Định lý Lagrange – Jacobi và một số ứng dụng

Định lý 1. Cho tam giác $ABC$, các số $a, b, c$ thỏa $s = a+ b+ c $ khác 0. Điểm $M$ thỏa $$ a \cdot \overrightarrow{MA} + b \cdot \overrightarrow{MB} + c \cdot \overrightarrow{MC} = \overrightarrow{0}$$

a) Với mọi điểm $O$ thì $$a \cdot OA^2 + b\cdot OB^2 + c \cdot OC^2 = s \cdot OM^2 + (a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2)$$

b) $$a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2 = \dfrac{1}{s} (abAB^2 +ac AC^2 + bc BC^2)$$

c) Trường hợp $s=a+b+c = 1$ ta có $$OM^2 = a \cdot OA^2 + b \cdot OB^2 + c \cdot OC^2 – (ab AB^2 + ac AC^2 + bc BC^2)$$

Chứng minh định lý.

a) $a \cdot OA^2 + b \cdot OB^2 + c \cdot OB^2 = a(\overrightarrow{OM} + \overrightarrow{MA})^2+b(\overrightarrow{OM} + \overrightarrow{MB})^2+c(\overrightarrow{OM} + \overrightarrow{MC})^2$

$ = (a+b+c)OM^2 + a \cdot MA^2 + b \cdot MB^2 + c \cdot MC^2 + 2 \overrightarrow{OM}(a \cdot \overrightarrow{MA} + b \cdot \overrightarrow{MB} + c \cdot \overrightarrow{MC} )$

$ = s \cdot OM^2 + (a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2)$

b) Đặt $P = a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2$. Áp dụng ý a, ta thay điểm $O$ bằng $A$ ta có:

$b \cdot AB^2 + c \cdot AC^2 = s \cdot MA^2 + P$, nhân hai vế với $a$ ta có $ab \cdot AB^2 + ac \cdot AC^2 = as \cdot MA^2 + aP$ (1), tương tự cho khi thay $O$ bởi $B, C$ ta được các hệ thức $bc \cdot BC^2 + ab \cdot AB^2 = bs MB^2 + bP$ (2) và $bc \cdot BC^2 + ac \cdot AC^2 = cs \cdot MC^2 + cP$ (3)

Cộng các đẳng thức (1), (2), (3) ta có: $2 (ab \cdot AB^2 + bc \cdot BC^2 + ac \cdot AC^2) = s (a \cdot MA^2+ b \cdot MB^2 + c \cdot MC^2) + P(a+b+c) = 2s \cdot P$

Suy ra $P = \dfrac{1}{s} (ab \cdot AB^2 + ac \cdot AC^2 + bc \cdot BC^2)$

c) Từ a, b ta có $a \cdot OA^2 + b\cdot OB^2 + c \cdot OC^2 = s \cdot OM^2 +\dfrac{1}{s} (ab \cdot AB^2 + ac \cdot AC^2 + bc \cdot BC^2)$

Với $s = a+b+c = 1$ thì $a \cdot OA^2 + b\cdot OB^2 + c \cdot OC^2 = OM^2 +(ab \cdot AB^2 + ac \cdot AC^2 + bc \cdot BC^2)$, suy ra

$OM^2 = a \cdot OA^2 + b\cdot OB^2 + c \cdot OC^2 – (ab \cdot AB^2 + ac \cdot AC^2 + bc \cdot BC^2)$

Định lý 2. Tổng quát của định lý 1. Gọi $\mathrm{M}$ là tâm tỉ cự của hệ điểm $A_1, A_2, \ldots, A_n$ ứng với các hệ số $\alpha_1, \alpha_2, \ldots, \alpha_n$.

a) Khi đó với điểm $\mathrm{O}$ bất kì ta có:
$$
\sum_{i=1}^n \alpha_i O A_i^2=\left(\sum_{i=1}^n \alpha_i\right) M O^2+\sum_{i=1}^n \alpha_i O A_i^2
$$

b) Khi đó
$$
\sum_{i=1}^n \alpha_i G A_i^2=\frac{1}{\alpha} \sum_{1 \leq i<j \leq n} \alpha_i \alpha_j A_i A_j^2
$$

Trong đó $\alpha=\sum_{i=1}^n \alpha_i$
c) (Định lý lagrange – Jacobi)
$$
\sum_{i=1}^n \alpha_i O A_i^2=\left(\sum_{i=1}^n \alpha_i\right) M O^2+\dfrac{1}{\alpha} \sum_{1 \leq i<j \leq n} \alpha_i \alpha_j A_i A_j^2
$$

Định lý 2 chứng minh tương tự định lý 1. Bạn đọc tự làm nhé.

Sau đây là một số áp dụng cho định lý trên.

Bài toán 1. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ bán kính $R$.

a) Chứng minh rằng với mọi điểm $M \in (O)$ thì $MA^2 + MB^2 + MC^2$ không đổi, tính giá trị đó theo $R$.

b) Tìm điểm $M$ thuộc $(O)$ sao cho $MA^2 + 2MB^2 + MC^2$ là nhỏ nhất.

Lời giải

a) Tam giác $ABC$ đều nên $O$ là trọng tâm tam giác, tức là $\overrightarrow{OA} + \overrightarrow{OB} +\overrightarrow{OC} = \overrightarrow{0}$.

Áp dụng định lý 1 ta có $MA^2 + MB^2 + MC^2= 3 MO^2 + \dfrac{1}{3} (AB^2+BC^2+AC^2) = 3R^2 + \dfrac{1}{3} (3R^2+3R^2+3R^2) = 6R^2$ không đổi.

b) Lấy điểm $I$ thỏa $\overrightarrow{IA} + 2 \overrightarrow{IB} +\overrightarrow{IC} = \overrightarrow{0}$, ta có $3 \overrightarrow{IO} + \overrightarrow{IB} = \overrightarrow{0}$, $I$ thuộc đoạn $OB$ và $IB = 2IO$.

Theo định lý trên, ta có $MA^2 + 2MB^2 + MC^2 = 4MI^2 + \dfrac{1}{4}(2AB^2+AC^2+2BC^2) = 4MI^2 + \dfrac{13}{4}R^2$, do đó $MA^2+2MB^2+MC^2$ nhỏ nhất khi và chỉ khi $MI$ nhỏ nhất, khi và chỉ khi $M$ là giao điểm của tia $OI$ với $(O)$.

Bài toán 2. Cho tam giác $A B C$ có $I$ là tâm nội tiếp và $O$ là tâm ngoại tiếp. Chứng minh rằng
a) $a \cdot I A^2+b \cdot I B^2+c \cdot I C^2=a b c$.
b) $I O^2=R^2 – 2 R r$ (Hệ thức Euler)

Lời giải

a) Ta có $a \cdot \overrightarrow{IA} + b \cdot \overrightarrow{IB} + c \cdot \overrightarrow{IC} = \overrightarrow{0}$

Theo định lý 1, ý b ta có $a \cdot IA^2 + b \cdot IB^2 + c \cdot IC^2 = \dfrac{1}{a+b+c} (ab AB^2 + ac AC^2 + bc BC^2) = abc$.

b) Theo định lý 1c) ta có $IO^2 = \dfrac{1}{a+b+c}(a \cdot OA^2 + b \cdot OB^2 + c \cdot OC^2) – \dfrac{1}{a+b+c} abc = R^2 – \dfrac{abc}{a+b+c}$.

Mặt khác ta có $S_{ABC} = \dfrac{abc}{4R} = pr$, suy ra $\dfrac{abc}{a+b+c} =2Rr$.

Do đó $IO^2 = R^2 – 2Rr$. (Hệ thức Euler)

Bài toán 3. Chứng minh rằng trong tam giác $A B C$ thì $a^2+b^2+c^2 \leq 9 R^2$

Lời giải

Áp dụng định lý 1 cho $M$ là trọng tâm tam giác, $O$ là tâm ngoại tiếp ta có:

Ta có $OA^2 + OB^2 +OC^2 = 3OG^2 + \dfrac{1}{3}(AB^2 +BC^2+AC^2)$

Hay $a^2+b^2+c^2 = 9R^2 – 9OG^2 \leq 9R^2$. Đẳng thức xảy ra khi $O \equiv G$, hay tam giác $ABC$ đều.

Tiếp theo ta dùng phương pháp này để chứng minh một định lý rất nổi tiếng trong hình học phẳng.

Bài toán 4. (Định lý Feuerbach) Chứng minh rằng trong một tam giác đường tròn Euler và đường tròn nội tiếp là tiếp xúc nhau.

Lời giải

Nhắc lại, đường tròn Euler là đường tròn qua trung điểm các cạnh và chân các đường cao, đường tròn Euler có bán kính bằng nửa bán kính đường tròn ngoại tiếp và tâm là trung điểm đoạn thẳng nối trực tâm với tâm đường tròn ngoại tiếp tam giác.

Xét tam giác $ABC$, gọi $H, O, I$ lần lượt là trực tâm, tâm ngoại tiếp và nội tiếp tam giác $ABC$, $N$ là tâm đường tròn Euler và $N$ là trung điểm $OH$. Để chứng minh $(I)$ và $(N)$ tiếp xúc, ta cần chứng minh $IN = \dfrac{1}{2}R – r$, trong đó $R, r$ lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp tam giác $ABC$.

Ta đi tính độ dài đoạn $IN$, như cách đã làm như các bài toán trên.

Ta có $a \cdot NA^2 + b \cdot NB^2 + c \cdot NC^2 = (a+b+c) NI^2 + \dfrac{1}{a+b+c} (ab AB^2+ac AC^2+bc BC^2) = (a+b+c)IN^2 + abc$.

$N$ là trung điểm $OH$ nên ta có $AN^2 = \dfrac{1}{2} AH^2 + \dfrac{1}{2} OA^2 – \dfrac{1}{4} OH^2$ (1)

Mà $AH = 2OM$ nên $AH^2 = 4OM^2 = 4(OC^2-MC^2) = 4R^2 – a^2$ (2)

$\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$, suy ra $OH^2 = OA^2 +OB^2+OC^2+ 2\overrightarrow{OA} \cdot \overrightarrow{OB}+2\overrightarrow{OA} \cdot \overrightarrow{OC}+2\overrightarrow{OB} \cdot \overrightarrow{OB}$

$ = 3R^2 + (OA^2+OB^2 -AB^2) + (OA^2+OC^2-AC^2) + (OB^2+OC^2-BC^2)$

$ = 9R^2 – (a^2+b^2+c^2)$ (3)

(Ta cũng có thể sử dụng $OH = 3OG$, và kết quả bài 2 để cho ra kết quả trên)

Từ (1), (2), (3) ta có $NA^2 = \dfrac{1}{2}(4R^2- a^2) + \dfrac{1}{2}R^2 – \dfrac{1}{4}(9R^2 – (a^2+b^2+c^2)) = \dfrac{1}{4}(R^2-a^2+b^2+c^2)$

Tương tự cho $NB^2, NC^2$, từ đó ta có

$a \cdot NA^2+b\cdot NB^2+c \cdot NC^2 = \dfrac{1}{4}((a+b+c)R^2+ a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-a^3-b^3-c^3)$

Khi đó $IN^2 = \dfrac{1}{4}R^2 + \dfrac{1}{4(a+b+c)}(a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-a^3-b^3-c^3) -\dfrac{abc}{a+b+c}$

Mà $a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-a^3-b^3-c^3)$

$ = (a+b-c)(b+c-a)(c+a-b) + 2abc = \dfrac{16s^2}{a+b+c} + 8Rs$

$=\dfrac{p^2r^2}{2p} + 8Rrp = \dfrac{16pr^2}{2} +8Rrp$

Suy ra $\dfrac{1}{4(a+b+c)}(a(b^2+c^2)+b(a^2+c^2)+c(a^2+b^2)-a^3-b^3-c^3) = r^2 + Rr$.

Kết hợp các kết quả trên ta có $IN^2 = \dfrac{1}{4}R^2 +r^2 – Rr = (\dfrac{R}{2}-r)^2$.

Từ đó ta có $IN = \dfrac{1}{2} R – r$, hay $(I)$ và $(N)$ tiếp xúc trong.

Trên đây chỉ là một số ví dụ khá đơn giản để khai thức định lý Lagrange và Jacobi, các bạn có thể thay $M, O$ bằng một số điểm đặc biệt khác trong tam giác để có thêm các đẳng thức hoặc bất đẳng thức khác.

Sử dụng kĩ thuật tính toán để chứng các bài toán hình học phẳng

Bài viết trình bày một số kĩ thuật tính toán hình học để chứng minh các bài toán hình học phẳng, các định lý được dùng chính là định lý Sin, Cosin, công thức diện tích, vectơ,..và một số tính chất, bổ đề đơn giản.

Một số kí hiệu thường dùng.

Trong tam giác $ABC$, đặt $BC = a, AC = b, AB = c, p = \dfrac{a+b+c}{2}, S = S_{ABC}$, $R$ là bán kính đường tròn ngoại tiếp, $r$ là bán kính đường tròn nội tiếp.

Sau đây là một số định lý quan trọng và đã có trong các phần khác, bạn đọc có thể tự chứng minh một cách dễ dàng.

Định lý 1. (Định lý Sin) Trong tam giác $ABC$ thì $$\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R$$

Định lý 2. (Định lý Cosin) Trong tam giác $ABC$ thì $a^2 =b^2 + c^2 – 2bc \cos A$ và các hệ thức tương tự.

Định lý 3. (Định lý Ceva dạng sin) Cho tam giác $ABC$, $P$ là điểm bất kì, khi đó $$\frac{\sin \left(A A_1 ; A B\right)}{\sin \left(A A_1 ; A C\right)} \cdot \frac{\sin \left(B B_1 ; B C\right)}{\sin \left(B B_1 ; B A\right)} \cdot \frac{\sin \left(C C_1 ; C A\right)}{\sin \left(C C_1 ; C B\right)}=-1$$

Một số tính chất và bổ đề cần dùng.

Tính chất 1. Nếu $\alpha$ là góc nhọn và $0^{\circ} \leq x, y \leq \alpha$ thỏa
$$
\frac{\sin x}{\sin (\alpha-x)}=\frac{\sin y}{\sin (\alpha-y)}
$$
thì $x=y$.

Tính chất 2. Cho tam giác $A B C$. Khi đó:
(a) $S_{A B C}=\frac{1}{2} A B \cdot A C \cdot \sin B A C$.
(b) $M$ là điểm trên cạnh $B C$, khi đó $\frac{B M}{C A M}=\frac{A B \cdot \sin M A B}{A C \cdot \sin M A C}$. $M$ là trung điểm $B C$ khi và chỉ khi $\frac{A B}{A C}=\frac{\sin M A C}{\sin M A B}$.

Tính chất 3. Cho tam giác $A B C$ cân tại $A, M$ là điểm thuộc cạnh $B C$. Khi đó:
$$
\frac{M B}{M C}=\frac{\sin M A B}{\sin M A C}
$$

Một số ví dụ áp dụng

Ví dụ 1. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ tại $D, E, F . D I$ cắt $E F$ tại $K$. Chứng minh $A K$ qua trung điểm của $B C$.
Hướng dẫn giải

Gọi $M$ là trung điểm $B C$, ta sẽ chứng minh tia $A K$ trùng tia $A M$. Từ 6.1.6 ta thấy rằng để chứng minh 2 tia này trùng nhau, ta chỉ cần chứng minh
$$
\dfrac{\sin B A K}{\sin C A K}=\dfrac{\sin B A M}{\sin C A M}(*)
$$

Ta có: $\dfrac{A B}{A C}=\dfrac{\sin C}{\sin B}=\dfrac{\sin K I E}{\sin K I F}=\dfrac{K E}{K F}=\dfrac{\sin K A E}{\sin K A F}$.

Mà $\dfrac{A B}{A C}=\dfrac{\sin M A B}{\sin M A C}$.

Từ (1) và (2) ta có $\dfrac{\sin K A E}{\sin K A F}=\dfrac{\sin M A E}{\sin M A F}$.

Ví dụ 2. Cho tam giác $A B C$ nhọn, tiếp tuyến tại $B, C$ của đường tròn ngoại tiếp tam giác cắt nhau tại $P$. Chứng minh rằng $\angle P A B=\angle C A M$ với $M$ là trung điểm $B C$.

Hướng dẫn giải.

Ta có $S_{A B M}=S_{A C M} \Leftrightarrow A B \cdot A M \sin B A M=A B \cdot A M \cdot \sin C A M \Rightarrow \dfrac{\sin B A M}{\sin C A M}=\dfrac{A C}{A B}$
(1) Ta có $\dfrac{S_{P A B}}{S_{P A C}}=\dfrac{A B \cdot A P \cdot \sin P A B}{A C \cdot A P \cdot \sin P A C}=\dfrac{A B \cdot \sin P A B}{A C \cdot \sin P A C}$.

Mà $\dfrac{S_{P A B}}{S_{P A C}}=\dfrac{A B \cdot P B \cdot \sin A B P}{A C \cdot P C \cdot \sin A C P}=\dfrac{A B}{A C} \cdot \dfrac{\sin A C B}{\sin A B C}=\dfrac{A B^2}{A C^2}$.
Từ (3) và (4) ta có $\dfrac{\sin P A B}{\sin P A C}=\dfrac{A B}{A C}=\dfrac{\sin C A M}{\sin B A M} \Rightarrow \angle P A B=\angle C A M$.

Ví dụ 3. (Đường thẳng Newton) Cho các tứ giác $A B C D$ ngoại tiếp đường tròn $(I)$. Gọi $E, F, G, H$ là tiếp điểm của $(I)$ với các cạnh $A B, B C, C D, D A ; M, N$ là trung điểm của $A C$ và $B D$.
(a) Chứng minh $A C, B D, E G, F H$ dồng quy.
(b) Chứng minh $I, M, N$ thẳng hàng và $\frac{I M}{I N}=\frac{B E+D H}{A E+C H}$.

Hướng dẫn giải.

Đặt $A E=A H=a, B E=B F=b, C F=C G=c, D G=D H=d$.

(a) Gọi $K$ là giao điểm của $E G$ và $A C$.

Ta có $\dfrac{A K}{A E}=\dfrac{\sin \angle A E K}{\sin A K E}$ và $\dfrac{C K}{C G}=\dfrac{\sin \angle C G K}{\sin \angle C K G}$.

Mà $\sin \angle A K E=\sin \angle C K G, \sin \angle A E K=\sin C G K$.
Do đó $\frac{A K}{C K}=\dfrac{A E}{C G}=\frac{a}{c}$.

Gọi $K^{\prime}$ là giao điểm của $H F$ và $A C$ ta cũng chứng minh được $\frac{A K^{\prime}}{C K^{\prime}}=\dfrac{a}{c}$. Do đó $K \equiv K^{\prime}$ hay $E G, H F, A C$ dồng quy.
Tương tự ta cũng có $B D, E G, H F$ dồng quy.

b) Ta có $A B \overrightarrow{I E}=b \overrightarrow{I A}+a \overrightarrow{I B}, B C \overrightarrow{I F}=b \overrightarrow{I C}+c \overrightarrow{I B}, C D \overrightarrow{I G}=c \overrightarrow{I D}+d \overrightarrow{I C}, A D \overrightarrow{I H}=d \overrightarrow{I A}+a \overrightarrow{I D}$.

Theo định lý con nhím ta có $A B \overrightarrow{I E}+B C \overrightarrow{I F}+C D \overrightarrow{I G}+A D \overrightarrow{I H}=\overrightarrow{0}$, suy ra $(a+c)(\overrightarrow{I B}+$ $\overrightarrow{I D})+(b+d)(\overrightarrow{I A}+\overrightarrow{I C})=\overrightarrow{0}$

Mà $\overrightarrow{I A}+\overrightarrow{I C}=2 \overrightarrow{I M}, \overrightarrow{I B}+\overrightarrow{I D}=2 \overrightarrow{I N}$.

Do đó $(a+c) \overrightarrow{I N}+(b+d) \overrightarrow{I M}=\overrightarrow{0}$, từ đó suy ra $I, M, N$ thẳng hàng và $\dfrac{I M}{I N}=\dfrac{b+d}{a+c}$.

Ví dụ 4. Cho tam giác $A B C$ nhọn có trực tâm $H$. Gọi $M$ là trung điểm $B C$, đường tròn tâm $M$ bán kính $M H$ cắt $B C$ tại $A_1, A_2$; các điểm $B_1, B_2, C_1, C_2$ được xác định tương tự. Chứng minh rằng 6 điểm $A_1, A_2, B_1, B_2, C_1, C_2$ cùng thuộc một đường tròn.

Hướng dẫn giải.

Ta dễ nhận ra rằng các điểm này cách đều tâm đường tròn ngoại tiếp tam giác $A B C$, vậy ta chỉ cần tính $O A_1$ sao cho không phụ thuộc vào vị trí của $A_1$, hay kết quả là một biểu thức đối xứng ta sẽ có điều cần chứng minh.

$O A_1^2=O M^2+M A_1^2=O M^2+M H^2$.

$M H^2=\dfrac{1}{2}\left(H B^2+H C^2\right)-\dfrac{1}{4} B C^2=2 O N^2+2 O P^2-\dfrac{1}{4} a^2=R^2\left(2 \cos ^2 B+2 \cos ^2 C-\sin ^2 A\right)$.

Khi đó
$$
O A_1^2=R^2\left(2 \cos ^2 B+2 \cos ^2 C+\cos ^2 A-\sin ^2 A\right)=R^2\left(2 \cos ^2 B+2 \cos ^2 C+2 \cos ^2 A-1\right)
$$

Tương tự cho các độ dài khác, từ đó ta có 6 điểm thuộc đường tròn tâm $O$.

Chú ý: Để ý vai trò như nhau của các đối tượng cần tính và cố gắng đưa về các yếu tố của hình gốc, cụ thể trong bài này là tam giác $ABC$.

Bài 5. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $B, C$ cắt nhau tại $L$. Gọi $X$ là điểm đối xứng của $A$ qua $B C$, tiếp tuyến tuyến tại $A$ cắt $L X$ tại $K$. Chứng minh $K$ thuộc đường thẳng Euler của tam giác $A B C$.
Hướng dẫn giải

Gọi giao điểm của $O K$ với $A X$ là $J$, ta sẽ chứng minh $J$ là trực tâm của $\triangle A B C$. Gọi giao điểm của $O L$ với $A K$ là $I$, theo định lý Thales ta có $\dfrac{J A}{O I}=\dfrac{K J}{K O}=\dfrac{J X}{O L} \Leftrightarrow \dfrac{J A}{J X}=\dfrac{O I}{O L}$.

Gọi $H$ là trực tâm của tam giác $A B C$ và $P$ là giao của $A H$ và $(O)$, do tính đối xứng thì $A P=H X$. Ta cần chứng minh $\dfrac{H A}{H X}=\dfrac{J A}{J X}$, tức là $\dfrac{A H}{A P}=\dfrac{O I}{O L}(1)$.

Từ đây chú ý thêm $\angle O I A=90^{\circ}-\angle O A H=\angle A C P=\alpha$, hướng giải quyết của ta đã sáng sủa hơn, ta có : $O I=\dfrac{O A}{\sin \alpha} ; O L=\dfrac{O C}{\cos \angle B A C} \Rightarrow \dfrac{O I}{O L}=\dfrac{\cos \angle B A C}{\sin \alpha}$

Ta có $A H=2 R \cos \angle B A C ; A P=2 R$. $\sin \alpha$, suy ra $\dfrac{A H}{A P}=\dfrac{\cos \angle B A C}{\sin \alpha}=\frac{O I}{O L}$. Suy ra $\dfrac{H A}{H X}=$ $\dfrac{J A}{J X}$; nghĩa là $H$ trùng $J$, suy ra $K$ thuộc đường thẳng Euler của tam giác $A B C$.

(Hết phần 1)

Phép chiếu vectơ

  1. Định nghĩa. Cho đường thẳng $d$ và đường thẳng $l$ không song song $d$, và vectơ $\overrightarrow{AB}$. Đường thẳng qua $A, B$ song song với $l$ cắt $d$ tại$A’, B’$, Khi đó $\overrightarrow{A’B’}$ được gọi là hình chiếu của $\overrightarrow{AB}$ trên $d$ theo phương $l$. Trường hợp $l \perp d$ ta có phép chiếu vuông góc.

2. Tính chất

1) Hình chiếu của $\overrightarrow{a}$ trên $d$ là $\overrightarrow{0}$ khi và chỉ khi $\overrightarrow{a}$ cùng phương với $l$.

2) Nếu $\overrightarrow{a’}, \overrightarrow{b’}$ là hình chiếu của $\overrightarrow{a}, \overrightarrow{b}$ trên $d$ thì $\overrightarrow{a’} \pm \overrightarrow{b’}$ là hình chiếu của $\overrightarrow{a} \pm \overrightarrow{b}$ trên $d$.

3) Nếu $\overrightarrow{a’}$ là hình chiếu của $\overrightarrow{a}$ thì $k \cdot \overrightarrow{a’}$ là hình chiếu của $k \cdot \overrightarrow{a}$.

Phép chiếu bảo toán các phép toán cộng, trừ hai vectơ, tích một vectơ với một số, nhưng không bảo toàn tích vô hướng hai vectơ

3. Một số ví dụ áp dụng của phép chiếu vectơ

Ví dụ 1. Cho tam giác $ABC$, $M$ là trung điểm $BC$ và $G$ là trọng tâm tam giác $ABC$. Chứng minh

a) $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AM}$

b) $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Lời giải.

a) Đặt $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{AC} -2\overrightarrow{AM}$

Xét phép chiếu vectơ theo phương $AB$ trên đường thẳng $BC$ ta có

$\overrightarrow{AB} \mapsto \overrightarrow{0}, \overrightarrow{AC} \mapsto \overrightarrow{BC}, \overrightarrow{AM} \mapsto \overrightarrow{BM}$

Do đó $\overrightarrow{u}\mapsto \overrightarrow{BC} – 2\overrightarrow{BM} = \overrightarrow{0}$, suy ra $\overrightarrow{u} || AB$.

Chứng minh tương tự thì $\overrightarrow{u} ||AC$

Do đó $\overrightarrow{u} = \overrightarrow{0}$

b) Đặt $\overrightarrow{u} = \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$. Thực phép chiếu theo phương $GA$ trên đường thẳng $BC$, ta có:

$\overrightarrow{GA} \mapsto \overrightarrow{0}, \overrightarrow{GB} \mapsto \overrightarrow{MB}, \overrightarrow{GC} \mapsto \overrightarrow{MC}$. Khi đó $\overrightarrow{u} \mapsto \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$

Do đó $\overrightarrow{u}$ cùng phương $GA$.

Chứng minh tương tự $\overrightarrow{u}$ cùng phương $GB, GC$

Do đó $\overrightarrow{u} = \overrightarrow{0}$

Ví dụ 2. (Định lý Jacobi) Cho tam giác $ABC$, $M$ là điểm nằm trong tam giác, đặt $S_a = S_{MBC}, S_b = S_{MAC}, S_c = S_{MAC}$. Chứng minh rằng

$$S_a \cdot \overrightarrow{MA} + S_b \cdot \overrightarrow{MB} + S_c \cdot \overrightarrow{MC} = \overrightarrow{0}$$

Lời giải. $AM$ cắt $BC$ tại $D$. Đặt $S_a \cdot \overrightarrow{MA} + S_b \cdot \overrightarrow{MB} + S_c \cdot \overrightarrow{MC} = \overrightarrow{u}$

Thực hiện phép chiếu xuống $BC$ theo phương $MA$, ta có $\overrightarrow{MA} \mapsto \overrightarrow{0}, \overrightarrow{MB} \mapsto \overrightarrow{DB}, \overrightarrow{MC} \mapsto \overrightarrow{DC}$

Do đó $\overrightarrow{u} \mapsto S_b \cdot \overrightarrow{DC} + S_b \cdot \overrightarrow{DB}$. (1)

Ta có $\overrightarrow{DB} = \dfrac{-DB}{DC} \overrightarrow{DB}$ và $\dfrac{DB}{DC} = \dfrac{S_b}{S_c}$, suy ra $\overrightarrow{DB} = \dfrac{-S_b}{S_c} \overrightarrow{DB}$, từ đó $S_c \cdot \overrightarrow{DB} + S_b \cdot \overrightarrow{DC} = \overrightarrow{0}$.

Vậy $\overrightarrow{u} \mapsto \overrightarrow{0}$, và $\overrightarrow{u}$ cùng phương với $MA$, tương tự ta cũng có $\overrightarrow{u}$ cùng phương $MB, MC$. Do đó $\overrightarrow{u} = \overrightarrow{0}$.

Bài tập rèn luyện.

Bài 1. Cho đa giác đều $A_1A_2\cdot A_n$ có tâm $O$. Chứng minh rằng $$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}$$

Bài 2. Cho tam giác $ABC$, dự các vec tơ $\overrightarrow{a}$ hướng là ngoài tam giác và có độ dài $BC$, các vec tơ $\overrightarrow{b}, \overrightarrow{c}$ được dựng tương tự. Chứng minh rằng $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$

Bài 3. Cho tam giác $ABC$ có $O$ là tâm ngoại tiếp, $H$ là trực tâm. Chứng minh rằng $$ \overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

Cấp số cộng

Lý Ngọc Vy – Giáo viên Star Education

Dãy số (hữu hạn hoặc vô hạn) $a_1, a_2, a_3, \ldots, a_n, \ldots,$ được gọi là cấp số cộng nếu lấy số hạng thứ hai trừ số hạng đứng trước nó bằng một số $c$ không đổi, nghĩa là $a_{n+1}-a_n=c$ với $n=1,2,3, \ldots$. Số $c$ được gọi là công sai của cấp số cộng.

Từ đó, ta có số hạng tổng quát của cấp số cộng sau:
$$
a_n=a_1+(n-1) c
$$

Ví dụ 1 Cho tập hợp các số tự nhiên
$$
1,2,3,4,5, \ldots,
$$
là một cấp số cộng với công sai $c=1$.
Cho tập hợp các số chẵn
$$
2,4,6,8,10,12, \ldots
$$
là một cấp số cộng với $c=2$ không đổi.
Tổng $n$ số hạng đầu tiên của cấp số cộng
Carl Fried Gauss (1777-1855) là một trong những nhà toán học vĩ đại nhất trong lịch sử. Tên ông ấy xuất hiện ở mọi lĩnh vực toán học. Chuyện kể rằng, lúc Gauss 7 tuổi, ông đã khám phá ra cách tính nhanh tổng các số từ 1 đến 100 .

Phương pháp tính của Gauss như sau: $S=1+2+3+\ldots+98+99+100$.
Đảo thứ tự các số, ta có: $S=100+99+98+\ldots+3+2+1$.
$$
\text { Vì } 1+100=2+99=3+98=\ldots=98+3=99+2=100+1=101 \text {. }
$$

Khi có, $2 S=100 \times 101$.
Vậy $S=5050$.

Ta áp dụng phương pháp này cho cấp số cộng.
Giả sử, cho cấp số cộng như sau:
$$
a_1, a_2, a_3, . ., a_n
$$

Ta có:
$S =a_1+a_2+\ldots+a_{n-1}+a_n . $
$S =a_n+a_{n-1}+\ldots+a_2+a_1 .$

Vì $a_1+a_n=a_2+a_{n-1}=\ldots=a_{n-1}+a_2=a_n+a_1$. Khi đó, $2 S=n \times\left(a_1+a_n\right)$.
Vậy
$$
S=a_1+a_2+\ldots+a_n=\sum_{i=1}^n a_i=\dfrac{\left(a_1+a_n\right) \cdot n}{2} .
$$
$\sum$ : Tổng của 1 phép toán nhiều hạng tử.
Ví dụ 2: [AMC8.2015.9] Ngày đầu tiên đi làm, Janabel bán được 1 sản phẩm. Ngày thứ 2, cô ấy bán được 3 sản phẩm. Ngày thứ 3 , cô ây bán được 5 sản phẩm và những ngày tiếp theo cô ấy bán được nhiều hơn ngày trước đó 2 sản phẩm. Trong 20 ngày, Janabel bán được tất cả bao nhiêu sản phẩm?

Lời giải.
Biểu diễn $a_n$ là số sản phẩm Janabel bán được ở ngày thứ $n$. Theo giả thuyết, dãy số sau là dãy cấp số cộng với $a_1=1$ và công sai $c=2$
1
$$
1,3,5,7, \ldots
$$

Từ (1) và (2), suy ra ngày thứ 20 , cô ấy đã bán được số sản phẩm $a_{20}=a_1+2 \times 19=39$. Số sản phẩm cố ấy bán được trong 20 ngày là $S=\frac{(1+39) \times 20}{2}=400$.
Ví dụ 3: [AMC10A.2011.4] Cho $X$ và $Y$ là tổng của cấp số cộng như sau:
$X=10+12+14+\ldots+100$
$Y=12+14+16+\ldots+102 .$

Tính $Y-X$ ?
Lời giải.
Cách 1: $X$ và $Y$ là tổng của cấp số cộng có 46 số hạng. Dùng công thức (2), ta tính được $X$ và $Y$.

Cách 2: $Y-X=(12-10)+(14-12)+\ldots+(102-100)=2 \times 46=92$.
Cách 3:

Cách 3:
$$
\begin{aligned}
& X=10+12+14+\ldots+100 \
& Y=\quad 12+14+\ldots+100+102 .
\end{aligned}
$$

Khi lấy $Y-X$, các số hạng từ 12 dến 100 sẽ triệt tiêu cho nhau nên $Y-X=102-10=92$
Ví dụ 4: [AMC10.2001.11] Xét hình vuông tối màu trong một mảng các hình vuông đơn vị được biểu thị như hình dưới. Vòng thứ nhất bao quanh hình vuông trung tâm gồm 8 hình vuông đơn vị. Vòng thứ hai gồm 16 hình vuông đơn vị. Cứ tiếp tục như thế thì đến vòng thứ 100 sẽ có bao nhiêu hình vuông đơn vị?

Lời giải.
Gọi $a_n$ là số hình vuông đơn vị ở vòng thứ $n$.
Khi đó, dãy số
$$
8,16,24, \ldots
$$
là một cấp số cộng với công sai
$$
c=8
$$

Từ (1), ta tính được $a_{100}=a_1+99 \times 8=800$.

Ví dụ 5. Cho dãy số $1 ; 4 ; 7 ; \ldots$ là một cấp số cộng với công sai là 3 .
(a) Tìm số hạng thứ 10.
(b) Tìm số hạng thứ 2023.
(c) Tính tổng 10 số hạng đầu.
(d) Tính tổng 100 số hạng đầu tiên.
(e) Tính tổng các số hạng từ số hạng 11 đến số hạng 100 .

Lời giải.
$$
u_1=1 ; d=3 \text {. }
$$
(a) $u_{10}=u_1+(10-1) d=1+9.3=28$.
(b) $u_{2023}=u_1+(2023-1) d=1+2022.3=6067$.
(c) $S_{10}=\frac{\left(u_{10}+u_1\right) \cdot 10}{2}=\frac{(28+1) \cdot 10}{2}=145$.
(d) $S_{100}=\frac{\left(u_{100}+u_1\right) \cdot 100}{2}=\frac{(298+1) \cdot 100}{2}=14950$.
(e) $u_{11}+\ldots+u_{100}=S_{100}-S_{10}=14950-145=14805$.

Ví dụ 6. (Số tam giác) Ta gọi tổng của $n$ số nguyên dương đầu tiên là một số tam giác (thứ $n$ ). Ví dụ 10 là một số tam giác thứ tư vì $10=1+2+3+4$.
1
(a) Liệt kê 10 số tam giác đầu tiên.
(b) Số 200 có phải là một số tam giác không? Tại sao?
(c) Tính tổng của hai số tam giác thứ 11 và 12 .
(d) Có nhận xét gì về tổng hai số tam giác liên tiếp, chứng minh nhận xét đó.
(e) Ngoài số 1, có số tam giác nà là bình phương của một số nguyên dương không? Tìm một số như thế.

Lời giải

(a) 10 số tam giác đầu tiên: ${1 ; 3 ; 6 ; 10 ; 15 ; 21 ; 28 ; 36 ; 45 ; 55}$.
(b) $200=S_n=\frac{\left[2 u_1+(n-1) d\right] \cdot n}{2} \Rightarrow 200=\frac{[2+(n-1)] n}{2} \Rightarrow n^2-n-398=0$.
Ta thấy, $n \approx 20,46$ không là số nguyên dương.
Vậy 200 không là một số tam giác.
(c) $S_{11}+S_{12}=\frac{(11+1) \cdot 11}{2}+\frac{(12+1) \cdot 12}{2}=144$.
(d) Tổng hai số tam giác liên tiếp: ${4 ; 9 ; 16 ; 25 ; 36 ; \ldots} . \Rightarrow$ Tổng hai số tam giác liên tiếp luôn là số chính phương.
$ S_n+S_{n+1}=\frac{\left[2 u_1+(n-1) d\right] n}{2}+\frac{\left(2 u_1+n d\right)(n+1)}{2}=\frac{4 u_1 n+2 u_1+2 n^2 d}{2}=n^2+2 n+1
$ =(n+1)^2 $
(e) $x^2=S_n \Rightarrow x^2=\frac{\left[2 u_1+(n-1) d\right] n}{2} \Rightarrow x^2=\frac{n^2+n}{2}$.
Ta thấy, số tam giác thứ 8 là bình phương của một số nguyên dương là 36 .

Ví dụ 7. Cho các tập sau: $S_1={1}, S_2={2,3}, S_3={4,5,6}, \ldots$
(a) Tính tổng các số của $S_5, S_6$.
(b) Tìm số lớn nhất của $S_{100}$.
(c) Tính tổng các số của $S_{100}$.
(d) Số 2023 thuộc tập nào?
(e) Đặt $m_1, m_2, \ldots$ lần lượt là số lớn nhất trong các tập $S_1, S_2, \ldots$, . Ví dụ $m_1=1, m_2=3, m_3=6$. Có nhận xét gì về $m_1, m_2, \ldots$, . Có số nào trong dãy có giá trị bằng 210 không? Tại sao?

Lời giải.
Gọi $A_n={1 ; 2 ; 3 ; \ldots ; n}$.
Số nhỏ nhất trong tập $S_n=K_n-(n-1)$ với $K_n$ là tổng $n$ số đầu tiên trong dãy $A_n$. Số lớn nhất trong tập $S_n=K_n$ với $K_n$ là tổng $n$ số đầu tiên trong dãy $A_n$.
(a) Số nhỏ nhất trong tập $S_5=K_5-4=\frac{(5+1) .5}{2}-4=11$.
Số lớn nhất trong tập $S_5=K_5=15$.
Tổng các số của $S_5=\frac{(15+11) \cdot 5}{2}=65$.
Số nhỏ nhất trong tập $S_6=16$.
Số lớn nhất trong tập $S_6=21$.
Tổng các số của $S_6=\frac{(16+21) \cdot 6}{2}=111$.

Số lớn nhất trong tập $S_6=21$.
Tổng các số của $S_6=\frac{(16+21) \cdot 6}{2}=111$.
(b) Số lớn nhất của $S_{100}=K_{100}=\frac{(100+1) \cdot 100}{2}=5050$.
(c) Số nhỏ nhất của $S_n<2023<$ Số lớn nhất của $S_n$

Ta có $K_n-(n-1)<20234046$, suy ra 63,11<n<64,09\right. \
Vậy $n=64$, do đó $2023 \in S_{64} $
(d) $m_1 ; m_2 ; \ldots$ là tổng $n$ số đầu tiên của $A_n$.
$210=\frac{(1+n) \cdot n}{2} \Rightarrow n^2+n-420=0 \Rightarrow n=20$ là số nguyên dương.
Vậy $m_{20}$ là số lớn nhất trong tập có giá trị bằng 210.

Ví dụ 8. Bạn Bảo Huy có một kế hoạch học tập vào tháng 5 (31 ngày) đối với môn toán như sau: giai đoạn khởi động 15 ngày đầu, mỗi ngày Huy làm 4 bài toán, giai đoạn tăng tốc kể từ ngày 16 thì Huy mỗi ngày Huy làm nhiều hơn ngày trước đó một số bài không đổi, sau khi tăng tốc làm bài đến về đích, Huy làm mỗi ngày giảm 10 bài so với ngày trước đó và nghỉ hẳn, không làm toán vào ngày cuối cùng. Sau khi thực hiện theo kế hoạch thì Huy thấy mình làm được là 402 bài toán trong tháng năm. Hỏi ngày Huy làm được nhiều nhất là bao nhiêu bài toán?

Lời giải.

Giai đoạn khởi động: Tổng số bài bạn Bảo Huy làm trong 15 ngày là $4.15=60$ bài.

Giai đoạn tăng tốc: Số bài bạn Bảo Huy làm từ ngày 16 là
$ u_{16}=4+d, u_{17}=4+2 d, u_{18}=4+3 d, \ldots $
$\Rightarrow u_{16+n}=4+(n+1) d $

Giai đoạn về đích:
$$
u_{16+n+1}=4+(n+1) d-10, u_{16+n+2}=4+(n+1) d-2.10, \ldots
$$

Ngày 30: $u_{16+n+m-1}=4+(n+1) d-(m-1) .10$.

Ngày $31: u_{16+n+m}=4+(n+1) d-m .10$ với $16+n+m=31 \Rightarrow m=15-n$ và $n, m$ là các số nguyên dương.

Vì bạn Bảo Huy không làm toán vào ngày cuối cùng nên

$4+(n+1) d-10 m=0 \Rightarrow 4+(n+1) d-10(15-n)=0 \Rightarrow d=\frac{146-10 n}{n+1} $

Bạn Bảo Huy làm được 402 bài toán trong tháng năm nên

Giai đoạn khởi động + Giai đoạn tăng tốc + Giai đoạn về đích (dến ngày 30)=402
$\Rightarrow 60+\dfrac{4+(n+1) d+(4+d)}{2}+\dfrac{4+(n+1) d-10(14-n)+4+(n+1) d-10}{2}=402 $
$\Rightarrow-n^2 d-10 n^2+29 n d+290 n+30 d=2664 .

Mà $ d=\frac{146-10 n}{n+1}$
Khi đó, $n=11$ và $d=3$.
Vậy 1 ngày bạn Bảo Huy làm nhiều nhất $4+(11+1) \cdot 3=40$ bài toán.

Một số bài đường tròn và tiếp tuyến

Bài 1. Cho đường tròn tâm $O$ đường kính $A B$. $C$ là một điểm thuộc đường tròn. $d_1$ và $d_2$ lần lượt là tiếp tuyến tại $A$ và $B$ của $(O)$. Tiếp tuyến tại $C$ cắt $d_1, d_2$ lần lượt tại $D$ và $E$. $B C$ cắt $d_1$ tại $F$.
a) Chứng minh $d_1 | d_2$ và $D$ là trung điểm của $A F$.
b) Vẽ đường cao $C H$. Chứng minh rằng $A E, B D$ và $C H$ dồng quy tại trung điểm của $C H$.
c) Chứng minh $O F \perp A E$.

Lời giải.

a) $d_1$ là tiếp tuyến tại $A$ nên $O A \perp d_1, d_2$ là tiếp tuyến tại $B$ nên $d_2 \perp O B$, mà $O, A, B$ thẳng hàng, suy ra $d_1 / / d_2$.
Ta có $\angle A C B=90^{\circ}$, suy ra $\angle D C F+$ $\angle D C A=\angle D F C+\angle D A C=90^{\circ}$. (1)
Hơn nữa $D A=D C$ (t/c tiếp tuyến), tam giác $D A C$ cân tại $D$, suy ra $\angle D C A=$ $\angle D A C$. (2)
Từ (1) và (2) ta có $\angle D C F=\angle D F C$, tam giác $D C F$ cân tại $D$.
Vậy $D F=D C=D A$, hay $D$ là trung điểm của $A F$.
b) Gọi $I$ là giao điểm của $B D$ và $A E$. Ta có $A D / / B E$ nên $\frac{B I}{I D}=\frac{E B}{A D}(3)$.
Mặt khác do $A D=D C$ và $E B=E C$, suy ra $\frac{E B}{A D}=\frac{E C}{D C}$ (4).

Từ (3) và (4) ta có $\frac{B I}{I D}=\frac{E C}{D C}$, suy ra $I C / / A D$ (Thalet đảo).

Mà $A D \perp A B$ nên $C I \perp A B$, vậy $C, I, H$ thẳng hàng.

Do đó $A E, B E, C H$ đồng quy tại $I$.
Ta có $\frac{C I}{A D}=\frac{E I}{E A}, \frac{I H}{A D}=\frac{B I}{B D}$ và $\frac{E I}{E A}=$ $\frac{B I}{B D}$, nên $\frac{C I}{A D}=\frac{I H}{A D}$, suy ra $I C=I H$ hay
$I$ là trung điểm của $C H$.
c) Ta có $E B \cdot A D=E C \cdot C D=O C^2=R^2$, mà $A F=2 A D$ nên $E B \cdot A F=2 R^2$.

Suy ra $E B \cdot A F=A O \cdot A B$, suy ra $\frac{E B}{A B}=\frac{O A}{A F}$, do đó $\tan E A B=\tan A F O$, suy ra $\angle E A B=$ $\angle A F O$.
Mà $\angle E A B+\angle E A F=90^{\circ}$ nên $\angle E A B+$ $\angle A F O=90^{\circ}$. Do đó $O F \perp A E$.

Bài 2. Cho đường tròn tâm $O$ bán kính $R$. $A$ là một điểm nằm ngoài đường tròn, từ $A$ dựng các tiếp tuyến $A B, A C$ dến $(O)$ với $B, C$ là các tiếp điểm. Một cát tuyết qua $A$ cắt $(O)$ tại $D$ và $E$ trong đó $D$ nằm giữa $A$ và $E$.Gọi $H$ là giao điểm của $O A$ và $B C$.
a) Chứng minh $O H \cdot O A=R^2$.
b) Gọi $M$ là trung điểm của $D E$. Chứng minh 4 điểm $O, M, B, C$ cùng thuộc đường tròn.
c) Tiếp tuyến tại $D$ và $E$ của $(O)$ cắt nhau tại điểm $P$. Chứng minh $P, B, C$ thẳng hàng.

Lời giải.

a) Ta có $A B, A C$ là tiếp tuyến nên $A B=A C$, và $O B=O C=R$, suy ra $O A$ là trung trực của $B C$, suy ra $O A \perp B C$ tại $H$.
Tam giác $O A B$ có $\angle O B A=90^{\circ}$ (t/c tiệp tuyến) và $B H \perp O A$ nên $O H \cdot O A=O B^2=$ $R^2$.
b) $M$ là trung điểm $D E$, suy ra $O M \perp D E$.
Ta có $\angle O B A=\angle O M A=\angle O C A=90^{\circ}$, suy ra 5 diểm $O, M, B, A, C$ cùng thuộc đường tròn đường kính $O A$.
c) Ta chứng minh được $O P \perp D E$, suy ra $O, M, P$ thẳng hàng và $O M . O P=O D^2=$ $R^2$.
Suy ra $O M \cdot O P=O H \cdot O A$, suy ra $\frac{O M}{O H}=$ $\frac{O P}{O A}$.
Xét tam giác $O M A$ và tam giác $O H P$ có:
$\angle A O P$ chung $\frac{O M}{O H}=\frac{O P}{O A}$ $\angle O H P=\angle O M A=90^{\circ}$.
Ta có $B C, P H$ vuông góc với $O A$ tại $H$ nên $P, B, C$ thẳng hàng.

Bài 3. Cho tam giác $A B C$ vuông tại $A(A B<A C)$. Vẽ đường tròn tâm $O$ đường kính $A C$ cắt cạnh $B C$ tại $D$. Gọi $H$ và $K$ lần lượt là trung điểm của hai cạnh $A D$ và $C D$. Tia $O H$ cắt cạnh $A B$ tại $E$. Tia $O K$ cắt đường thẳng $E D$ tại $N$ và cắt đường tròn tâm $O$ tại $I$.
(a) Chứng minh $D E$ là tiếp tuyến của $(O)$.
(b) Chứng minh $O H D K$ là hình chữ nhật.
(c) Chứng minh tia $D I$ là tia phân giác của $\angle N D C$.
(d) Gọi $S$ là giao điểm của $O B$ với $A D$. Từ $S$ vẽ đường thẳng vuông góc với $A O$ và cắt tia $O H$ tại $Q$. Chứng minh 3 điểm $A, Q, N$ thẳng hàng.

Lời giải.

Hình 1

a) $OH$ là trung trực của $AD$, suy ra $EA = ED$. Từ đó $\triangle EDO = \triangle EAO (ccc)$, suy ra $\angle EDO = \angle EAO = 90^\circ$. Do đó $ED$ là tiếp tuyến của $(O)$.

b) Do $K$ là trung điểm $CD$ nên $OK \bot CD$, tứ giác $OHDK$ có $\angle D = \angle H = \angle K = 90^\circ$ nên là hình chữ nhật.

c) Ta có tam giác $ODI$ cân tại $O$ nên $\angle ODI = \angle OID$ (1)
Mà $\angle ODI = \angle ODK + \angle KDI, \angle OID = \angle OND + \angle NDI$ (2)
Và $\angle OND = \angle ODK$ (vì cùng phụ $\angle DON$) (3)
Từ (1), (2), (3) ta có $\angle KDI = \angle NDI$

d) Gọi $L$ là giao điểm $AQ$ và $OS$.
Trong tam giác $ASO$ có $AQ, SQ$ là các đường cao, nên $Q$ là trực tâm, suy ra $AQ \bot OS$ tại $L$. (4)
Ta có $OL \cdot OB = OA^2$
và $OK \cdot ON = OD^2 = OA^2$
Suy ra $\angle OK \cdot ON = OL \cdot OB$
Suy ra $\triangle OLN \backsim \triangle OKB$, suy ra $\angle OLN = \angle OKB = 90^\circ$ (5)
Từ (4), (5) ta có $A, L, N$ thẳng hàng, hay $A, Q, N$ thẳng hàng.

Bài 4. Cho đường tròn $(O ; R)$ và một điểm $S$ nằm ngoài đường tròn $(O)$. Vẽ hai tiếp tuyến $S B, S C$ đến $(O)$ với $B, C$ là hai tiếp điểm. Gọi $H$ là giao điểm của $S O$ với $B C$.
(a) Vẽ đường kính $B A$ của $(O)$. Chứng minh $A C || S O$ và $H B \cdot H C=H O \cdot H S$.
(b) Vẽ đường thẳng $d$ vuông góc vớ $A B$ tại $O$, đường thẳng $d$ cắt đường thẳng $A C$ tại $E$. Chứng minh $S E=R$.
(c) Vẽ $C K$ vuông góc với $A B$ tại $K$. Gọi $I$ là trung điểm của cạnh $C K$. Chứng minh 3 điểm $S, I, A$ thẳng hàng.

Lời giải.

a) Do $AB$ là đường kính của $(O)$ nên $\angle ACB = 90^\circ$. (1)

Ta có $SB = SC$ và $SO$ phân giác $\angle BSC$ nên $SO$ là trung trực của $BC$, do đó $OS \bot BC$ tại $H$.

Từ đó ta có $AC ||OS$ vì cùng vuông góc $BC$.

b) $\triangle AOE = \triangle OBS (gcg)$, suy ra $OE = BS$.

Tứ giác $OESB$ có $OE||BS$ (Cùng vuông góc $AB$), và $OE = BS$ nên $OESB$ là hình bình hành, hơn nữa có $\angle OBS= 90^\circ$ nên là hình chữ nhật, do đó $SE = OB = R$.

c) Ta có $OASE$ là hình bình hành, suy ra $AS$ cắt $OE$ tại trung điểm $T$ của mỗi đoạn.
$CK ||OE$
Gọi $I’$ là giao điểm của $AS$ và $CK$
Ta có $\dfrac{I’K}{OT} = \dfrac{AI’}{AT} = \dfrac{CI’}{ET}$
Mà $OT = ET$ nên $KI’ = CI’$, hay $I’ \equiv I$
Vậy $A, I, S$ thẳng hàng

Bài 5. Cho đường tròn $(O ; R)$ và điểm $M$ ở ngoài đường tròn $(O)$. Kẻ tiếp tuyến $M A, M B$ đến $(O)$ với $A, B$ là hai tiếp điểm. Đường thẳng $A B$ cắt $(O)$ tại $K$.
(a) Kẻ đường kính $A N$ của $(O), B H \perp A N$ tại $H$. Chứng $\operatorname{minh} M B \cdot B N=B H \cdot M O$.
(b) Đường thẳng $M O$ cắt đường tròn $(O)$ tại $C$ và $D(C$ nằm giữa $O$ và $M)$. Chứng minh $O K \cdot M K=C K \cdot D K$.
(c) $E$ đối xứng với $C$ qua $K$. Chứng minh $E$ là trực tâm của tam giác $A B D$.
(d) Chứng minh $\sin \angle M^{\circ} A B=\frac{C K}{A K}+\frac{C K}{A M}$

Lời giải.

a) Chứng minh tam giác $OMB$ và $NBH$ đồng dạng.
b) $OK \cdot MK = AK^2 = KC \cdot KD$
c) $ACBE$ là hình thoi, suy ra $BE||AC$, mà $AC \bot AD$ suy ra $BE \bot AD$
$DE \bot AB$
Do đó $E$ là trực tâm tam giác $ABD$.

d) $\angle CAK = \angle CAM$ (chứng minh ở bài trên)
Do đó $\dfrac{CK}{CM} = \dfrac{AK}{AM}$, suy ra $\dfrac{CK}{AK} = \dfrac{CM}{AM}$
Từ đó $VP = \dfrac{CK}{AK} + \dfrac{CK}{AM} = \dfrac{CM}{AM} + \dfrac{CK}{AM} = \dfrac{KM}{AM} = \sin MAB$

Bài 6. Cho hình vuông $A B C D$ cạnh $a, E$ là cung thuộc cung nhỏ $B D$ của đường tròn tâm tâm $A$ bán kính $a$. Tiếp tuyến tại $E$ cắt $C D$ tại $F$ và $B C$ tại $G$.
(a) Chứng minh chu vi tam giác $C F G$ bằng $2 a$.
(b) $A F, A G$ cắt $B D$ tại $I$ và $H$. Chứng minh $H E=$ $H B, I E=I D$

và $H I^2=D I^2+B H^2$
(c) Chứng minh $F H, G I$ và $A E$ đồng quy.

Lời giải.

a) $CD, CB, FG$ là tiếp tuyến của $(A;a)$
Suy ra $FE = FD, GE = GB$
$P_{CFG} = CF + FG + CG = CF + EF +EG+CG = CF+DF +GB+CG = CD+ CB = 2a$

b) $AF$ là trung trực $DE$, và $AG$ là trung trực $BE$
Suy ra $IE = ID, HB = HE$
$\triangle IEF = \triangle IDF \Rightarrow \angle IEF =\angle IDF = 45^\circ$
Tương tự cũng có $\angle HEG = 45^\circ$
Suy ra $\angle IEH = 90^\circ$
Áp dụng pitago cho tam giác $EIH$ ta có $IH^2 = IE^2 + HE^2 = ID^2 + HB^2$

c) Ta có $AF$ là phân giác $\angle DAE$, $AG$ là phân giác của $\angle BAE$
Suy ra $\angle FAG = \dfrac{1}{2} \angle BAD = 45^\circ$.
$\triangle AIH \backsim \triangle DIF (gg)$, suy ra $IA \cdot IF = ID \cdot IH$
Suy ra $\triangle IFH \backsim \triangle IDA \Rightarrow \angle IFH = \angle IDA = 45^\circ$
Suy $\angle AHF = 90^\circ$ hay $FH \bot AG$.
Chứng minh tương tự $GI \bot AF$.
Tam giác $FG$ có $AE, FH, GI$ là các đường cao nên đồng quy.

Bài 7. (Cuối khóa 1 – Star Education 2018) Cho đường tròn $(O ; R)$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ các tiếp tuyến $A B, A C$ dến $(O)$ ( $B, C$ là các tiếp điểm). $O A$ cắt $B C$ tại $H$.
a) Chứng minh $O H \cdot O A=R^2$ và 4 điểm $O, A, B, C$ cùng thuộc một đường tròn.
b) Đường tròn tâm $I$ đường kính $A B$ cắt $(O)$ tại điểm $D$ khác $B$. Chứng minh $I D$ là tiếp tuyến của $(O)$.
c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.

d) Tiếp tuyến tại $H$ của $(I)$ cắt $O B$ tại $M$; gọi $N$ là trung điểm $P M$, đường thẳng qua $P$ song song $B N$ cắt $A B$ tại $K$. Chứng minh $H K, A M$ và $B D$ đồng quy.

Lời giải.

a)

Xét $\triangle A B O$ vuông tại $B$ có:

$B H$ là đường cao $\Rightarrow O H \cdot O A=O B^2=R^2$ (Hệ thức lượng)

Ta có: $\triangle A B O$ vuông tại $B \Rightarrow A, B, O$ thuộc đường tròn đường kính $A O$. (1)

Lại có $\triangle A C O$ vuông tại $C \Rightarrow A, C, O$ thuộc đường tròn đường kính $A O$. (2)

Từ (1) và (2) suy ra $A, B, O, C$ thuộc đường tròn đường kính $A O$.

b)

Ta có: $\triangle A B D$ nội tiếp đường tròn đường kính $A B \Rightarrow \triangle A B D$ vuông tại $D$

Mà $I$ là trung điểm cạnh huyền $A B \Rightarrow I B=I D$
Ta có: $I B=I D, O B=O D$ nên $I O$ là trung trực của $B D$ $\Rightarrow \angle I B O=\angle I D O=90^{\circ}$ nên $I D$ là tiếp tuyến của $(O)$.

c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.

Gọi $E=I P \cap A H$ và $F=I O \cap B D$.
Sử dụng tính chất hai tiếp tuyến cắt nhau và hệ thức lượng, ta chứng minh được
$$
I E \cdot I P=I A^2=I D^2=I F \cdot I O \Rightarrow \frac{I F}{I P}=\frac{I E}{I O}
$$

Từ đó, chứng minh được $\triangle I F P \backsim \triangle I E O$ (c.g.c)
$$
\Rightarrow \angle I E O=\angle I F P=90^{\circ} \text {. }
$$

Ta có: $B D$ đi qua $F$ và vuông góc $I O, F P$ đi qua $F$ và vuông góc $I O$ nên hai đường thẳng này trùng nhau. $\Rightarrow B, D, P$ thẳng hàng.

d)

Chứng minh $I H$ là đường trung bình của $\triangle A B C \Rightarrow I H || A C$. Mà $I H \perp P M$ và $A C \perp O C$.

Suy ra: $H M || O C$. Lại có $H$ là trung điểm $B C$ nên $M$ là trung điểm $O B$.

Gọi $Q$ là giao điểm của $P K$ và $B O$.
Ta có: $B N || P Q$ và $N$ là trung điểm của $P M$ nên suy ra $B$ là trung điểm của $Q M$.

Gọi $J=B P \cap A M$.
Ta có :
$ B Q ||A P \Rightarrow \frac{B K}{K A}=\frac{B Q}{P A}=\frac{B M}{P A} . $
$B M || A P \Rightarrow \frac{B M}{P A}=\frac{B J}{J P}$
Suy ra: $\frac{B K}{K A}=\frac{B J}{J P}$ nên $K J || A P$. Chứng minh tương tự $J H ||A P$. Từ đó ta có $K, J, H$ thẳng hàng.

Vậy $H K, B P, A M$ dồng quy tại $J$.

Bài tập luyện tập.

Bài 6. Cho tam giác $A B C$ nhọn. Các đường cao $A D, B E$ và $C F$ cắt nhau tại $H$. Gọi $M, N$ lần lượt là trung điểm của $B C$ và $A H$.
(a) Chứng minh $N E, N F$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $B C E$.
(b) Chứng minh 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn.
(c) Gọi $G$ là giao điểm của $A D$ và $E F$. Chứng minh $N G \cdot N D=N A^2$.

Bài 7. Cho nửa đường tròn tâm $O$ đường kính $A B=2 R$. Trên tiếp tuyến tại $A$ của $(O)$ lấy điểm $C$ sao cho $A C=A B$. Từ $C$ vẽ tiếp tuyến $C D$ dến $(O)$ cắt tiếp tuyến tại $B$ ở điểm E.
(a) Tính $B E$.
(b) Đường cao $D F$ của tam giác $A B D$ cắt $B C$ tại $G$. Chứng minh rằng $A, G, E$ thẳng hàng.
(c) Gọi $H$ là giao điểm của $O C$ và $A D$. Tính $\angle D H B$.
(d) Gọi $I$ là giao điểm của $B C$ và $(O)$. Tứ giác $I D B H$ là hình gì? Tại sao?

Bài 8. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O) . M$ là trung điểm $B C$. Từ $A$ dựng các tiếp tuyến đến đường tròn $(O ; O M)$ cắt $B C$ tại $D$ và $E$ sao cho $D$ và $C$ khác phía đối với $M ; E, B$ khác phía đối với $M$. Chứng minh rằng các tam giác $A D C$ và $A B E$ cân.

Bài 9. Cho tam giác $A B C$ vuông tại $A, A B=a, B C=2 a$. Đường cao $A H$. Từ $B, C$ vẽ các tiếp tuyến $B D, C E$ dến đường tròn tâm $A$ bán kính $A H$.
(a) Tính $A H$ và số đo $\angle A B C$.
(b) Chứng minh $D, A, E$ thẳng hàng.
(c) Chứng minh $E D$ là tiếp tuyến của đường tròn đường kính $B C$.
(d) Chứng minh $D C, B E$ và $A H$ dồng quy.

Bài 10. Cho hình vuông $A B C D$ cạnh $2 a$, tâm $O$. Đường tròn tâm $O$ bán kính $a$ tiếp xúc với $A B$ và $B C$ tại $E$ và $F$. Gọi $P$ là một điểm trên cung nhỏ $E F$. Tiếp tuyến tại $P$ cắt $A B, B C$ tại $M$ và $N$. Đặt $M B=c, B N=y$.
(a) Chứng minh rằng $x+y+\sqrt{x^2+y^2}=2 a$.
(b) Chứng minh rằng $A M \cdot C N=2 a^2$.
(c) Gọi $K$ là trung điểm của $A D$. Chứng minh rằng $M K |$ $D N$.

Phần trăm

Bài tập 1. Có ba bài kiểm tra, bài số 1 có 25 câu, bài số 2 có 40 câu, bài số 3 có 10 câu. Đức là được $80 \%$ câu đúng bài số 1, $90 \%$ câu đúng bài số 2 và $70 \%$ câu đúng bài số 3. Mỗi câu đúng bài số 1 được 3 điểm, bài số 2 được 5 điểm và bài số 3 được 7 điểm.
a) Tính số câu đúng Đức làm được.
b) Tính số điểm của Đức đạt được.

Lời giải.

a) Số câu đúng Đức làm được: $80 \%.25 + 90 \%.40 + 70 \%.10=63$ câu.

b) Số điểm Đức làm được: $80 \%.25.3 + 90 \%.40.5 + 70 \%.10.7=289$ điểm.

Bài tập 2. Một số nam sinh và nữ sinh đang rửa xe để quyên tiền cho chuyến tham quan Hà Nội của lớp. Ban đầu $40 \%$ của nhóm là con gái. Ngay sau đó, hai cô gái rời đi và hai chàng trai đến, sau đó $30 \%$ trong nhóm là các cô gái. Lúc đầu trong nhóm có bao nhiêu bạn nữ?

Lời giải.
Gọi $x$ (bạn) là số bạn nữ lúc đầu trong nhóm có, $(x>0)$
$$
40 \% \cdot x-2=30 \% . x \Rightarrow x=20
$$

Vậy có 20 bạn nữ.

Bài tập 3. Giả sử trường $\mathrm{A}$ có 1000 học sinh và trường $\mathrm{B}$ có 1200 học sinh. Hỏi số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là bao nhiêu phần trăm?

Lời giải.
Số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $1200-1000=200$ (học sinh).
Phần trăm số học sinh trường $\mathrm{B}$ nhiều hơn số học sinh trường $\mathrm{A}$ là $\frac{200}{1000} \cdot 100=20 \%$
Vậy có $20 \%$

Bài tập 4. Thuế thu nhập của TPHCM được đánh ở mức $p \%$ của 28.000.000 đầu tiên của thu nhập hàng năm cộng với $(p+2) \%$ của bất kỳ số tiền nào trên 28.000.000. Nam nhận thấy rằng thuế thu nhập ở TPHCM mà ba bạn phải trả lên tới $(p+0,25) \%$ thu nhập hàng năm của ba. Thu nhập hàng năm của ba Nam ấy là bao nhiêu?

Lời giải.
Gọi $x$ (đồng) là thu nhập hàng năm của ba Nam, $(x>0)$
Thuế thu nhập của TPHCM là $p \% .28000000+(p+2) \%(x-28000000)$
Thuế thu nhập của TPHCM mà ba Nam trả là $(p+0,25) \% . x$
Giải phương trình:
$ p \% .28000000+(p+2) \%(x-28000000)=(p+0,25) \% . x $
$\Leftrightarrow p \% .28000000+x p \%-28000000 p \%+x .2 \%-56000000 \%=x p \%+x .0,25 \% $
$\Leftrightarrow x=32000000$

Bài tập 5. Giá cổ phiếu của công ty $T T C$ là $\$ 100$ vào năm 2021 . Nó đã giảm $25 \%$ vào năm 2022 và sau đó tăng $25 \%$ vào năm 2023 . Giá cổ phiếu cuối năm 2023 là bao nhiêu?

Lời giải.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 100.25 \%=\$ 25$.
$\Rightarrow$ Giá cổ phiếu vào năm 2022 là $\$ 100-\$ 25=\$ 75$.
Giá cổ phiếu sẽ giảm vào năm 2023 là $\$ 75.25 \%=\$ 18,75$.
$\Rightarrow$ Giá cổ phiếu vào năm 2023 là $\$ 75+\$ 18,75=\$ 93,75$.

Bài tập 6. Ông An định cải tạo một mảnh vườn hình chữ nhật có chiều dài bằng 2,5 chiều rộng. Ông thấy rằng nếu đào một cái hồ có mặt hồ là hình chữ nhật thì sẽ chiếm mất $3 \%$ diện tích mảnh vườn, còn nếu giảm chiều dài $5 \mathrm{~m}$ và tăng chiều rộng $2 \mathrm{~m}$ thì mặt hồ là hình vuông và diện tích mặt hồ giảm được $20 m^2$. Hãy tính các cạnh của mảnh vườn.

Lời giải.
Gọi $x(\mathrm{~m})$ là chiều rộng của mảnh vườn, $(x>0)$.
Vì chiều dài bằng 2,5 chiều rộng nên chiều dài của mảnh vườn là $2,5 x(\mathrm{~m})$.
Gọi $y(\mathrm{~m})$ là chiều rộng của mặt hồ ban đầu.
Gọi $z(\mathrm{~m})$ là chiều dài của mặt hồ ban đầu.
Vì diện tích của mặt hồ chiếm 3\% diện tích mảnh vườn nên diện tích của mặt hồ là
$$
y . z=3 \% .2,5 x^2 \Rightarrow y z=0,075 x^2\left(\mathrm{~m}^2\right)
$$

Nếu giảm chiều dài $5 m$ và tăng chiều rộng $2 m$ thì mặt hồ là hình vuông nên
$$
y+2=z-5 \Rightarrow z=y+7
$$

Diện tích của mặt hồ giảm $20 \mathrm{~m}^2$ nên
$$
y z-(y+2)(z-5)=20 \Rightarrow y \cdot(y+7)-(y+2)^2=20 \Rightarrow y=8 \Rightarrow z=8+7=15
$$

Thay $y=8$ và $z=15$ vào $y z=0,075 x^2$, ta được $8.15=0,075 x^2 \Rightarrow x^2=1600 \Rightarrow x=40$ hoặc $x=-40$.

Vì $x>0$ nên nhận $x=40$.
Vậy chiều rộng của mảnh vườn là $40(\mathrm{~m})$ và chiều dài của mảnh vườn là $100(\mathrm{~m})$

Bài tập 7. Tổng kết học kì 2 , trường trung học cơ sở $\mathrm{N}$ có 60 học sinh không đạt học sinh giỏi, trong đó có 6 em từng đạt học sinh giỏi học kì 1 , số học sinh giỏi của học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 và có $8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 . Tìm số học sinh giỏi học kì 2 của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.

Giải thích:
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Nhóm 1 và nhóm $4=x$ học sinh
60 học sinh không đạt học sinh giỏi học kì 2.
Nhóm 2 và nhóm $3=60$ học sinh

6 học sinh từng đạt học sinh giỏi học kì 1 trong số học sinh không giỏi ở hk2.
Nhóm $3=6$ họ sinh
$8 \%$ số học sinh của trường không đạt học sinh giỏi học kì 1 nhưng đạt học sinh giỏi học kì 2 .
Nhóm $4=8 \%$ học sinh toàn trường

Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 .
Nhóm 1 và $4=\frac{40}{37}$ nhóm 1 và 3

Lời giải.
Gọi $x$ (học sinh) là số học sinh giỏi học kì 2 của trường.
Số học sinh toàn trường là $x+60$ (học sinh)
Số học sinh giỏi học kì 2 bằng $\frac{40}{37}$ số học sinh giỏi của học kì 1 nên
$$
x=\frac{40}{37} \text { số học sinh giỏi của học kì } 1 \text {. }
$$

Số học sinh giỏi của học kì 1 là
$$
x-\frac{8}{100}(x+60)+6=\frac{23}{25} x+\frac{6}{5}(\text { học sinh })
$$

Khi đó, $x=\frac{40}{37} \cdot\left(\frac{23}{25} x+\frac{6}{5}\right) \Rightarrow x=240$. Vậy số học sinh giỏi học kì 2 của trường là 240 học sinh.

Học chuyên toán ở phổ thông – Hình học

Có nhiều bạn hỏi về việc học chuyên toán ở phổ thông, nhân lúc rảnh rỗi mình cũng có một chút chia sẻ cho các bạn có nhu cầu, xem như đây là một vài kinh nghiệm của mình trong việc học và dạy chuyên.

Trong phần này mình nói về môn hình học của cấp 3.

Nếu bạn nào cấp 2 chưa học chuyên toán, mà lên cấp 3 muốn học chuyên toán để tham gia các kì thi học sinh giỏi thì thực sự khó khăn trong việc bắt đầu từ giai đoạn này vì còn nhiều thứ để học, lời khuyên chân thành trong trường hợp này là các bạn có thể bỏ qua mảng chuyên toán học tốt các phần toán trong chương trình chung, để tất cả đam mê, năng lượng của mình vào việc nghiên cứu toán học ở các cấp học cao hơn, học trò mình có những bạn cấp 3 chỉ học chuyên anh, hoặc không học chuyên toán, nhưng sau vẫn đang làm toán rất tốt ở bậc tiến sĩ. Còn nếu không thi học sinh giỏi mà chỉ học để tạo tiền đề học lên cao thì bỏ qua phần hình chuyên này.

Còn các bạn đã có nền tảng chuyên toán ở cấp 2, muốn học tiếp lên để thi học sinh giỏi thì phần hình học khá quan trọng trong các đề chuyên toán, có thể đọc tiếp ở các dòng sau.

Trong chương trình chính thức chung cho mọi đối tượng có các phần sau: Vectơ, hệ thức lượng, lượng giác, phương pháp tọa độ trong mặt phẳng- các đường conic (lớp 10) và mảng hình học không gian từ 11 lên 12. Nhìn chung phần này cũng rất đa dạng và cung cấp nhiều cách tiếp cận, chủ yếu là tính toán và biến đổi đại số, lượng giác nhằm giải quyết một bài toán hình học, hỗ trợ cho giải các bài toán thi học sinh giỏi. Cố gắng học chắc các phần này vì nó dù sao cũng là phần chung cho mọi học sinh phổ thông phải học. (Khi mình học phổ thông thì phần này học khá kĩ vì lúc đó không biết đề thi học sinh giỏi cho thi cái gì, !)

Ngoài các phần trên thì trong Tài liệu giáo khoa chuyên toán có giới thiệu thêm một số chuyên đề nhằm giải quyết các bài toán hình học phẳng: phương tích trục đẳng phương, hàng điểm điều hòa, cực và đối cực, các phép biến hình như: tịnh tiến, quay, vị tự, vị tự quay, nghịch đảo. Để giải một bài toán hình học trong các đề học sinh giỏi có thể có nhiều các tiếp cận, nhưng lời khuyên là hãy nắm thật chắc và vận dụng thành thạo các công cụ, thử chứng minh lại hết các tính chất, định lý trong từng chuyên đề. Ngoài ra để giải bài toán hình học phẳng còn phải biết thêm một vài tính chất, định lý quen thuộc. (Tất cả những thứ này mình đều không được biết trước khi thấy đề thi, do đó mà đã bỏ lỡ chúng trong thời gian học phổ thông, mãi tới đại học mới biết hàng điểm điều hòa là gì !)

Có một điều trong việc học chuyên đó là tính hệ thống, học một cách bài bản và có hệ thống các chuyên đề, theo một thứ tự phù hợp (như liệt kê trên) sẽ có lợi trong việc tư duy, tránh việc dùng “dao giết trâu để mổ gà”, vì đôi khi những bài toán khó bắt đầu từ các ý tưởng rất tự nhiên và đơn giản.

Về mặt kĩ thuật thì có các kĩ thuật cần rèn luyện nhiều như: biến đổi góc, biến đổi và so sánh các độ dài, tỉ lệ, việc phát hiện các yếu tố như tứ giác nội tiếp hay hàng điểm điều hòa, hay một tính chất nào đó quen thuộc, đôi khi là chìa khóa để giải bài toán đó.

Về mặt trình bày hình khá đơn giản, những kiến thức trong Tài liệu giáo khoa chuyên toán chắc chắn sẽ được công nhận, những tính chất nào mới quá, hoặc không phổ biến, nên chứng minh lại rõ ràng, nếu muốn đạt điểm tối đa.

Mình đã chứng kiến nhiều em lúc đầu kém hình, ngại làm hình học nhưng khi quyết tâm thì tiến bộ rất nhanh và thành công trong các kì thi học sinh giỏi.

Chú ý: Một số chuyên đề mình nêu cũng đã có trên website này, các bạn có thể tham khảo.

Học toán như luyện công, hãy rèn luyện nội lực thật tốt trước khi học những chiêu thức cao siêu, không khéo tẩu hỏa nhập ma.

Tài liệu tham khảo:

Suy luận phản chứng

Bài viết này dành cho các em lớp 5, 6, 7

Các nhà toán học trong quá khứ đã làm việc chăm chỉ để khám phá bản chất của các chứng minh, và một loạt các kỹ thuật chứng minh đã được phát triển qua nhiều thế kỷ. Hôm nay, chúng tôi sẽ giới thiệu một phương pháp chứng minh quan trọng được gọi là bằng chứng do mâu thuẫn.

Ta thường gặp bài toán kiểu: Có A là đúng và cần suy ra X cũng đúng, trong một số trường hợp ta suy luận trực tiếp như sau: có A đúng thì có C đúng, có C đúng thì có D đúng, …, rồi suy ra X đúng, ở đây ta dùng A làm giả thiết để cho các suy luận sau. Tuy vậy một số tình huống ta không sử dụng được giả thiết A đúng, ta có thể dùng kĩ thuật suy luận phản chứng như sau: Giả sử X sai, tức là ta chấp nhận một giả thiết mới là X sai, từ giả thiết này ta dẫn đến một điều gì đó vô lí, hoặc dẫn đến A sai; khi đó điều giả sử đó là không đúng, tức là ta có điều cần chứng minh. Thế mạnh của suy luận phản chứng là mình có thêm một giả thiết để giúp trong việc suy luận dễ dàng hơn.

Ví dụ 1. Có tồn tại hay không số nguyên lẻ lớn nhất?

Lời giải Giả sử tồn tại số nguyên lẻ lớn nhất là $m$.

khi đó $m+2$ cũng là số lẻ và $m+2 > m$ nên mâu thuẫn vì theo giả sử thì $m$ là lớn nhất.

Vậy không có số nguyên lẻ lớn nhất.

Ví dụ 2. 5 cầu thủ bóng đá đã cùng nhau ghi được 14 bàn thắng, với mỗi cầu thủ ghi ít nhất 1 bàn. Chứng minh rằng ít nhất 2 trong số họ ghi được số bàn thắng như nhau. số bàn thắng.

Lời giải. Giả sử không có ai ghi số bàn thắng bằng nhau.

Khi đó người ghi ít nhất là 1 bàn, người kế tiếp ghi ít nhất là 2 bàn, người thứ 3 ghi ít nhất 3 bàn, cứ như thế người ghi nhiều nhất có số bàn thắng ít nhất là 5 bàn, khi đó tổng số bàn thắng của 5 người ít nhất là $1+2+3+4+5 = 15$ (mâu thuẫn).

Vậy có hai người ghi số bàn thắng bằng nhau.

Ví dụ 3. Quốc hội của một quốc gia được thành lập bởi các nghị sĩ đại diện từ 8 tỉnh. Năm mươi trong số các nghị sĩ này quyết định thành lập một ủy ban. Chứng minh rằng ủy ban này sẽ bao gồm 8 người từ cùng một tỉnh hoặc người từ tất cả 8 tỉnh.

Lời giải. Giả sử ủy bản mỗi tỉnh không có quá 7 người và chỉ đến từ 7 tỉnh trở lại, khi đó số thành viên ủy ban là không qua 49 người, mâu thuẫn.

Vậy trong ủy ban sẽ có một tỉnh có 8 người hoặc thành viên đến từ cả 8 tỉnh.

Ví dụ 4. Viết 10 số từ 0 đến 9 trên một vòng tròn, mỗi số viết đúng một lần.

a) Có tồn tại hay không cách viết sao cho tổng hai số liên tiếp không nhỏ hơn 9?
b) Có tồn tại hay không cách viết sau cho tổng 3 số liên tiếp lớn hơn 12?
Lời giải.

a) Giả sử tồn tại cách viết sao cho tổng hai số liên tiếp không nhỏ hơn 9, xét số 0 và hai số kề với 0 là $a, b$ ta có $0+a \geq 9, 0 + b \geq 9$, suy ra $a=b=9$ mâu thuẫn, vì mỗi số viết đúng 1 lần.

b) Giả sử tồn tại cách viết thỏa đề bài. Tổn các số là 45, bỏ số 9, và xếp 9 số còn lại làm ba nhóm, mỗi nhóm 3 số liên tiếp, khi đó tổng của chúng lớn hơn 36, tuy vậy ta thấy 9 số đó là $0, 1,2, \cdots 8$ tổng là 36, đây là điều mâu thuẫn.

Vậy không cách ghi thỏa đề bài.

Bài tập rèn luyện

Bài 1. Chứng minh rằng khi cho $n+1$ con thỏ vào $n$ cái chuồng thì có chuồng chứa ít nhất 2 con thỏ.

Bài 2. Cho 15 số thỏa mãn tổng của 8 số bất kì lớn nhơn tổng của 7 số còn lại. Chứng minh tất cả các số đã cho đều dương.

Bài 3. Tích của 22 số nguyên bằng 1. Chứng minh rằng tổng của chúng không thể bằng 0.

Bài 4. Có thể chia tập $X = \{1, 2, …, 2022\}$ thành các tập rời nhau sao cho mỗi tập có ít nhất 3 phần tử và phần tử lớn nhất bằng tổng các phần tử còn lại?

Đề thi và đáp án chọn đội dự tuyển 10 trường PTNK năm 2023

Bài 1. Cho ba số thực $a, b, c>0$ thỏa mãn $a+b+c=3$.
(a) Chứng minh rằng $(a b+b c+c a)(a b c+1) \geq 6 a b c$.
(b) Tìm số nguyên dương k lớn nhất sao cho $a b c\left(a^k+b^k+c^k\right) \leq 3$.

Bài 2 .Với mỗi số thực $x,[x]$ gọi là phần nguyên của $x$ – là số nguyên lớn nhất không vượt quá $x$ và ${x}:=x-[x]$ gọi là phần lẻ của $x$.
Cho $p$ là số nguyên tố lẻ, chứng minh rằng với mọi số nguyên dương $k$ nhỏ hơn $p$ thì tổng $$S=\left\{\frac{k}{p}\right\}+\left\{\frac{2 k}{p}\right\}+\left\{\frac{3 k}{p}\right\}+\ldots+\left\{\frac{(p-1) k}{p}\right\}$$ không đổi. Tính S.

Bài 3. Cho tam giác $A B C$ nôi tiếp đường tròn $(\omega)$, tiếp tuyến của $(\omega)$ tai $\mathrm{B}$ là $d_1$, tai $\mathrm{C}$ là $d_2$. I là điểm thuôc trung trự $\mathrm{BC}$, đường tròn tâm $\mathrm{I}$ bán kính $\mathrm{IB}$ cắt các canh $\mathrm{AB}, \mathrm{AC}$ tại $\mathrm{D}, \mathrm{E}$. $\mathrm{CD}$ cắt $d_1$ tai $\mathrm{F}, \mathrm{BE}$ cắt $d_2$ tai $\mathrm{G}$ sao cho $\mathrm{F}, \mathrm{G}$ cùng phía $\mathrm{A}$ so với $\mathrm{BC}$. Đường tròn ngoai tiếp tam giác $\mathrm{BDF}$ cắt $\mathrm{BE}$ tại $\mathrm{K}$, đường tròn ngoại tiếp tam giác CEG cắt $\mathrm{CD}$ tại L.
(a) Khi $\mathrm{I}$ thuộc $\mathrm{BC}$, gọi $\mathrm{P}$ là giao điểm của $\mathrm{FK}$ và $\mathrm{GL}$. Chứng minh $\mathrm{AP}$ đi qua tâm của $(\omega)$.
(b) Khi I khác phía $\mathrm{A}$ đối với $\mathrm{BC}, \mathrm{DE}$ cắt $d_1$ tại $\mathrm{R}, d_2$ tại $\mathrm{S}$. Đường tròn ngoại tiếp tam giác ISR cắt $\mathrm{BC}$ tại $\mathrm{X}, \mathrm{Y}$. Chứng minh $B X=C Y$.

Bài 4 Tìm số nguyên dương $s$ lớn nhất thỏa mãn tính chất sau: Với mọi bộ số nguyên dương nhỏ hơn hay bằng 10 (không nhất thiết phân biệt) có tồng bằng $s$ ta luôn có thể chia thành hai nhóm mà tổng các số thuộc mỗi nhóm nhỏ hơn hay bằng 70 .

Lời giải

Bài 1.

(a) Đặt $a=\min {a, b, c}$, suy ra $a \leq 1$.
Khi đó $(a-1)^3 \leq 1 \Rightarrow a^3-3 a^2+3 a-1 \leq 0 \Rightarrow \frac{1}{a}+a(3-a) \geq 3$, suy ra $\frac{1}{a}+a b+a c \geq 3$, hơn nữa
$$
\frac{1}{b}+\frac{1}{c}+b c \geq 3 \sqrt[3]{\frac{1}{b} \frac{1}{c} b c}=3
$$
Từ đó $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a b+b c+a c \geq 6$. hay $(a b+b c+c a)(a b c+1) \geq 6 a b c$.
(b) Cho $a=2, b=c=\frac{1}{2}$, suy ra $k<3$, ta chứng minh $k=2$ thì bất đẳng thức thỏa với mọi $a, b, c$ thỏa điều kiện, thật vậy

$a b c\left(a^2+b^2+c^2\right) =\frac{1}{3} \cdot a b c(a+b+c)\left(a^2+b^2+c^2\right) $
$\leq \frac{1}{9} \cdot(a b+b c+c a)^2 \cdot\left(a^2+b^2+c^2\right) $
$=\frac{1}{9} \cdot(a b+b c+c a)(a b+b c+c a)\left(a^2+b^2+c^2\right) $
$ \leq \frac{1}{9} \cdot \frac{1}{27} \cdot\left(a^2+b^2+c^2+2(a b+b c+c a)\right)^3 $
$ =\frac{1}{9} \cdot \frac{1}{27} \cdot 3^6=3$

Bài 2.

Với $p$ nguyên tố lẻ thì $(k, p)=1$ với mọi $0<k<p$. Ta chứng minh $p-1$ số $k, 2 k, \cdots,(p-1) k$ là hệ thặng dư thu gọn của $p$, thật vậy, giả sử $i k \equiv j k($ $\bmod p)$ với $i, j<p$ thì $k(i-j) \equiv 0(\bmod p)$, suy ra $i=j$.
Khi đó $S=\left\{\frac{k}{p}\right\}+\left\{\frac{2 k}{p}\right\}+\left\{\frac{3 k}{p}\right\}+\ldots+\left\{\frac{(p-1) k}{p}\right\}=\frac{1}{p}+\frac{2}{p}+\cdots \frac{p-1}{p}=$ $\frac{p-1}{2}$ không đổi.

Bài 3.

(a) Gọi $O$ là tâm của $\omega$. Ta có $\angle S D B=\angle A D E=\angle A C B=\angle S B D$ nên $\triangle S B D$ cân tại $S$. Tương tự $\triangle R E C$ cân tại $R$. Biến đổi góc
$$
\angle K F L=\angle K F D=\angle K B D=\angle D C E=\angle E G L \angle K G L,
$$
suy ra $F, K, L, G$ đồng viên.
Do $I \in B C$ nên $\angle B D C=90^{\circ}$, mà $\triangle S B D$ cân tại $S$ nên $S$ là tâm đường tròn $(F D K)$. Tương tự, $R$ là tâm đường tròn $(G E L)$. Ta có
$$
A D \cdot A B=A E \cdot A C, \quad P K \cdot P F=P L \cdot P G,
$$
suy ra $A P$ là trục đẳng phương của hai đường tròn $(F D K)$ và $(G E L)$, do đó $A P \perp R S$.
Mà $A O \perp D E$ nên $A, O, P$ thằng hàng.

(b) Gọi $M, N$ lần lượt là giao điểm của $I S, I R$ với $B C . \triangle S B D$ cân tại $S$ nên suy ra $I S$ là đường trung trực của $B D$, tương tự $I R$ là đường trung
Tập san Toán học STAR EDUCATION
trực của $E C$. Biến đổi góc
$$
\begin{aligned}
& \angle M S D=90^{\circ}-\angle S D B=90^{\circ}-\angle A D E=90^{\circ}-\angle A C B=\angle C N G . \
\Rightarrow & \angle I S R=\angle Y N G \Rightarrow \angle I S Y+\angle Y S R=\angle M Y I+\angle Y I R \Rightarrow \angle I S Y= \
& \angle X Y I=\angle X S I .
\end{aligned}
$$
Vậy $S I$ là tia phân giác của $\angle X S Y$ nên $I$ nằm trên đường trung trực của $X Y$. Mà $I$ cũng nằm trên đường trung trực của $B C$ nên $B X=C Y$.

Bài 4.

Ta chứng minh rằng $s=133$ là số lớn nhất thoả mãn điều kiện bài toán. Trước hết, giả sử rằng $s$ là một số thoả mãn điều kiện đã cho.

Viết $s=9 k+r (k, r \in \mathbb{Z}{\geq 0}, 1 \leq r \leq 9 )$.

Nếu $s \geq 134$, xét một bộ số gồm $k$ số 9 và số còn lại bằng $s-9 k$. Trong bộ số này có không quá một số khác 9 nên khi chia chúng thành hai phần khác rỗng, phải có ít nhất một bộ chứa toàn số 9. Hơn nữa, $$ 9 \cdot 7=63<70<9 \cdot 8 $$ nên bộ số này có tổng tối đa là 63 . Nhưng khi đó tổng của các số còn lại, gọi là $T$, sẽ phải thoả mãn $$ T \geq 134-63=71>70 $$ vô lý do $T \leq 70$. Từ đó phải có $s \leq 133$. Bây giờ ta chứng minh rằng $s=133$ thoả mãn điều kiện bài toán. Trước hết, ta chứng minh rằng với mọi bộ số nguyên dương không vượt quá 10 có tổng bằng 133, khi chia thành hai phần khác rỗng là $X, Y$ khác rống (có thể có các phần tử trùng nhau), sao cho

$$ M=\sum{x \in X} x-\sum_{y \in Y} y \geq 0$$

và $M$ nhỏ nhất có thể, thì $M \leq 8$. Thật vậy, giả sử rằng $M \geq 9$ thì
$$
\sum_{x \in X} \geq \frac{1}{2}\left(\sum_{x \in X} x+\sum_{y \in Y} y+9\right) \geq \frac{133+9}{2}=71 .
$$
Vì mỗi phần tử của $X$ không vượt quá 10 nên $X$ có ít nhất 8 phần tử. Đặt $t=\min X$. Xét hai tập hợp
$$
\left\{\begin{array}{l}
X^{\prime}=X \cup{t} \
Y^{\prime}=Y \backslash{t}
\end{array}\right.
$$
thì $X^{\prime}, Y^{\prime} \neq \emptyset$, đều gồm các số nguyên dương không vượt quá 10 , và có tổng bằng 133. Vì tính nhỏ nhất của $M$ nên
$$
M \leq\left|\sum_{x \in X^{\prime}} x-\sum_{y \in Y^{\prime}} y\right|=\left|\sum_{x \in X} x-\sum_{y \in Y} y-2 t\right|=|M-2 t|
$$
Kết hợp với $M \geq 9$ và $1 \leq t \leq 10$ thì $9 \leq M \leq t \leq 10$. Có hai khả năng sau:

  • Nếu $M=10$ thì
    $$
    \sum_{x \in X} x=\frac{133+10}{2} \notin \mathbb{Z}
    $$
    là một điều vô lý.
  • Nếu $M=9$ thì
    $$
    \sum_{x \in X} x=\frac{133+9}{2}=71 .
    $$
    Nếu $t=9$ thì $X$ gồm toàn số 9 và số 10 , nên có thể viết được
    $$
    71=9 k+10 l\left(k, l \in \mathbb{Z}{\geq 0}\right) . $$ Do đó $9 k \equiv 1(\bmod 10)$, dẫn đến $k \equiv 9(\bmod 10)$ và $k \geq 9$. Hệ quả là $$ 9 k+10 l \geq 9 k \geq 81>71 $$ cũng là điều vô lý. Từ đó điều giả sử là sai hay phải có $M \leq 8$, dẫn đến $$ \sum{y \in Y} y \leq \sum_{x \in X} x \leq \frac{1}{2}\left(\sum_{x \in X}+\sum_{y \in Y} y+8\right)=\frac{133+8}{2} .
    $$
    Nhưng các tổng là số nguyên nên
    $$
    \sum_{y \in Y} y \leq \sum_{x \in X} x \leq 70,
    $$
    nghĩa là cách chia $(X, Y)$ thoả mãn điều kiện bài toán. Tóm lại, $s=133$ là số lớn nhất thoả mãn yêu cầu đề bài. Bài toán kết thúc.