$. Chứng minh các đoạn nối trung điểm các cạnh đối diện và các đoạn nối trung điểm của hai đường chéo đồng qui.

Gợi ý

Bài 3. Cho tam giác $ABC$, các đường cao $BD$ và $CE$ cắt nhau tại $H$. Đường thẳng qua $C$ vuông góc $AC$ và đường thẳng qua $B$ vuông góc $AB$ cắt nhau tại $F$.

a)Tứ giác $HBFC$ là hình gì? Tại sao?
b) Gọi $M$ là trung điểm của $BC$. Chứng minh $H$, $M$, $F$ thẳng hàng.
c) Đường thẳng qua $F$ song song $BC$ cắt $AH$ tại $G$. Tứ giác $BGFC$ là hình gì? Tại sao?

Gợi ý

Bài 4. Cho tam giác $ABC$, trung tuyến $BM$ và $CN$. Trên tia đối của tia $MB$, $NC$ lấy các điểm $D$ và $E$ sao cho $DM = MB, NE = NC$.

a) Tứ giác $ABCD$, $ACBE$ là hình gì? Tại sao?
b) Chứng minh $A$ là trung điểm của $DE$.

Gợi ý

Bài 5. Cho hình bình hành ABCD và đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Gọi $M, N, P$ là hình chiếu vuông góc của $B$, $C$ , $D$ trên $d$. Chứng minh $BM + DP = 2CN$.

Gợi ý

Đường trung bình

Định nghĩa. Trong tam giác đoạn thẳng nối hai trung điểm của hai cạnh của tam giác được gọi là đường trung bình của tam giác đó.

Tính chất.

  • Đường trung bình của tam giác là đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
  • Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

Định nghĩa. Trong một hình thang, đoạn thẳng nối trung điểm hai cạnh bên đường gọi là đường trung bình của hình thang.

Tính chất.

  • Đường trung bình của hình thang thì song song với hai đáy và có độ dài bằng nửa tổng hai đáy.
  • Đường thẳng qua trung điểm của một cạnh bên và song song với hai đáy thì qua trung điểm của cạnh bên còn lại.

Bài tập rèn luyện

Bài 1. Cho tứ giác $ABCD$ có $AD = BC$. Gọi $M$, $N$ lần lượt là trung điểm của $AB$ và $CD$; đường thẳng $MN$ cắt các đường thẳng $AD$ và $BC$ tại $P$ và $Q$. Chứng minh rằng $ \widehat{DPN} = \widehat{CQN} $.

Bài 2. Cho tam giác $ABC$ cân tại $A$, trên tia $BA$ và tia đối $CA$ lấy điểm $M$, $N$ thay đổi sao cho $BM = CN$.

a) Chứng minh rằng $BC$ đi qua trung điểm đoạn $MN$.
b) Gọi $H$, $K$ là hình chiếu vuông góc của $M$, $N$ trên đường thẳng $BC$. Chứng minh rằng $HK$ có độ dài không đổi.

Bài 3. Cho hình thang cân $ABCD$ có $AB // CD$, $AB < CD$, $ \widehat{ACD} = 45^\circ $. Gọi $H$ là trực tâm của tam giác $ACD$. Chứng minh rằng $CH = CB$.

Bài 4. Cho tam giác $ABC$, $M$ là trung điểm của cạnh $BC$. Trên cạnh $AC$ ta lấy điểm $D$ và $E$ sao cho $AD = DE = EC$. Gọi $I$ là giao điểm của $AM$ và $BD$.

a) Chứng minh $ME // BD$.
b) Chứng minh $I$ là trung điểm của $AM$.
c) Chứng minh $IB =3ID$.
d) Lấy trên $AB$ một điểm $F$ sao cho $ AF = \dfrac{1}{3}AB $. Chứng minh ba điểm $C$, $I$, $F$ thẳng hàng.

Bài 5. Cho tam giác $ABC$ cân tại $A$, $M$ là trung điểm $BC$, vẽ $MH \bot AC$ ($H$ thuộc $AC$). Gọi $N$ là trung điểm $MH$, chứng minh $AN$ vuông góc $BH$.

Hình thang

Định nghĩa 1. Hình thang là tứ giác có 2 cạnh đối song song.

Trong hình 2, hình thang $ABCD$ có cạnh đối $AB\parallel CD$.

  • $AB, CD$ là cạnh đáy.
  • $AD, BC$ cạnh bên.

Định nghĩa 2.

1) Hình thang vuông là hình thang có một góc vuông.

2) Hình thang cân. Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.

Định lý 1. Trong một hình thang cân thì 2 đường chéo bằng nhau và 2 cạnh bên bằng nhau.

Chứng minh.

Định lý 2. Hình thang có 2 đường chéo bằng nhau là hình thang cân.

Dấu hiệu nhận biết hình thang cân.

  • Hình thang có hai góc kề đáy bằng nhau là hình thang cân.
  • Hình thang có hai đường chéo bằng nhau là hình thang cân.

Bài tập rèn luyện.

Bài 1. Chứng minh tứ giác $ABCD$ là hình thang trong các trường hợp sau:

a) $\angle A +\angle D= \angle B+ \angle C$.
b) $\angle A = 2\angle D = 3\angle B$ và $C = 140^\circ$.

Bài 2. Cho tứ giác $ABCD$ có $AB = AD$ và đường chéo $DB$ cũng đồng thời là phân giác góc $D$. Chứng minh $ABCD$ là hình thang.

Bài 3. Cho tam giác $ ABC $ có $ AH $ là đường cao. Tia phân giác của góc $ B $ cắt $ AC $ tại $ M $. Từ $ M $ kẻ đường thẳng vuông góc với $ AH $ cắt $ AB $ tại $ N $.

a)Chứng minh rằng tứ giác $ BCMN $ là hình thang.
b) Chứng minh rằng $ BN = MN. $

Gợi ý

Bài 4. Cho hình thang $ ABCD $ ($ AB $ và $ CD $ là hai đáy và $ AB < CD $), $ AD = BC = AB $, $ \widehat{BDC}= 30^\circ. $ Tính các góc của hình thang.

Gợi ý

Bài 5. Cho tam giác $ ABC $ $ (AB < AC) $. Trên tia $ AC $ lấy điểm $ N $ sao cho $ AN = AB $, trên tia $ AB $ lấy điểm $ M $ sao cho $ AM = AC $. Chứng minh rằng tứ giác $ BMCN $ là hình thang.

Gợi ý

Bài 6. Cho tam giác $ABC$ vuông góc tại đỉnh $A$. Về phía ngoài tam giác dựng các tam giác $ABD$ vuông cân tại $D$ và $AEC$ vuông cân tại $E$.

a) Chứng minh $BDEC$ là hình thang vuông.
b) Chứng minh $ED\sqrt{2} = BD + CE$.

Gợi ý

Bài 7. Cho tam giác $ABC$ vuông góc tại $A$. Kẻ đường cao $AH$. Một điểm $M$ thuộc cạnh huyền $BC$ sao cho $CM = CA$. Đường thẳng qua $M$ song song với $CA$ cắt $AB$ tại điểm $I$.

a) Chứng minh tứ giác $ACMI$ là hình thang vuông.
b) Chứng minh $MI = MH$ và $AI = AH$.
c) Chứng minh bất đẳng thức $AB + AC < AH + BC$.

Gợi ý

Bài 8. Cho tam giác $ABC $ vuông cân tại $A $. Trên các cạnh $AB $, $AC $ lấy các điểm $M $, $N $ sao cho $AM = AN $

a)Tứ giác $BMNC $ là hình gì? Vì sao?
b) Gọi $I $ là giao điểm của $BN $ và $CM $. Chứng minh $ IA \bot MN. $

Gợi ý

Bài 9. Cho hình thang cân $ABCD $ có $AB // CD$, $CD = 3AB$. Gọi $H$, $K $là hình chiếu của $A $, $B $ trên $CD $.

a) Chứng minh $DH = CK $.
b) Tứ giác $ABCK $ là hình gì? Vì sao?
c) Gọi $I $ là giao điểm của $BD $ và $AH $, $O $ là giao điểm của $AC $ và $ BK $. Chứng minh rằng đường thẳng $IO $ đi qua trung điểm $AD $, $BC $.

Gợi ý

Định lý Carnot

Ta bắt đầu với định lí 4 điểm, được sử dụng trong việc chứng minh các đường thẳng vuông góc.

Định lý 1. Cho các đoạn thẳng $AB$ và $CD$. Chứng minh rằng $AB$ vuông góc $CD$ khi và chỉ khi $$AC^2 – AD^2 = BC^2 – BD^2$$

Chứng minh. Chứng minh định lí ta có thể dụng định lí pitago  hoặc có thể dùng trục đẳng phương (thực ra cũng tương đương như dùng pitago)

Xét các đường tròn $(C;CA)$ và $(D;DA)$ ta có $BC^2 – CA^2 = BD^2 – BD^2$
hay $P_{B/(C;CA)} = P_{B/(D;DA)}$.
Do đó $AB$ là trục đẳng phương của $(C)$ và $(D)$ nên $AB \bot CD$.

Định lý 2. (Định lý Carnot) Cho tam giác $ABC$, các điểm $M, N, P$ lần lượt thuộc các đường thẳng $BC, AC$ và $AB$. Khi đó đường thẳng qua $M, N, P$ lần lượt vuông góc $BC, AC$ và $AB$ đồng quy khi và chỉ khi $$MB^2 – MC^2 + NC^2 – NA^2 + PA^2 -PB^2 = 0$$

Chứng minh.

Gọi $X$ là giao điểm của đường thẳng qua $P$ vuông góc $AB$ và đường thẳng qua $N$ vuông góc $AC$. Theo định lí 4 điểm ta có
$XA^2 – XB^2 = PA^2 – PB^2$ và $XC^2 – XA^2= NC^2 – NA^2$
Khi đó $PA^2-PB^2 + NC^2- NA^2 = XC^2-XB^2$.\
Do đó $XM$ vuông góc với $BC$ khi và chỉ khi $XC^2-XB^2 = MC^2 -MB^2$\
hay $PA^2-PB^2 +NC^2+NA^2 = MC^2-MB^2 \Leftrightarrow MB^2 – MC^2 + NC^2 – NA^2 + PA^2 -PB^2 = 0$.

Ý tưởng chuyển đổi mô hình trong các bài toán hình học phẳng

(Bài viết của Đào Sơn Trà – SV ĐHSP TPHCM)

 

Giới thiệu ý tưởng

Trong tam giác $ABC$ nhọn có $D,E,F$ là các chân đường cao và $H$ là trực tâm. Khi đó:

a) $H$ là tâm đường tròn nội tiếp tam giác $DEF$.
b) $A,B,C$ là tâm bàng tiếp của tam giác $DEF$.

Từ đây ta có thể đổi giữa hai mô hình “bàng tiếp – trực tâm” để xem cách tiếp cận nào thuận lợi hơn để xử lý bài toán. Tất nhiên trong tình huống tam giác tù hoặc vuông cũng có các kết quả tương tự nhưng để đơn giản, ta không đề cập ở đây. Trong các ví dụ, bài tập bên dưới, ta quy ước xét các tam giác nhọn, không cân:

Ví dụ 1.
Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $H,K,L$ lần lượt là hình chiếu của $A,B,C$ lên $EF,DF,DE$. Chứng minh rằng các đường thẳng $DH,EK,FL$ đồng quy; các đường thẳng $AH,BK,CL$ đồng quy.

Ta phát biểu lại bài toán như sau: Cho tam giác $DEF$ có $A,B,C$ lần lượt là tâm đường tròn bàng tiếp góc $D,E,F$. Gọi $H,K,L$ lần lượt là hình chiếu của $A,B,C$ lên $EF,DF,DE$. Chứng minh rằng $DH,EK,FL$ đồng quy và $AH,BK,CL$ cũng đồng quy.
Lời giải.

Sau khi chuyển đổi mô hình ta có thể dễ dàng chứng minh được ý a) $DH,EK,FL$ đồng quy (tại điểm Nagel của tam giác $DEF$) bằng cách kết hợp tính chất đường tròn bàng tiếp và định lý Ceva.

Với ý b) ta có: $EF$ là phân giác $\angle DEF$ nên $\angle FEA=\angle DEC$ suy ra $$90^\circ – \angle FEA = 90^\circ – \angle DEC \Rightarrow \angle HAC= \angle LCA$$

Gọi $O$ là giao điểm của $HA$ và $CL$. Khi đó: $$\angle AOC=180^\circ-2\angle HAC=2(90^\circ -\angle HAC)=2\angle BAC$$
nên $AH,CL,BK$ đồng quy tại tâm $(ABC)$.

Ví dụ 2.
Cho tam giác $ABC$ nội tiếp đường tròn $(O;R)$ có $BE,CF$ là hai phân giác cắt nhau tại $I$. $EF$ cắt đường tròn $(O)$ tại hai điểm $M,N$. Chứng minh bán kính đường tròn ngoại tiếp tam giác $IMN$ bằng $2R$.

Ở ví dụ này không xuất hiện trực tiếp yếu tố “trực tâm” hay “tâm bàng tiếp” nhưng ta vẫn có thể vận dụng ý tưởng trên bằng cách xem tâm nội $I$ của tam giác $ABC$ là trực tâm của tam giác tạo bởi $3$ tâm đường tròn bàng tiếp. Cụ thể, ví dụ trên tương đương với bài toán sau:

Cho tam giác $ABC$ nội tiếp $(O;R)$ có đường cao $AD,BE,CF$ cắt nhau tại $H$. Gọi $K,L$ lần lượt là giao điểm của các cặp đường thẳng $(CH,DE),(BH,DF)$. $KL$ cắt đường tròn $Euler$ của tam giác $ABC$ tại $M,N$. Chứng minh bán kính đường tròn ngoại tiếp tam giác $HMN$ bằng $R$.

Lời giải.
Do tứ giác $BDHF$ và $DCEH$ nội tiếp nên ta có:
$$\overline {LD} \cdot \overline {LF} = \overline {LH} \cdot \overline {LB} \Rightarrow P_{L/(DEF)} = P_{L/(BHC)}$$

$$\overline {KC} \cdot \overline {KH} = \overline {KD} \cdot \overline {KE} \Rightarrow P_{K/(DEF)} = P_{K/(BHC)}$$
suy ra $LK$ là trục đẳng phương của $(DEF)$ và $(BHC)$ nên $M,N$ nằm trên $(BHC)$.

Theo tính chất quen thuộc thì $(BHC)$ đối xứng với $(ABC)$ qua $BC$ nên bán kính $(HMN)$ cũng bằng $R$.

Bài tập vận dụng
Bài 1. Cho tam giác $(ABC)$ nội tiếp đường tròn $(O)$. Gọi $M,N,P$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C$ của tam giác $ABC$. Giả sử $BC$ cắt $NP$ tại $R$ và $T$ là trung điểm cung lớn $BC$ của $(O)$. Chứng minh rằng $MT \bot IR$ với $I$ là tâm đường tròn nội tiếp tam giác $ABC$.

Lời giải
Bài toán được phát biểu lại như sau:

Cho tam giác $MNP$ có $I$ là trực tâm và $A,B,C$ lần lượt là chân đường cao kẻ từ $M,N,P$. $BC$ cắt $NP$ tại $R$. Gọi $T$ là trung điểm cung lớn $BC$ của $(ABC)$. Chứng minh $MI \bot IR$.

Dễ thấy $(ABC)$ là đường tròn $Euler$ của tam giác $MNP$ và $T$ là trung điểm $NP$. Ta sẽ chứng minh $IR$ là trục đẳng phương của $(TM)$ và $(BC)$. \medskip

Ta có:

$$\overline {RA} \cdot \overline {RT} = \overline {RC} \cdot \overline {RB} \Rightarrow P_{R/(NP)} = P_{R/(MT)}$$
$$\overline {IA} \cdot \overline {IM} = \overline {IB} \cdot \overline {IN} \Rightarrow P_{I/(NP)} = P_{I/(MT)}$$

Vậy $IR$ là trục đẳng phương của $(MT)$ và $(NP)$ nên $IR \bot MT$

Bài 2. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có phân giác $BE,CF(E \in AC, F \in AB)$. Giả sử $(I)$ là đường tròn nội tiếp tam giác $ABC$. Gọi $M$ là tâm đường tròn bàng tiếp góc $A$. Chứng minh $MO \bot EF$.

Lời giải
Ta phát biểu lại bài toán trên dưới mô hình trực tâm như sau:

Cho tam giác $MNP$ có $I$ là trực tâm và $MA,NB,PC$ là các đường cao. Gọi $NB$ cắt $AC$ tại $E$, $AB$ cắt $PC$ tại $F$. Gọi $O$ là tâm đường tròn $Euler$ của tam giác $MNP$. Chứng minh $MO \bot EF$.

Gọi $O_2$ là tâm ngoại tiếp tam giác $NIP$ thì dễ thấy rằng $O_2$ đối xứng với $O_1$ qua $NP$. Gọi $T$ là trung điểm $NP$ thì $MI = 2O_1T = O_1O_2$. Mà $O_1O_2 \parallel MI$ nên kéo theo tứ giác $MIO_2O_1$ là hình bình hành. Vì thế nên $MO_2$ đi qua trung điểm của $IO_1,$ cũng chính là tâm đường tròn Euler $O$ của tam giác $MNP$.

Tiếp theo, ta thấy rằng

$\overline {EA} \cdot \overline {EC} = \overline {EN} .\overline {EI}$ $\Rightarrow P_{E/(O)} = P_{E/(O_2)}$
$\overline {FA} \cdot \overline {FB} = \overline {FN} \cdot \overline {FI} \Rightarrow P_{F/(O)} =P_{F/(O_2)}$

Suy ra $EF$ là trục đẳng phương của $(O)$ và $(O_2)$ nên $EF \bot OO_2$.

Từ hai điều trên, ta có $EF$ vuông góc với $MO$.

 

Bài 3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và tâm nội tiếp $I$. Đường tròn bàng tiếp $(L)$ của đỉnh $C$ của tam giác $ABC$ tiếp xúc với $AB$ tại $M$. $MI$ cắt $BC$ tại $N$. $P$ là hình chiếu của $C$ lên $LB$. Chứng minh rằng $AI$ và $NP$ cắt nhau trên $(O)$.

Lời giải
Bài toán được phát biểu lại như sau:

Cho tam giác $JKL$ có các đường cao $JA,KB,LC$. Gọi $I$ là trực tâm tam giác $JKL$. Gọi $M$ là hình chiếu của $L$ lên $AB$, $P$ là hình chiếu của $C$ lên $JL$. $MI$ cắt $BC$ tại $N$. Chứng minh rằng $NP$ cắt $JA$ trên đường tròn $Euler$ của tam giác $JKL$.

Gọi $R$ là giao điểm của $JA$ và $NP$. Dễ thấy việc chứng minh $R$ nằm trên đường tròn $Euler$ của tam giác $JKL$ tương đương với việc chứng minh $R$ là trung điểm $IJ$.

Ta có $\Delta LAB \sim \Delta CJB$ mà $LM,CP$ lần lượt là các đường cao nên $\frac{BM}{MA}=\frac{BP}{PJ}$ suy ra $MP \parallel AJ$.

Do $M,I,N$ thẳng hàng nên $P(BI,MN)=B(PI,MN)=B(JK,AC)=-1$ kết hợp với $MP \parallel AJ$ suy ra $R$ là trung điểm $IJ$. Bài toán đã được chứng minh.

Bài 4. Cho tam giác $ABC$ có đường cao $BD,CE$ cắt nhau tại $I$. Chứng minh rằng $AI$ đi qua tâm $Euler$ của tam giác $IDE$.

Lời giải
Dựa vào bổ đề ở \textbf{bài tập 2} ta có thể chuyển bài toán về mô hình sau: \medskip

Cho tam giác $ABC$ có các đường cao $AD,BE,CF$ cắt nhau tại $H$. Gọi $P,Q$ là giao điểm của các cặp đường thẳng $(CH,DE),(BH,DF)$. Lấy $K$ là trực tâm tam giác $HPQ$. Gọi $L$ là tâm $(PKQ)$. Chứng minh $L$ nằm trên $AD$.

Ta có: $$\angle LQP=\frac{180^\circ-\angle QLP}{2}=\frac{180^\circ-2\angle QKP}{2}=90^\circ-\angle QKP=\angle HPK=\angle HCA =\angle LDP$$

Suy ra $QLPD$ nội tiếp. Lại có $LP=LQ$ nên $DL$ là phân giác góc $EDF$ nên $L$ thuộc $AD$. Vậy bài toán đã được chứng minh.

Bài 5.  Chọn đội tuyển 30/4 PTNK 2016 Cho $(O)$ và dây cung $BC$ cố định, điểm $C$ di động. Gọi $I,I_a,I_b$ lần lượt là tâm nội tiếp, tâm bàng tiếp góc $A,B$ của tam giác $ABC$. Gọi $M$ là điểm đối xứng với $I$ qua $O$.

a) Chứng minh rằng $MI_a=MI_b$.
b) Gọi $H,K$ là hình chiếu của $I_b,I_a$ lên $OI$. Đường thẳng qua $H$ vuông góc với $BI_a$ cắt đường thẳng qua $K$ vuông góc với $AI_b$ ở $T$, chứng minh rằng $T$ thuộc đường tròn cố định.

Lời giải
Nhận xét: Khi chuyển đổi sang mô hình trực tâm, giả sử $I_c$ là tâm bàng tiếp góc $C$ của tam giác $ABC$. Ta có $I,O$ lần lượt là trực tâm và tâm đường tròn $Euler$ tam giác $I_aI_bI_c$ nên $M$ là tâm $(I_aI_bI_c)$ từ đó $MI_a=MI_b$. Vậy ta đã giải quyết được ý a) của bài toán.

Ý b) của bài toán sau khi chuyển đổi mô hình, ta có thể dự đoán được $T$ di chuyển trên đường tròn $Euler$ của tam giác $I_aI_bI_c$. Đó là kết quả về cực trực giao của một đường thẳng đi qua tâm ngoại tiếp được phát biểu bởi bài toán sau:

Cho tam giác $ABC$ có đường thẳng $d$ đi qua tâm ngoại tiếp $O$. Gọi $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $d$. Chứng minh rằng đường thẳng qua $D,E,F$ vuông góc với $BC,CA,AB$ đồng quy trên đường tròn $Euler$ của tam giác $ABC$.

Gọi $l$ là đường thẳng đi qua trực tâm $H$ của tam giác $ABC$ và vuông góc với $d$. Gọi $S$ là điểm anti-Steiner của $l$. $J$ là điểm đối xứng của $S$ qua $BC$ và $X$ là giao điểm của $SJ$ và $(O)$. $K$ là điểm đối xứng với $H$ qua $BC$.

Ta có: $$\angle AXS =\angle AKS=\angle KHJ$$ suy ra $HJ \parallel AX$.\ Do đó, $D$ nằm trên $AX$ hay $D$ là trung điểm $AX$. Suy ra đường thẳng qua $D$ vuông góc với $BC$ đi qua trung điểm $I$ của $SH$ và nằm trên đường tròn $Euler$ của tam giác $ABC$.

Bài 6. Cho tam giác $ABC$ có phân giác $BE,CF$ cắt nhau tại $I$. Gọi $XP,YQ$ là tiếp tuyến chung ngoài của $(O)$ và $(I_a)$-đường tròn bàng tiếp góc $A$ ($P,Q \in (O)$,$X,Y \in (I_a))$. Chứng minh $P,Q,E,F$ thẳng hàng.

Lời giải
Gọi $I_b,I_c$ là tâm đường tròn bàng tiếp góc $B,C$ để chuyển về mô hình trực tâm thì theo ví dụ I.2 ta cần chứng minh $I,I_c,I_b,P,Q$ cùng nằm trên một đường tròn.

Gọi $M$ là giao điểm của $I_aP$ với $(ABC)$, $K$ là hình chiếu của $O$ lên $XI_a$. \medskip

Theo hệ thức $Euler$ ta có: $$OI_a^2=R^2+2Rr_a$$
suy ra $$PX^2=OK^2=OI_a^2-KI_a^2=R^2+2Rr_a-(r_a-R)^2=4Rr_a-r_a^2$$
ta thu được $PI_a^2=4Rr_a$. Mà $I_aP\cdot I_aM=BI_a^2=OI_a^2-R^2=2Rr_a$. Suy ra $M$ là trung điểm $PI_a$.

Do $(O),I$ là đường tròn $Euler$ và trực tâm của tam giác $I_aI_bI_c$ nên theo Bài tập 2 ta có: ${V_{{I_a}}}^2:(O) \to (I{I_b}{I_c});M \to P$ mà $M \in (O)$ nên $P \in (II_bI_c)$.

Tương tự thì $Q \in (II_bI_c)$ nên ta có được điều phải chứng minh.

Bài 7. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và ngoại tiếp đường tròn $(I)$. Gọi $M,N$ là điểm chính giữa cung $BC$ và cung $BAC$ của $(O)$. $NI$ cắt $(O)$ lần thứ hai tại $P$. $MP$ cắt trung trực $AI$ tại $T$. Gọi $S$ là giao điểm tiếp tuyến tại $A$ của $(O)$ với $BC$. Chứng minh rằng $TS \parallel AI$.

Lời giải

Gọi $I_a,I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C$ của tam giác $ABC$ để chuyển về mô hình trực tâm. Gọi $X$ là giao điểm của $BC$ và $I_bI_c$. $J$ là giao điểm của $(I_aBIC)$ với $(I_aI_bI_c)$ thì ta có $N,I,J$ thẳng hàng.

Tứ giác toàn phần $BCI_bI_cI_aX$ nội tiếp nên $J$ là điểm Miquel và $I_a,J,X$ thẳng hàng mà $\angle IJI_a =90^\circ$ suy ra tứ giác $AIJX$ nội tiếp.

Ta có: $$\angle MPJ =\angle I_aJI = 90^\circ$$ suy ra $MP \parallel I_aJ$. Lại có $M$ là trung điểm $JI_a$ nên $P$ là trung điểm $IJ$. Suy ra $T$ là tâm $(AIJX)$. Ta thu được $TX=TA$.

Mà $S$ là tâm $A-Apollonius$ của tam giác $ABC$ nên $SX=SA$. Vậy $ST$ là trung trực của $XA$ nên $ST \bot XA$ suy ra $ST \parallel AI$.

Bài 8. (Trích VN TST 2019) Cho tam giác $ABC$ ngoại tiếp $(O)$ và nội tiếp $(I)$. Gọi $E,F$ là giao điểm của các cặp đường thẳng $(BI,AC),(CI,AB)$. Gọi $P,Q$ lần lượt là trung điểm cung $ABC$ và $ACB$. $PQ$ cắt $BC,EF$ tại $G$ và $H$. $EF$ cắt $BC$ ở $K$. Chứng minh rằng tiếp tuyến ứng với $G$ của tam giác $GHK$ vuông góc với $OI$.

Lời giải
Đây là một bài toán hay và khó. Nếu không có cách tiếp cận chuyển đổi mô hình thích hợp thì việc xử lý các tính chất sẽ gặp nhiều khó khăn. Vận dụng ý tưởng ở Ví dụ I.2 ta chuyển bài toán về mô hình trực tâm như sau:

Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $M,N,P$ lần lượt là trung điểm của $BC,CA,AB$. Gọi $BH,CH$ cắt $FD,ED$ lần lượt tại $S,T$. $ST$ cắt $PN$ tại $Y$ và cắt $EF$ tại $Z$. Gọi $X$ là giao điểm của $PN$ và $EF$, $K$ là trung điểm $YZ$. Chứng minh rằng: $XK$ vuông góc với đường thẳng $Euler$ của tam giác $ABC$.

Ta có: $$\overline {XN} .\overline {XP} = \overline {XE} .\overline {XF} \Rightarrow P_{X/(APN)} = {{\mathscr{P}}_{X/\left(AEF \right)}} $$
suy ra $AX$ là trục đẳng phương của $(APN)$ và $(AEF)$ nên $AX \bot OH$.

Gọi $U$ là tâm $Euler$ của tam giác $ABC$ thì theo \textbf{Bài tập 2} ta có $AU \bot ST$.

 

Qua $A$ kẻ đường thẳng song song với $YZ$ cắt $EF$ tại $I$ và cắt $PN$ tại $J$ thì $AU \bot IJ$, áp dụng định lý con bướm cho tứ giác $FPEN$ nội tiếp ta thu được $AJ=AI$. Từ đó suy ra $AX$ đi qua trung điểm $YZ$ dẫn đến $A,X,K$ thẳng hàng nên $XK$ vuông góc với $OH$. Vậy ta thu được điều phải chứng minh.

Bài 9. (Trích VN TST 2016) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ có $B,C$ cố định, $A$ di động trên cung $BC$ của $(O)$. Các phân giác $BE,CF$ cắt nhau tại $I$. $BE,CF$ cắt đường tròn $(O)$ tại $K,L$. $AI$ cắt $KL$ tại $P$. Gọi $Q$ là một điểm trên $EF$ sao cho $QP=QI$. $J$ nằm trên $(BIC)$ sao cho $IJ \bot IQ$. Chứng minh rằng trung điểm $IJ$ di chuyển trên một đường tròn cố định.

Lời giải
Tiếp tục với ý tưởng Ví dụ I.2 Ta dựng $I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $B,C$ của tam giác $ABC$ để chuyển về mô hình trực tâm thì ta thu được $L,K$ lần lượt là trung điểm của $II_c$ và $II_b$.

Gọi $R,S$ là giao điểm của $EF$ với $(O)$(như hình vẽ). $RI,SI$ cắt đường tròn $(O)$ lần thứ hai tại $T,W$. $TW$ cắt $BI$ tại $G$. Đường thẳng qua $I$ vuông góc với $OI$ cắt $LK,BC,SR,TW$ tại $V,U,Q’,X$.

Theo ví dụ 2,ta có $S,R \in (II_bI_c)$. Do đó: $$\angle GTR= \angle ISR=\angle II_bR$$
suy ra tứ giác $GTI_bR$ nội tiếp. Ta thu được $$IG\cdot II_b=IT \cdot IR=IB \cdot IK=\frac{1}{2}IB \cdot II_b$$
suy ra $TW$ đi qua trung điểm $IB$. Tương tự: $TW$ cũng đi qua trung điểm $IC$ nên $TW$ là đường trung bình của tam giác $IBC$.

 

Áp dụng định lý con bướm cho hai dây cung $LC,BK$ cắt nhau tại $I$, ta được $IV=IU$. Tiếp tục áp dụng định lý con bướm cho hai dây cung $SW,TR$, ta được $IX=IQ’$.

Mà $X$ là trung điểm $IU$ nên $Q’$ là trung điểm $IV$ do đó $IQ’=Q’V=Q’P$ suy ra $Q \equiv Q’$. Vậy $OI \bot IQ$. Gọi $O_1$ là trung điểm cung $BC$ không chứa $A$ thì $O_1$ là tâm $(BIC)$. Gọi $M$ là trung điểm $IJ$ khi đó ta có $\angle OMO_1 =90^\circ$ nên $M$ nằm trên $(OO_1)$, là đường tròn cố định. Ta có điều phải chứng minh.

Bài tập tự luyện

  1. Cho tam giác $ABC$ có các đường cao $AD,BE,CF$. Gọi $M,N,P$ là trung điểm của $EF,FD,DE$ và $K$ là tâm nội tiếp tam giác $MNP.$ Gọi $x,y,z$ lần lượt là khoảng cách từ $A\to EF,B\to DF,C\to DE.$ Chứng minh rằng
    $${{x}^{2}}-K{{A}^{2}}={{y}^{2}}-K{{B}^{2}}={{z}^{2}}-K{{C}^{2}}.$$

  2. Cho tam giác $ABC$ có $T$ là trung điểm $BC$ và $X,Y$ là tâm bàng tiếp góc $B,C$ của tam giác $ABC.$ Giả sử $TX$ cắt $AB,AC$ lần lượt tại $M,N,$ còn $TY$ cắt $AB,AC$ lần lượt tại $P,Q.$ Chứng minh rằng $M,N,P,Q$ là các đỉnh của một hình thang ngoại tiếp được đường tròn.

  3. Cho tam giác $ABC$ nội tiếp $(O)$ có tâm nội tiếp $I,$ tâm bàng tiếp góc $A$ là $J.$ Trên các đường thẳng $JB,JC$ lần lượt lấy $M,N$ sao cho $MA=MJ$ và $NA=NJ.$ Đường thẳng $MN$ cắt $IB,IC$ ở $E,F.$ Chứng minh rằng trung tuyến đỉnh $I$ của tam giác $IEF$ chia đôi cung $BAC$ của $(O)$.

  4. Cho tam giác $ABC$ có trực tâm $H$. Đường tròn $(BHC)$ cắt đường tròn Euler của tam giác $ABC$ ở $M,N$. Chứng minh rằng $AM=AN.$

  5. (Bài toán về điểm Bevan) Cho tam giác $ABC$ có $I_a,I_b,I_c$ lần lượt là tâm đường tròn bàng tiếp góc $A,B,C.$ Khi đó, ký hiệu $X$ là tâm đường tròn ngoại tiếp tam giác $I_aI_bI_c,$ cũng chính là điểm Bevan của tam giác $ABC$. Gọi $O,I,G,H$ lần lượt là tâm ngoại tiếp, tâm nội tiếp, trọng tâm, trực tâm của tam giác $ABC.$ Chứng minh rằng $O$ là trung điểm của $XI$ và $G$ là trọng tâm của $HIX.$

Logic toán và cơ sở toán học

Ta biết rằng Toán Học là một ngành khoa học lý thuyết được phát triển trên cơ sở tuân thủ nghiêm ngặt các qui luật của tư duy logíc hình thức.

Các qui luật cơ bản của logíc hình thức đã được phát triển từ thời Aristote (384 – 322 trước Công Nguyên) và hệ tiên đề đầu tiên của hình học đã được xây dựng bởi Euclid cũng vào khoảng 300 năm trước Công Nguyên. Sau thời kì rực rỡ đó của nền văn minh cổ Hy Lạp, phải trải qua một giai đoạn ngưng trệ hàng nghìn năm, mãi cho đến thế kỉ 16,17 các nganh khoa học đặc biệt là Toán Học mới tìm lại được sự phát triển tiếp tục.

Giai đoạn mới khởi đầu từ những phát minh của Newton, Leibnitz về phép tính vi phân và giải tích toán học đã đưa toán học từ phạm vi “bất biến, hữu hạn” sang địa hạt của “vận động, vô hạn, liên tục”. Nhưng trong suốt mấy thế kỉ phát triển, bên cạnh những thành tựu to lớn, Toán Học vẫn chứa trong mình những “lỗ hổng” về cơ sở lý luận – cơ sở logíchình thức cho các khái niệm cơ bản như số thực, đại lượng vô cùng bé, giới hạn, biến thiên liên tục…

 

Cho đến cuối thế kỉ 19 bước sang đầu thế kỉ 20 lý thuyết tập hợp của Cantor ra đời đã đưa đến cho Toán Học niềm hy vọng giải quyết được cuộc “khủng hoảng” về cơ sở lý luận đó. Cái cốt lõi của lý thuyết tập hợp Cantor là sự hợp thức hóa phép trừu tượng về “vô hạn thực tại”, xem rằng trong Toán Học có thể hình dung mọi tập hợp bất kì dưới dạng hoàn chỉnh, trong đó các phần tử tồn tại đồng thời, độc lập và bình đẳng với tư duy. Và cùng với việc thừa nhận quan niệm “thực tại” đó về các tập hợp vô hạn, người ta cũng đồng thời tuyệt đối hóa tính hợp lý của các qui luật logíc hình thức: các qui luật của logíc hình thức dù có thể đã được hình thành cho các suy luận trên cái hữu hạn thì này có thể dùng được cho cả các suy luận trên các tập hữu hạn hoặc vô hạn, không cần phân biệt.

Lý thuyết tập hợp quả thực đã cung cấp một cơ cở tuyệt vời, không những cho việc giải quyết cuộc khủng hoảng của cơ sở giải tích toán học, mà rộng hơn còn cung cấp một nền tảng thống nhất cho việc xây dựng và phát triển hầu như toàn bộ các ngành toán học khác. Tuy nhiên, oái ăm thay, ngay trong những năm đầu của thế kỉ 20 người ta liên tiếp phát hiện trong lí thuyết “ngây thơ” về tập hợp có chứa đựng nhiều nghịch lý: nghịch lý Russell về “tập hợp của tất cả các tập hợp không là phần tử của chính mình”, nghich lý do chính Cantor phất hiện về “tập hợp của tất cả các tập hợp”, nghịch lý Bulari-Forti về “ordinal của tập sắp thứ tự hoàn toàn của tất cả các ordinal”… Việc phát hiện ra các nghịch lý như vật đã làm lung lay lòng tin của một số nhà toán học vào giá trị “nền tảng” của lý thuyết tập hợp. và khó khăn mới đó đã dẫn tới những đề nghị khác nhau về cách khắc phục. Cách khắc phục được nhiều người tán thành nhất là hạn chế ngoại diên của khái niệm “tập hợp” bằng cách xây dựng cho lý thuyết tập hợp một hệ tiên đề, tức tiên đề hóa lý thuyết tập hợp trong đó không thể có những tập hợp quá “tự do” như trong các nghịch lý kể trên. Cách này đã chứng tỏ là rất hợp lý, nhiều lý thuyết tiên đề về tập hợp đã ra đời và đáp ứng các yêu cầu hạn chế đó.

Portrait of Georg Ferdinand Cantor (1845-1918), German mathematician. Cantor developed important theories involving irrational numbers and infinities. (Photo by © CORBIS/Corbis via Getty Images)

Cùng với tiên đề hóa lý thuyết tập hợp cũng như tiên đề hóa các lý thuyết toán học, người ta cũng nghĩ nhiều đến việc tiên đề hóa các lý thuyết cơ sở về logíc – việc tiên đề hóa triệt để như vậy dẫn tới việc hình thức hóa, và ta được các hệ hình thức hóa của logíc (mệnh đề và tân từ) rồi trên cơ sở đó, các hệ hình thức hóa của Toán Học. Khi toàn bộ một lý thuyết Toán Học (cùng với cơ sở logíc của nó) đã được hình thức hóa, thì việc làm toán có thể đóng khung trong phạm vi lí thuyết hình thức đó và làm toán chỉ còn là việc thực hiện những thao tác trí tuệ trên các dòng ký hiệu hình thức theo các luật đã được hình thức hóa trong lý thuyết đó (?!). Tuy nhiên có những vấn đề về các lý thuyết Toán Học được hình thức đó thì lại không thể được xét bên trong chúng, chẳng hạn các vấn đề về tính phi mâu thuẫn, về tính đầy đủ của lý thuyết, về tính độc lập của các tiên đề v.v… . Những vấn đề như vậy có ý nghĩa quan trọng về các lý thuyết toán học được hình thức và được xét trong 1 siêu toán học (metamathematics) tức là một siêu lý thuyết nằm ngoài các lý thuyết hình thức nói trên.

Vào các thập niên đầu của thế kỉ 20, để cứu vãn nền tảng vững chắc cho Toán Học, Hilbert đã đề xuất một chương trình có nội dung tóm lược như sau: Hilbert xem rằng lý thuyết tập hợp (sau khi đã loại bỏ các yếu tố đưa đến nghịch lý) với quan niệm trừu tượng hóa vô hạn thực tại và sự phổ quát hóa của các qui luật logíc cổ điển(bao gồm qui luật bài trung (nói rằng 1 điều gì đó chỉ có thể là đúng hoặc chỉ có thể là sai.ct) và phủ định kép (nếu 1 ta có ((điều gì đó là sai) là sai) thì điều đó phải đúng.ct)) là cơ sở tin cậy của Toán Học. Để bảo vệ Toán Học với cơ sở đó, ta hình thức hóa Toán Học thành một hệ hình thức rồi sau đó chứng minh tính phi mẫu thuẫn của hệ toán học hình thức đó trong một siêu toán, và không ai có thể công kích được. Hilbert đề nghị siêu toán đó sẽ là một thứ Toán học không sử dụng khái niệm “vô hạn thực tại”, chỉ hạn chế trong các kiến trúc dùng một quan niệm hạn chế về vô hạn là “vô hạn tiềm năng”, và cùng với nó cũng không sử dụng phổ biến các qui luật logíc như luật bài trung. Một siêu toán như vậy được gọi là siêu toán hữu hạn luận (finitism).

Vào những năm 30 của thế kỉ, nhà toán học người Áo Godel đã xây dựng được cho “số học hình thức”, một thứ siêu toán thỏa mãn các yêu cầu của hữu hạn luận, đó là số học của các hàm và quan hệ đệ quy. Nhưng rồi bất ngờ thay, chính với các phương tiện của siêu toán đó, Godel đã chứng minh được các định lý vĩ đại: nếu số học hình thức phi mâu thuẫn thì nó không đầy đủ, và bản thân tính phi mâu thuẫn của số học hình thức không thể tìm thấy trong số học hình thức đó (!!). Nói cách khác, mưu đồ hình thức hóa Toán Học rồi tìm cách chứng minh tính phi mâu thuẫn của nó bên trong hệ hình thức đó hay với sự trợ giúp của một siêu toán hữu hạn luận là thất bại (!!). Các định lý của Godel có tác động to lớn đối với nhận thức luận khoa học nói chung.

Một vấn đề khác cũng rất được quan tâm trong cơ sở Toán Học là vai trò của một vài giả thuyết hay tiên đề của lý thuyết tập hợp, cụ thể là giả thuyết liên tục và tiên đề chọn. Trong số 23 bài toán mà Hilbert đặt ra cho thế kỉ 20, bài toán về giả thuyết liên tục là bài toán số 1. Đầu những năm 40. Godel xây dựng mô hình cho lý thuyết tập hợp gồm các tập “kiến thiết được” và chứng minh trong mô hình đoa giả thuyết liên tục và tiên đề chọn đều đúng. Và đến giữa những năm 60, Cohen bằng khái niệm “cưỡng bức” (forcing) độc đáo của mình đã xây dựng được các mô hình của lý thuyết tập hợp trong đó giả thuyết liên tục không đúng và tiên đề chọn đúng, hoặc cả hai cùng không đúng. Như vậy cả tiên đề chọn và giả thuyết liên tục đều là vừa phi mâu thuẫn, vừa là độc lập đối với lý thuyết tiên đề về tập hợp. Những kết quả này, về nguyên tắc có thể cho ta khả năng xây dựng được những lý thuyết tập hợp trong đó tiên đề chọn (và giả thuyết liên tục) là đúng hoặc không đúng, tương tự như ta đã có hình học Euclid và hình học phi Euclid.

Logíc toán và cở sở toán học – với nội dung như vừa được điểm lại – đã được hình thành và phát triển chủ yếu vào cuối thế kỉ 19 và nừa đầu thế kỉ 20, trong 1 giai đoạn bùng phát nhiều ý tưởng và kết quả nghiên cứu đặc sắc theo hướng tìm kiếm và xây dựng một nền móng “vững chắc” cho lâu đài Toán Học.

Toán Học, như triết gia A.N. Whitehead từng nhận định: có thể coi là thành quả sáng tạo độc đáo nhất trong hoạt động tinh thần của con người, toán học thuần túy đứng ở đỉnh cao của tư duy duy lý, các kết quả của toán học được xem là khuôn mẫu của sự chính xác, nghiệm ngặt và chắc chắn, người ta thường lấy lượng Toán Học được ứng dụng để đo mức độ nghiệm ngặt của một lý thuyết khoa học. Nhưng dù Toán Học có đối tượng trực tiếp là các ý tưởng, các khái niệm trừu tượng và phương pháp phát triển Toán học chủ yếu là phương pháp suy luận logíc một cách nghêim ngặt, thì Toán Học cũng là một ngành khoa học, và trong quá trình tiến hóa biện chứng của mình, nó cũng có thể được phát hiện là có những khiếm khuyết và phải tìm cách khắc phục những khiếm khuyết để phát triển tiếp tục.

Như đã trình bày, cuộc khủng hoảng về cơ sở của Giải tích toán học vào cuối thế kỉ 19 đã dẫn đến sự ra đời của lý thuyết Cantor về tập hợp, hợp thức hóa phép trừu tượng về vô hạn thực tại, tạo các cơ sở nền móng cho Giải tích toán học và cho Toán Học nói chung. Nhưng ngày sau đó, việc phát hiện những nghịch lý trong bản thân lý thuyết tập hợp đã làm lung lay cái cơ sở nền móng vừa được xác lập. Và vấn đề xây dựng nền móng cho Toán Học hóa ra phức tạp và khó khăn hơn nhiều, không chỉ đơn giản là tìm cách định nghĩa hợp lý cho một số khái niệm nào đó. Nguời ta đặt vấn đề cần xem xét lại tính đúng đắn của một số mệnh đề ban đầu vẫn được mặc nhiên coi là đúng, và cả tính đúng đắn của một số qui tắc logíc của suy luận mà trước đó chưa hề bị hoài nghi. Một số trường phái đề xuất các giải pháp khác nhau cho việc xây dựng nền móng Toán Học đã xuất hiện, nổi bật là ba phái lớn:

Phái chủ nghĩa logíc (logicism) khởi đầu bởi G.Frege và tiếp tục bới B.Russell, A. Whitehead xem rằng không có các đối tượng toán học tồn tại độc lập, đối tượng toán học (như các con số) là các khái niệm trừu tượng, có thể được định nghĩa bởi một chuỗi các định nghĩa, do đó có thể biểu diễn qua các thuật ngữ logich, từ đó mọi phán đoán, mọi định lý toán học cũng là các phán đoán logich, bằng cách đó phái chủ nghĩa logíc chủ trương đưa toàn bộ Toán Học thành một bộ phận của logich, mà cái đúng của logíc là đúng trong mọi thế giới có thể, không phụ thuộc các đối tượng.

Phái chủ nghĩa trực giác (intuitionism) mà những người đề xướng chủ chốt là L.E.J. Brouwer, A. Heyting không những không chấp nhận việc hợp thức hóa phép trừu tượng về vô hạn “thực tại” trong Toán Học mà còn hoài nghi tính đúng đắn của nhiều quy luật logíc cổ điển dùng trong Toán Học liên quan đến các liên kết logíc “không”,”hay là”, “tồn tại” như các qui luật phủ định kép, luật bài trung, qui luật:”nếu mệnh đề (với mọi a ta có 1 “điều gì đó”) là sai, thì mệnh đề sau là đúng (tồn tại a để “điều gì đó” là sai” (.ct). Phái này đòi hỏi các đối tượng toán học phải được xây dựng rõ ràng một cách trực giác, mọi chứng minh sự tồn tại của một đối tượng phải chỉ ra được cách tìm đối tượng đó một cách trực giác….. phép trừu tượng hóa vô hạn thực tại và các qui luật logíc kể trên là nguồn gốc của việc nảy sinh ra nhiều kết quả về sự tồn tại thuần túy phi trực giác trong Toán Học (kết luận về sự tồn tại của đối tượng nhưng không có cách gì để tìm ra đối tượng cụ thể đó!). Thay cho phép trừu tượng hóa vô hạn thực tại, phái trực giác chỉ chấp nhận phép trừu tượng về vô hạn “tiềm năng” (trong quá trình xây dựng các đối tượng toán học, chấp nhận là sau mỗi bước đều có thể tiến hành thêm một bước tiếp theo), và thay cho logíc cổ điển chỉ được phép dùng một logíc trực giác theo đó các qui luật kể trên không còn được xem là có tính phổ biến. Phái trực giác cũng đã bắt đầu xây dựng một Toán Học trực giác của mình với nhiều kết quả trái với Toán Học cổ điển, nhưng vì nhiều quan niệm còn chưa được chính xác hóa, logíc trực giác chưa được phát triển nên việc xây dựng đó khó được tiếp tục tiến triển. Về sau này, khi các lý thuyết về “thuật toán” ra đời, có thể gán cho khái niệm “tồn tại” hay “xây dựng được” một nội dung thuật toán một cách chính xác, nhiều nhóm toán học đã phát triển các hưởng toán học kiến thiết trên cơ sở các phê phán của phái chủ nghĩa trực giác và các thành tựu của lý thuyết thuật toán, có những đóng góp và sự phát triển của Toán Học nói chung.

Khác với phái chủ nghĩa trực giác, phái chủ nghĩa hình thức (formalism) khởi xướng bởi D. Hilbert và tiếp tục bởi P. Bernays, W. Ackermann, J.V.Neumann và nhiều người khác, tuy thừa nhận rằng các mệnh đề toán học có sử dụng phép trừu tượng về vô hạn thực tại là vượt ra ngoài giới hạn của tính hiển nhiên trực giác, nhưng không vì thế mà phủ nhận toán học cổ điển. Hilbert chủ trương cứu toàn bộ toán học cổ điển thoát khỏi những phê phán của chủ nghĩa trực giác bằng cách đề xuất và thực hiện một chương trình: tiên đề hóa rồi hình thức hóa toàn bộ toán học cổ điển thành một lý thuyết tiên đề hình thức, rồi sau đó chứng minh tính phi mâu thuẫn của lý thuyết hình thức đó. Toán Học, sau khi đã được hình thức hóa sẽ được biến thành một hệ thống ký hiệu, làm toán trở thành thực hiện các thao tác trên các ký hiệu hình thức tuân theo các luật suy diễn hình thức, tính phi mâu thuẫn của một lý thuyết hình thức được định nghĩa như là tính không suy diễn được trong lý thuyết đó hai công thức hình thức mâu thuẫn nhau dạng (A đúng) và (A sai) (ở đây A là một mệnh đề nào đó, hay là 1 điều gì đó .ct). Định nghĩa đó mở đường cho khả năng chứng minh tính phi mâu thuẫn của một lý thuyết mà không phải dùng đến phương pháp mô hình vốn là phương pháp truyền thống khi chứng minh tính phi mâu thuẫn của một lý thuyết tiên đề hóa (bằng cách xây dựng cho lý thuyết đó một mô hình trong một lý thuyết khác). Ngoài ra, để đảm bảo thỏah khỏi mọi phê phán của phái chủ nghĩa trực giác, Hilbert còn đề xuất việc dùng một siêu toán với những hạn chế hữu hạn luận để nghiên cứu toán học hình thức.

Nếu chương trình của Hilbert được thực hiện mỹ mãn thì toàn bộ Toán Học cổ điển với lý thuyết tập hợp và phép trừu tượng hóa vô hạn thực tại cùng với hệ thống logíc cổ điển được bảo vệ, Toán Học sẽ có được một nền tảng “vững chắc” để phát triển mà không sợ lại gặp phải khủng hoảng !!. Cũng cần nói thêm rằng hướng phát triển Toán học như phái hình thức bảo vệ được đa số các nhà toán học tán thành, nên về cơ bản Toán Học trong thế kỉ 20 vẫn được phát triển chủ yếu với việc sử dụng lý thuyết tập hợp (có phép trừu tượng vô hạn thực tại) và toàn bộ logíc cổ điển.

Tuy nhiên, những kết quả của Godel – như đã điểm qua ở trên – đã giáng một đòn mạnh vào chương trình của Hilbert. Các kết quả đó đã bác bỏ cái mà chương trình Hilbert tìm kiếm. Và hơn thế còn bác bỏ mọi mưu toan tìm kiếm bên trong Toán Học một nền tảng chắc chắn và vĩnh cửu của bản thân Toán Học, một lần cho mãi mãi. Không thể có một nền tảng như vậy, bởi nếu có thì bản thân nó cũng không thể chứng minh được là mình phi mâu thuẫn, tức là mình đúng. Nói rộng ra cái đúng của Toán Học không thể đuợc chứng minh trong bản thân Toán Học mà phải tìm ở một thế giới bên ngoài.

Thay cho lời kết

Như vậy là con đường tìm kiếm nền tảng cho Toán Học trong những thập niên đầu của thế kỉ 20 đã đi đến những kết quả trái với mong đợi, nhưng chính vì thế mà đã dẫn đến những tư duy mới trong nhận thức về những vấn đề gọi là Cơ Sở Toán Học. Toán Học, dù có đối tượng trực tiếp là những ý tưởng, những khái niệm trừu tượng nhưng đó không phải là những ý tưởng chủ quan của các nhà toán học, cũng không phải là những ý niệm khách quan tách rời hiện thực như những người thuộc trương phái Platon quan niệm, mà là những ý tưởng những khái niệm được hình thành từ nhu cầu nhận thức thực tế. Toán Học dù có nhũng đặc thù riêng của mình nhưng cũng là một ngành khoa học, tuân theo các qui luật tiến hóa của khoa học nói chung. Và cũng như mọi ngành khoa học khác, nó cũng là một sản phẩm có tính chất văn hóa, xã hội và lịc sử. Không có một thứ Toán Học duy nhất đúng, có nền tảng chắc chắn được kiến tạo một lần cho mãi mãi, kiến thức Toán Học cũng chịu sự chi phối của qui luật “có thể sai” như mọi kiến thức khoa học khác. Hình học Euclid là tuyệt vời cho việc nhận thức các cấu trúc không gian trong thế giới thông thường, nhưng khi nó không còn phù hợp với nhận thức về thế giới vĩ mô theo thuyết tương đối thì ta có thể sử dụng các hình học phi Euclid, qui luật logíc bài trung là thích hợp với những lập luận thông thường, nhưng khi thấy nó không còn thích hợp với những lập luận nhằm mục đich kiến thiết thì ta có thể không dùng nó mà thay bằng qui tắc lập luận khác, cũng như vậy, các định lý Cohen cho ta căn cứ để chấp nhận một lý thuyết tập hợp có tiên đề V nào đó mà cũng có thể chấp nhận một lý thuyết không có tiên đề đó, một lý thuyết có tiên đề chọn (hoặc giả thuyết liên tục) hay không có tiên đề (hoặc giả thuyết đo).

Sau một giai đoạn cố công đi tìm kiếm một nền tảng cho Toán Học, ngày nay toán học đã có những phát triển vượt bậc, không phải theo hướng mà các nhà sáng lập của các trường phái “chủ nghĩa nền tảng” (foundationalism) đề xướng, mà là theo những đòi hỏi của nhận thức thực tiễn, một nhận thức thực tiễn ngày càng tỏ ra phong phú, đã dạng và hết sức phức tạp. Nhận thức về Toán Học, về những vấn đề triết học của Toán Học đang có những đổi mới quan trọng, sẽ góp phần tích cực tạo nên cách nhìn mới, cơ sở mới cho sự phát triển rực rỡ mới của Toán Học, làm cho Toán học có những đóng góp ngày càng to lớn hơn nữa đối với sự phát triển của các ngành khoa học, và nói chung là đối với yêu cầu nhận thức thực tiễn trong thời đại phát triển mới của loài người.

(Bài viết của GS Phan Đình Diệu đăng trên chungta.com)

Tỉ số lượng giác – P3

Bài 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 3, BC= 5$.
Tính $\sin ABC, \cos ABC, \tan ABC, \cot ABC$.
Lời giải.
Ta có $AC = \sqrt{BC^2-AB^2} = \sqrt{5^2-3^2} = 4$.
Khi đó $\sin ABC = \dfrac{AC}{BC} = \dfrac{4}{5}$
Và $\cos ABC = \dfrac{AB}{BC} = \dfrac{3}{5}$;
$\tan ABC = \dfrac{AC}{AB} = \dfrac{4}{3}$;
$\cot ABC = \dfrac{AB}{AC} = \dfrac{3}{4}$.

Bài 2. 
Cho tam giác $ABC$ cân tại $A$ có $AB = 10, BC = 12$.
a) Tính $\sin ABC$.
b) Vẽ đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải.
a) Gọi $M$ là trung điểm cạnh $BC$, ta có $AM \bot BC$.
$MB = \dfrac{1}{2}BC = 6$, suy ra $AM = \sqrt{AB^2-BM^2} = 8$.
$\sin ABC = \dfrac{AM}{AB} = \dfrac{8}{10} = \dfrac{4}{5}$.
b)
Vẽ đường cao $BK$.
Ta có $\triangle CKB \backsim \triangle CMA$, suy ra $\dfrac{BK}{AM} = \dfrac{CB}{AC} \Rightarrow BK = \dfrac{AM\cdot BC}{AC} = \dfrac{48}{5}$.
Khi đó $\sin BAC = \dfrac{BK}{AB} =\dfrac{48}{50} = \dfrac{24}{25}$.

Bài 3. 
Cho tam giác $ABC$ vuông tại $A$ có $AC = 2, \sin ABC = \dfrac{1}{3}$. Tính $AB$.
Lời giải.
Ta có $\sin ABC = \dfrac{AC}{BC} = \dfrac{1}{3}$, suy ra $BC = 3AC = 6$.\
Từ đó $AB = \sqrt{BC^2-AC^2} =\sqrt{6^2-2^2} =4\sqrt{2}$.
\end{multicols}

Bài 4. 
Cho tam giác $ABC$ có $AB = 1, AC = \sqrt{3}, BC = 2$. Tính số đo các góc của tam giác $ABC$.

Lời giải.

Ta có $AB^2 +AC^2 = 1 +3 = 4 = BC^2$, suy tam giác $ABC$ vuông tại $A$, vậy $\angle BAC = 90^\circ$.\
Ta có $\sin ABC = \dfrac{AC}{BC}= \dfrac{\sqrt{3}}{2}$, suy ra $\angle ABC = 60^\circ$.\
Và $\angle ACB = 180^\circ – \angle BAC – \angle ABC = 30^\circ$.

Bài 5. 
Cho tam giác $ABC$ có $\angle ABC = 60^\circ, \angle ACB = 45^\circ$, đường cao $AH = \sqrt{3}$.

a)Tính độ dài các cạnh của tam giác $ABC$.
b) Dựng đường cao $BK$. Tính $BK$ và $\sin BAC$.

Lời giải. 
a)  $AB .\sin ABC = AH \Leftrightarrow AB \sin 60^\circ = \sqrt{3} \Leftrightarrow AB \dfrac{\sqrt{3}}{2} = \sqrt{3}$, suy ra $AB = 2$.
Tam giác $AHC$ vuông cân, suy ra $AC = \sqrt{2}AH = \sqrt{6}$.
$BH = \sqrt{AB^2-AH^2} = 1, CH = AH = \sqrt{3}$.
Suy ra $BC = 1 + \sqrt{3}$.
b) a có $BK = BC\cdot \sin BCK = (1+\sqrt{3})\sin 45^\circ = \dfrac{1+\sqrt{3}}{\sqrt{2}} = \dfrac{\sqrt{6}+\sqrt{2}}{2}$.
Suy ra $\sin BAC = \dfrac{BK}{AB} = \dfrac{1+\sqrt{3}}{2\sqrt{2}} = \dfrac{\sqrt{2}+\sqrt{6}}{4}$.

Bài 6. Cho hình thoi $ABCD$ có cạnh $AB = 5$, biết $\cot ABD = \dfrac{3}{4}$.

a) Tính $\dfrac{{AC}}{{BD}}$;
b) Tính $AC, BD$.

Lời giải.

a) $\tan ABD=\dfrac{AO}{BO}=\dfrac{4}{3} \Rightarrow AO=\dfrac{4}{3}BO$.
Áp dụng định lí Pitago trong tam giác vuông $AOB$:$AO^2+BO^2=AB^2=5^2=25$.
Khi đó ta có hệ: $AO=\dfrac{4}{3}BO; AO^2+BO^2=25$

$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
\left( \dfrac{4}{3}BO\right)^2+BO^2=25\
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=\dfrac{4}{3}BO\\
BO^2=9
\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}
AO=4\\
BO=3
\end{array} \right.$
Vậy $\dfrac{AC}{BD}=\dfrac{2AO}{2BO}=\dfrac{4}{3}$
b) $AC=2AO=2\cdot 4=8 \quad \text{và} \quad BD=2BO=2\cdot 3=6$.

Bài 7. Cho hình thang $ABCD$ cân có $AB$ là đáy nhỏ và $\angle ADC = 60^\circ$. Đặt $AD = a, AB = b$. Vẽ đường cao $AH$.

a) Tính $AH, DH$ theo $a$.
b) Tìm $a, b$ biết chu vi hình thang bằng 10 và diện tích bằng $3\sqrt 3 $.

Lời giải.

a) $\cos\angle ADH=\dfrac{DH}{AD} \Rightarrow DH=AD.\cos\angle ADH =a.\cos60^\circ=\dfrac{a}{2}$
$\sin \angle ADH=\dfrac{AH}{AD} \Rightarrow AH=AD.\sin \angle ADH=a.\sin 60^\circ=\dfrac{a\sqrt{3}}{2}$
b) Kẻ dường cao $BE$
Do $ABCD$ là hình thang cân nên $AD=BC=a$. $ABEH$ là hình chữ nhật nên $AB=EH=b$
Tính tương tự câu a) ta có $BE=\dfrac{a\sqrt{3}}{2}$ và $EC=\dfrac{a}{2}$
Khi đó $DC=DH+HE+EC=a+b$
Dựa vào chu vi và diện tích hình thang ta có hệ phương trình sau:
$\left\{ \begin{array}{l}
b+a+\left(a+b\right)+a=10\\
\dfrac{1}{2}.\dfrac{a\sqrt{3}}{2}.\left(b+a+b\right)=3\sqrt{3}
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
3a+2b=10\\
a\left( a+2b \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a\left( a+10-3a \right)=12
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
-2a^2+10a-12=0
\end{array} \right.$
$\Leftrightarrow
\left\{ \begin{array}{l}
2b=10-3a\\
a=2 \quad \text{hay} \quad a=3
\end{array} \right.$
Vậy $(a;b)$ là $(2;2)$ và $(3; \dfrac{1}{2})$.