Định nghĩa 1. Cho hai tập hợp $A$ và $B$ khác rỗng. Một quy tắc cho tương ứng mỗi phần từ $x \in A$ với một và chỉ một phần tử $y \in B$ được gọi là một ánh xạ từ $A$ vào $B$. Kí hiệu ánh xạ $f: A \rightarrow B, x \mapsto y=f(x)$.
Định nghĩa 2. Cho ánh xạ $f: A \rightarrow B$
$x \in A, y=f(x)$ thì $f(x)$ được gọi ảnh của $x$ qua ánh xạ $f$.
Với mọi $y \in B$, đặt $f^{-1}(y)={x \in A \mid f(x)=y}$ được gọi là tạo ảnh của $y$.
$f(A)={f(x) \mid x \in A}$ được gọi là tập ảnh của ánh xạ. Ví dụ 1.
1. Qui tắc $f: A \rightarrow A$ thỏa $f(x)=x$, tức là cho tương ứng mỗi phần tử với chính nó là một ánh xạ, được gọi là ánh xạ đồng nhất, đôi khi kí hiệu là $I_d$.
2. $f: \mathbb{Z} \rightarrow \{-1, 0, 1\}$ thỏa $f(x)=-1$ nếu $x<0$, $f(x)=1$ nếu $x>0$ và $f(x)=0$ nếu $x=0 $ là một ánh xạ.
3. Cho tập $X, A$ là tập con khác rỗng của $X$. Xét $f: X \rightarrow{0,1}$ thỏa $f(x)=1$ nếu $x \in A, f(x)=0$ nếu $x \notin A$ là một ánh xạ
4. $f: \mathbb{R} \rightarrow \mathbb{R} $ thỏa $x \mapsto y$ thỏa $y^2=x$ Không phải là ánh xạ.
5. Cho đường thẳng $d$, với mọi điểm $M$ cho tương ứng với $M’$ thuộc $d$ sao cho $MM’ \perp d$ nếu $M$ không thuộc $d$ và $M’ \equiv M$ nếu $M$ thuộc $d$ là một ánh xạ, được gọi là phép chiếu vuông góc trên đường thẳng $d$.
6. Cho $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa $f(x) = 3x + 1$ là ánh xạ.
Đơn ánh, toàn ánh, song ánh
Định nghĩa 3. Một ánh xạ được $f: A \rightarrow B$ được gọi là đơn ánh nếu và chỉ nếu $f(x) = f(y) \Rightarrow x = y$. Tức là với mọi $y$ thì $f^-1 (y)$ có không quá một phần tử.
Định nghĩa 4. Ánh xạ $f: A \rightarrow B$ là toàn ánh khi và chỉ khi mọi $y \in B$ thì tồn tại $x \in A$ sao cho $f(x)=y$. Với mọi $y \in B$ thì $f^{-1}(y)$ khác rỗng. Định nghĩa 5. Một ánh xạ là song ánh nếu nó vừa đơn ánh vừa toàn ánh. Tập $f^{-1}(y)$ có đúng một phần tử. Ví dụ 2. Trong các ánh xạ của ví dụ 1 thì 1,6 là song ánh, 2, 3, 5 là toàn ánh nhưng không phải song ánh.
Ánh xạ hợp – Ánh xạ ngược
Định nghĩa 6. Cho song ánh từ $f: A \rightarrow B$. Ta xây dựng một ánh xạ từ $B$ vào $A$ như sau: với mỗi phần tử $b \in B$ cho tương ứng với phần tử $a \in A$ thỏa $a=f^{-1}(b)$, ánh xạ đó được gọi là ánh xạ ngược của $f$, kí hiệu là $f^{-1}$. Ta có $$ f^{-1}: B \rightarrow A, f^{-1}(x)=y \Leftrightarrow f(y)=x $$ Ví dụ 3
a) Ánh xạ ngược của ánh xạ đồng nhất là ánh xạ đồng nhất. b) Cho $A={1,2,3}, B={a, b, c}$.Xét song ánh từ $A \rightarrow B$ là $f(1)=b, f(2)=$ $a, f(3)=c$. Khi đó ánh xạ ngược $f^{-1}$ từ $B \rightarrow A$ là $f^{-1}(a)=2, f^{-1}(b)=1, f^{-1}(c)=3$.
c) Ánh xạ ngược của $f: R \rightarrow R, f(x) = 3x + 1$ là $f: R\rightarrow f(x) = \dfrac{1}{3} (x-1)$.
Định nghĩa 7. Cho $f: A \rightarrow B, g: B \rightarrow C$ khi đó ánh xạ $g \circ f: A \rightarrow C$ thỏa $$ g \circ f(a)=g(f(a)) $$ được gọi là ánh xạ hợp.
Ví dụ 4. Cho $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x+1, g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^2$. (a) Tìm $g \circ g, f \circ f$; (b) $g \circ f, f \circ g$.
Tính chất 1. Nếu $f: A \rightarrow B$ là song ánh thì $f \circ f^{-1} = I_d trên $B$, và $f^{-1} \circ f $ là ánh xạ đồng nhất trên $A$.
Ánh xạ và phép đếm
Định nghĩa 8. Cho tập $A$ số nguyên dương $n$ và $X={0,1,2, \cdots, n}$. Nếu tồn tại một song ánh từ $A$ vào $X$ thì khi đó ta nói $A$ có hữu hạn phần tử và số phần tử của $A$ là $n$. Kí hiệu $|A|=n$. Nếu $A$ không khác rỗng và không có hữu hạn phần tử, ta nói $A$ là tập vô hạn.
Tính chất 2. Cho $A, B$ là các tập hữu hạn.
Nếu tồn tại một đơn ánh từ $A$ vào $B$ thì $|A| \leq|B|$.
Nếu tồn tại một toàn ánh từ $A$ vào $B$ thì $|A| \leq|B|$.
Nếu tồn tại một song ánh từ $A$ vào $B$ thì $|A|=|B|$.
Định nghĩa 1. Đường tròn nội tiếp là đường tròn có tâm là giao điểm ba đường phân giác trong và tiếp xúc với ba cạnh của tam giác.
Định nghĩa 2. Đường tròn bàng tiếp là đường tròn có tâm giao điểm của một phân giác trong và hai phân giác ngoài, tiếp xúc với một cạnh và phần nối dài của hai cạnh còn lại.\\ Trong tam giác có ba đường tròn bàng tiếp ứng với ba đỉnh của tam giác.
Tính chất 1. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$, đường tròn tâm $I$ bán kính $r$ nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. Gọi $I_a, I_b, I_c$ lần lượt là tâm đường tròn ứng với các đỉnh $A, B, C$. $(I_a)$ tiếp xúc với $BC, AC, AB$ tại $D’,E’, F’$. Đặt $p = \dfrac{AB+BC+AC}{2}, S = S_{ABC}$. Ta có một số tính chất sau: a) $AE = AF = p-a$ và $AE’ = AF’ = p$ và $BD = CD’ = \dfrac{AB+BC-AC}{2}$. b) $K$ là điểm đối xứng của $D$ qua $I$ thì $A, K, D’$ thẳng hàng. c) Đường tròn ngoại tiếp tam giác $ABC$ đi qua trung điểm các cạnh của tam giác $I_aI_bI_c$.
Chứng minh.
(a) Ta có $A E=A F, B D=B F, C D=C E$, khi đó $A B+A C-B C=A F+B F+A E+C E-$ $B D-C D=A E+A F=2 A E$, suy ra $A E=\frac{A B+A C-B C}{2}=\frac{A B+B C+A C}{2}-B C=p-a ;$ Ta có $B D^{\prime}=B F, C D^{\prime}=C E$, suy ra $A B+A C+B C=A B+B D^{\prime}+C D^{\prime}+A C=$ $A B+B F^{\prime}+A C+C E^{\prime}=A E^{\prime}+A F^{\prime}=2 A E^{\prime} \Rightarrow A E^{\prime}=A F^{\prime}=\frac{A B+B C+A C}{2}=p ;$
Chứng minh tương tự thì $B D=p-b$ và $C D^{\prime}=C E^{\prime}=A E^{\prime}-A C=p-b$, do đó $B D=C D^{\prime}$. (b) Ta có $I K=I E, I_a D^{\prime}=I_a E^{\prime}$ nên $\frac{I K}{I_a D^{\prime}}=\frac{I E}{I_a E^{\prime}}$ và $I E / / I_a E^{\prime}$ nên $\frac{I E}{I_a E^{\prime}}=\frac{A I}{A I_a}$; do đó $\frac{A I}{A I_a}=$ $\frac{I K}{I_a D^{\prime}}$, suy ra $\triangle A I K \backsim \triangle A I_a D^{\prime} \Rightarrow \angle I A K=\angle I_a A D^{\prime}$, từ đó $A, K, D^{\prime}$ thẳng hàng. (c) Ta có $A I_b, A I_a$ là phân giác ngoài và phân giác trong góc $A$ nên $\angle I_a A I_b=90^{\circ}$ hay $I_a A \perp I_b I_c$; chứng minh tương tự ta có $I_b B \perp I_a I_c, I_c C \perp I_a I_b$.
Trong tam giác $I_a I_b I_c$ thì $I_a A, I_b B, I_c C$ là ba đường cao, nên đường tròn ngoại tiếp tam giác $A B C$ chính là đường tròn Euler của tam giác $I_a I_b I_c$ nên đi qua trung điểm 3 cạnh của tam giác này.
Tính chất 2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với $BC, AC, AB$ tại $D, E, F$. Gọi $M, N$ lần lượt là trung điểm $BC, AC$. Khi đó $EF, BI, MN$ đồng quy.
Chứng minh.
Gọi $K$ là giao điểm của $B I$ và $E F$, ta chứng minh $K, M, N$ thẳng hàng. Ta có $\angle K E C=\angle A E F=90^{\circ}-\frac{1}{2} \angle B A C$ và $\angle K I C=\angle I B C+\angle I C B=\frac{1}{2}(\angle A B C+$ $\angle A C B)=90^{\circ}-\angle B A C$. Suy ra $\angle K E C=$ $\angle K I C$, tứ giác $K E I C$ nội tiếp, do đó $\angle B K C=$ $90^{\circ}$.
Tam giác $K B C$ vuông tại $K$ có $K M$ trung tuyến nên $M K=M B=M C$, suy ra $\angle K M C=$ $2 \angle K B C=\angle A B C$, suy ra $K M / / A B$, mà $M N$ là đường trung bình của tam giác $A B C$ nên $M N / / A B$, do đó $K, M, N$ thẳng hàng.
Tính chất 3. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ tại $D, E, F . I D$ cắt $E F$ tại $K$, khi đó $A K$ đi qua trung điểm $M$ của $B C$.
Chứng minh. Qua $K$ vẽ đường thẳng song song hay $M$ là trung điểm cạnh $B C$. với $B C$ cắt $A B, A C$ tại $P$ và $Q$, ta chứng minh $K$ là trung điểm $P Q$.
Ta có $\angle I K \perp P Q$, từ đó suy ra $I K P F, I K E Q$ nội tiếp, suy ra $\angle I P K=\angle I F K, \angle I Q K=\angle I E K$ mà $I E F$ cân tại $I$ nên $\angle I E K=\angle I F K$, suy ra $\angle I P Q=\angle I Q K$. Tam giác $I P Q$ cân nên $K$ là trung điểm $P Q$.
Gọi $M$ là giao điểm của $A K$ với $B C$, ta có $\frac{K P}{M B}=$ $\frac{A K}{A M}=\frac{K Q}{M C}$, mà $K P=K Q$ nên $M B=M C$
Tính chất 4. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ lần lượt tại $D, E, F . E F$ cắt $B C$ tại $P$. Khi đó $\frac{P B}{P C}=\frac{D B}{D C}$ và $I P \perp A D$. Chứng minh
Theo ví dụ 1.1 ta có $\frac{P B}{P C}=\frac{D B}{D C}$.
Gọi $K$ là giao điểm của $I A$ và $E F$ ta có $\angle I K P=90^{\circ}$, suy ra $I K P D$ nội tiếp, do đó $\angle I P D=\angle I K D$. Mặt khác $I K \cdot I A=I E^2=I D^2$, suy ra $\triangle I K D \backsim \triangle I D A \Rightarrow I K D=\angle I D A$. Do đó $\angle I P D=\angle I D A$, suy ra $D A \perp IP$.
Bài tập có lời giải
Bài 1. (PTNK 2014) Cho điểm $\mathrm{C}$ thay đổi trên nửa đường tròn đường kính $A B=2 R$ $(C \neq A, C \neq B)$. Gọi $H$ là hình chiếu vuông góc của $C$ lên $A B ; I$ và $J$ lần lượt là tâm đường tròn nội tiếp các tam giác $A C H$ và $B C H$. Các đường thẳng $C I, C J$ cắt $A B$ tại $M, N$. (a) Chứng $\operatorname{minh} A N=A C, B M=B C$. (b) Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng $M J, N I$ và $C H$ dồng quy. (c) Tìm giá trị lớn nhất của $M N$ và giá trị lớn nhất của diện tích tam giác $C M N$ theo $\mathrm{R}$.
Lời giải.
(a) Ta có $\angle H C B=\angle C A B$ (cùng phụ với $\angle A B C$ ) và $\angle H C A=\angle C B A$ (cùng phụ với $\angle B A C$ ). Ta có $\angle C A N=\angle N A C+\angle A B C=\angle H A N+\angle A C B=\angle C A N$. Suy ra tam giác $C A N$ cân tại $A$ hay $A N=A C$. Chứng minh tương tự ta có $B M=B C$. (b) Tam giác $C A N$ cân tại $A$ có $A I$ là phân giác nên cũng là trung trực, suy ra $I C=I N$, suy ra $\angle I N C=\angle I C N=\angle I C H+\angle N C H=\frac{1}{2} \angle A C H+\frac{1}{2} \angle B C H=45^{\circ}$. Tương tự thì $\angle J M C=45^{\circ}$. Tứ giác $M I J N$ có $\angle J M C=\angle I N C=45^{\circ}$ nên là tứ giác nội tiếp, hay $M, N, I, J$ cùng thuộc một đường tròn. Tam giác $I N C$ cân có $\angle I C N=45^{\circ}$ nên $\angle C I N=90^{\circ}$, suy ra $C I \perp C M$. Chứng minh tương tự $M J \perp C N$. Tam giác $C M N$ có $C H, M J, N I$ là các đường cao nên đồng quy. (c) Đặt $A C=b, B C=a$. Ta có $a^2+b^2=B C^2=4 R^2$. Ta có $A N=A C=b, B M=B C=a$. $A M+B N=B C+M N$, suy ra $M N=a+b-B C=a+b-2 R$. Ta có $(a+b)^2 \leq 2\left(a^2+b^2\right)=8 R^2$. Suy ra $a+b \leq 2 \sqrt{2} R$, suy ra $a+b-2 R \leq 2 R(\sqrt{2}-1)$. Đẳng thức xảy ra khi $a=b=R \sqrt{2}$. Vậy giá trị lớn nhất của $M N$ bằng $2 R(\sqrt{2}-1)$ khi $C$ là điểm chính giữa đường tròn. Khi đó $S_{C M N}=\frac{1}{2} C H \cdot M N \leq R^2(\sqrt{2}-1)$. Đẳng thức xảy ra khi $C$ là điểm chính giữa đường tròn.
Bài 2. Cho tam giác $A B C$ có bán kính đường tròn nội tiếp là $r$, đường tròn ngoại tiếp là $R$ và bán kính đường tròn bàng tiếp lả $r_a, r_b, r_c$. Khi đó $$ r_a+r_b+r_c=4 R+r $$
Lời giải.
Đường tròn ngoại tiếp tam giác $A B C$ là đường tròn Euler của tam giác $I_a I_b I_c,(A B C)$ cắt $I_b I_c$ tại $N$ và cắt $A I_a$ tại $M$, khi đó $N$ là trung điểm của $I_a I_b$ và $I I_a$. Ta có $M N$ là đường kính của $(A B C)$. Gọi $K, L$ là hình chiếu của $I_c, I_b$ trên đường thẳng $B C$ và $E$ là hình chiếu của $I_a$ trên $B C$. Tứ giác $I_b L K I_c$ là hình thang vuông có $N P$ là đường trung bình nên $I_c K+I_b L=2 N P$ hay $r_b+r_c+2 N P$. Tương tự $I_a E-I D=2 M P$ hay $r_a-r=2 M P$. Do đó $r_b+r_c+r_a-r=2 N P+2 M P=2 M N=4 R \Rightarrow r_a+r_b+r_c=4 R+r$.
Bài 3. Cho tam giác $A B C$ nhọn có $A B<A C$, đường tròn tâm I nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $B C, A C, A B$ lần lượt tại $D, E, F$. Gọi $K$ là hình chiếu vuông góc với $D$ trên $E F$. a) Đường tròn ngoại tiếp tam giác $A B C$ và tam giác $A E F$ cắt nhau tại $P$ khác A. Chứng $\operatorname{minh} P, K, I$ thẳng hàng. b) $D K$ cắt $A B$ tai $H$. Tính $\angle F P H$.
Lời giải.
a) Chứng minh được $\triangle P F B \backsim \triangle P E C$. Suy ra $\frac{P F}{P E}=\frac{F B}{E C}$. Ta cũng chứng minh được: $\angle B K F=\angle C K E$. Hơn nữa $\angle B F K=\angle C E K$ nên $\triangle K F B \backsim \triangle K E C$. Do đó ta suy ra $\frac{F B}{E C}=\frac{K F}{K E}$. Do vậy $\frac{P F}{P E}=\frac{K F}{K E}$. Suy ra $P K$ là phân giác góc $\angle E P F$. Mà $P I$ là phân giác $\angle E P F$ nên $P, I, K$ thẳng hàng. b) Ta có $H K / / A I$ nên suy ra $\angle P K H=\angle A I P=\angle P F H$. Do đó tứ giác $P F H K$ nội tiếp. Suy ra $\angle H P F+\angle H K F=180^{\circ}$. Mà $\angle H K F=90^{\circ}$ nên $\angle H P F=90^{\circ}$.
Bài tập rèn luyện
Bài 1. (TPHCM 2020) Đường tròn $(I)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, B C$, $C A$ lần lượt tại $D, E, F$. Kẻ đường kính $E J$ của đường tròn $(I)$. Gọi $d$ là đường thẳng qua $A$ song song với $B C$. Đường thẳng $J D$ cắt $d, B C$ lần lượt tại $L, H$. (a) Chứng minh: $E, F, L$ thẳng hàng. (b) $J A, J F$ cắt $B C$ lần lượt tại $M, K$. Chứng minh: $M H=M K$.
Bài 2. (TPHCM 2017) Cho tam giác $A B C$ có góc $B$ tù. Đường tròn $(O)$ nội tiếp tam giác $A B C$ tiếp xúc với các cạnh $A B, C A, B C$ lần lượt tại $L, H, J$. (a) Các tia $B O, C O$ cắt $L H$ lần lượt tại $M, N$. Chứng minh 4 diểm $B, C, M, N$ cùng thuộc một đường tròn. (b) Gọi $d$ là đường thẳng qua $O$ và vuông góc với $A J ; d$ cắt $A J$ và đường trung trực của cạnh $B C$ lần lượt tại $D$ và $F$. Chứng minh 4 điểm $B, D, F, C$ cùng thuộc một đường tròn.
Bài 3. (PTNK 2015) Cho tam giác $A B C(A B<A C)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $B C, E$ là điểm chính giữa của cung nhỏ $B C, F$ là điểm đối xứng của $E$ qua $M$. (a) Chứng minh $E B^2=E F \cdot E O$. (b) Gọi $D$ là giao điểm của $A E$ và $B C$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn. (c) Gọi $I$ là tâm đường tròn nội tiếp tam giác $A B C$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $I B C$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $P O F$ đi qua một điểm cố định.
Trong các bài trước mình đã làm quen với các hệ phương trình hai ẩn, phương pháp chủ yếu cũng là thế, cộng đại số, đặt ẩn phụ. Trong bài này chúng ta tiếp tục với các hệ phương trình nhiều ẩn hơn, chủ yếu là các hệ phương trình ba ẩn, trong các hệ phương trình này có hai dạng ta quan tâm và xuất hiện nhiều là hệ đối xứng và hệ hoán vị vòng quanh.
trong đó $f, g, h$ là các biểu thức đối xứng với $x, y, z$ tức là khi ta hoán vị $x, y, z$ thì $f, g, h$ vẫn không đổi.
Các biểu thức đối xứng 3 biến cơ bản nhất là $x+y+z, xy+yz+xz, xyz$.
Từ đó ta xét ví dụ sau
Ví dụ 1. Giải hệ phương trình $\left\{\begin{array}{l} x+y+z=6 (1)\\\\ xy+yz+xz=11 (2)\\\\ xyz=6 (3) \end{array}\right.$
Lời giải
Từ (1) ta có $y +z = 6-z$, từ (2), $ yz = 11-x(y+z) = 11 – x(6-x) = x^2-6x+11$.
Thế vào (3) ta có $x(x^2-6x+11) = 6$ $\Leftrightarrow x^3 -6x^2+ 11x – 6 = 0$
Giải ra được $x = 1, x = 2, x= 3$.
Với $x = 1$ ta có $y+z = 5, yz = 6$ giải ra được $y = 2, z= 3$ và $y=3, z=2$.
Các trường hợp khác tương tự, hệ phương trình có nghiệm $(1, 2, 3)$ và các hoán vị.
Do đó nếu hệ phương trình ba ẩn đối xứng, có một cách giải là ta tìm được giá trị của các biểu thức đối xứng cơ bản như bài trên.
Ví dụ 2. (PTNK Chuyên toán 2010) Giải hệ phương trình $\left\{\begin{array}{l} x+y+z=3 \\\\ x y+y z+x z=-1 \\\\ x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right) \end{array}\right.$
Lời giải
Ta chỉ cần tính được $xyz$ thì có thể đưa về ví dụ 1.
Từ (1) và (2) ta tính được $x^2+y^2+z^2 = (x+y+z)^2 – 2(xy+yz+xz) = 11$
Suy ra $x^3+y^3+z^3 = 27$
Mà $x^3+y^3+z^3 – 3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz) \Rightarrow xyz = -3$
do đó ta có $x+y+z = 3, xy+yz+xz = -1, xyz = -3$ tương tự ví dụ 1, ta giải được nghiệm là $(1,-1,3)$ và các hoán vị.
Ngoài cách trên ta có thể giải như sau
$x^3+y^3+z^3 = (x+y+z)^3 – 3(x+y)(y+z)(x+z)$, khi đó $(x+y)(y+z)(z+x) = 0$, tổng hai số bằng 0, ta suy ra số còn lại bằng 3, tiếp tục ta cũng có kết quả như trên.
Hệ hoán vị vòng quanh
Các hệ phương trình nhiều ẩn thường gặp là hệ hoán vị vòng quanh có dạng sau:
Phương pháp thường dùng là cộng đại số,phân tích thành tích, sử dụng đánh giá bất đẳng thức để chứng minh $x=y=z$.
Ta xét một số ví dụ sau:
Ví dụ 3. Giải hệ phương trình $\left\{\begin{array}{l}(x-y)^2=2 z-z^2(1) \\\\(y-z)^2=2 x-x^2(2)\\\\ (z-x)^2=2 y-y^2(3)\end{array}\right.$
$\Leftrightarrow x=z$ hoặc $y=1$ – $y=1$ ta có $(3) \Leftrightarrow(x-z)^2=1 \Leftrightarrow z=x+1, z=x-1$ + $z=x+1$ giải được $ x=0, z=1$ và $x=1, z=2 $Khi đó ta có nghiệm $(0,1,1),(1,1,2)$ + $z=x-1 $ giải ra được $x=1, z=0 $ và $ x=2, z=1 $Ta có nghiệm $(1,1,0)$ và $(2,1,1)$ Với $x=z$ từ (3) ta có $ y^2-2 y=0 \Leftrightarrow y=0, y=2$
Với $y=0$ ta có $\left\{\begin{array}{l}x^2=2 z-z^2 \\\\ z^2=2 x-x^2\end{array} \Leftrightarrow \left\{\begin{array}{l}2 z^2=2 z \\\\ x-z\end{array}\right.\right.$.
Giải được nghiệm $(0,0,0)$ và $(1,0,1)$.
+Với $y=2$, giải ra được nghiệm $(1,2,1)$ và $(2,2,2)$. Vậy hệ phương trình có 8 nghiệm.
Ví dụ 4. (PTNK Chuyên Toán 2103) Giải hệ phương trình $\left\{\begin{array}{l} 3 x^2+2 y+1=2 z(x+2) \\\\ 3 y^2+2 z+1=2 x(y+2) \\\\ 3 z^2+2 x+1=2 y(z+2) \end{array}\right.$
Lời giải Cộng ba phương trình lại ta có: $3\left(x^2+y^2+z^2\right)+2(x+y+z)+3=2(x y+y z+z x)+4(x+y+z) $
$ \Leftrightarrow 3\left(x^2+y^2+z^2\right)-2(x y+y z+x z)-2(x+y+z)+3=0 $ $\Leftrightarrow(x-y)^2+(y-z)^2+(z-x)^2+(x-1)^2+(y-1)^2+(z-1)^2=0 $ $\Leftrightarrow\left\{\begin{array}{l} x=1 \\\\ y=1 \\\\ z=1 \end{array}\right. $ Thử lại thấy $(1,1,1)$ là nghiệm của hệ.
Ví dụ 5. Giải hệ phương trình $\left\{\begin{array}{l} 2 x=y^2-z^2 \\\\ 2 y=z^2-x^2 \\\\ 2 z=x^2-y^2 \end{array}\right.$
Lời giải
Lấy (1) $+(2)$ ta có $(x+y)(x-y+2)=0 \Leftrightarrow x+y=0$ hoặc $x=2-y$. Với $x+y=0$, từ (3) ta có $z=0$, từ (1) ta có $x=0$ hoặc $x=2$. Ta có nghiệm $(x, y, z)$ là $(0,0,0)$ và $(2,-2,0)$. Với $x=y-2$, từ (3) ta có $2 z=(y-2)^2-y^2=4-4 y \Leftrightarrow z=2-2 y$. Thế vào (1) ta có: $2(y-2)=y^2-(2-2 y)^2 \Leftrightarrow y^2-2 y=0 \Leftrightarrow y=0, y=2$. Từ đó ta có nghiệm $(-2,0,2)$ và $(2,-2,0)$. Vậy hệ có 4 nghiệm.
Hệ nhiều ẩn không mẫu mực
Một số hệ không mẫu mực thì không có cách giải chung, do đó ta phải để đặc điểm của các hệ phương trình này để có cách giải phù hợp, chủ yếu cũng là giảm được ẩn, phân tích nhân tử, . ..
Ví dụ 6. Giải hệ phương trình sau: $\left\{\begin{array}{l} (x-2 y)(x-4 z)=55 \\\\ (y-2 z)(y-4 x)=-39 \\\\ (z-2 x)(z-4 y)=-16 \end{array}\right.$
Lời giải
$\left\{\begin{array}{l}(x-2 y)(x-4 z)=55 \\\\ (y-2 z)(y-4 x)=-39 \\\\ (z-2 x)(z-4 y)=-16\end{array} \Leftrightarrow\left\{\begin{array}{l}x^2-2 x y-4 x z+8 y z=55(1) \\\\ y^2-2 y z-4 x y+8 x z=-39(2) \\\\ z^2-2 x z-4 y z+8 x y=-16(3)\end{array}\right.\right.$
Cộng (1),(2),(3) ta có $(x+y+z)^2=0 \Leftrightarrow x+y+z=0 \Leftrightarrow z=-x-y$ Thế vào (1),(2) ta có $\left\{\begin{array}{l}(x-2 y)(5 x+4 y)=55 \\\\ (3 y+2 x)(y-4 x)=-39\end{array}\right.$
$\Leftrightarrow\left\{\begin{array}{l}5 x^2-6 x y-8 y^2=55 \\\\ 3 y^2-10 x y-8 x^2=-39\end{array}\right.$ Nhận thấy $y=0$ không thỏa hpt: Đặt $x=k y$, ta có hệ
$\left\{\begin{array}{l} y^2\left(5 k^2-6 k-8\right)=55 \\\\ y^2\left(-8 k^2-10 k+3\right)=-39 \end{array}\right. $ $\Rightarrow-39\left(5 k^2-6 k-8\right)=55\left(-8 k^2-10 k+3\right) $ $\Leftrightarrow 245 k^2+784 k+147=0$ $ \Leftrightarrow\left[\begin{array}{l} k=-3 \\\\ k=\frac{-1}{5} \end{array}\right. $ Với $k=-3$, ta có $y=1$, hoặc $y=-1$. Từ đó ta có nghiệm là $(-3,1,2),(3,-1,-2)$ Với $k=-\frac{1}{5}$ (vô nghiệm)
Chìa khóa trong lời giải này chính là đặc điểm của các hệ số tự do bên phải của các phương trình.
Qua một số ví dụ , hi vọng các em rút ra kinh nghiệm trong việc giải một số hệ phương trình nhiều ẩn, cùng rèn luyện các bài toán sau nhé.
1)$\left\{\begin{array}{l} x^{3}+x^{2}+x-2=y \\\\ y^{3}+y^{2}+y-2=z \\\\ z^{3}+z^{2}+z-2=x \end{array}\right.$ 2) $\left\{\begin{array}{l} y^{3}-6 x^{2}+12 x-8=0 \\\\ z^{3}-6 y^{2}+12 y-8=0 \\\\ x^{3}-6 z^{2}+12 z-8=0 \end{array}\right.$ Bài 3. Giải hệ phương trình $\begin{cases}ab+c+d=3&\\\\bc+d+a=5&\\\\cd+a+b=2&\\\\da+b+c=6 \end{cases}$
Bài 4.
Cho $a \in \mathbb{R}$. Giải hệ phương trình $\begin{cases} x_1^2+ax_1+(\dfrac{a-1}{2})^2=x_2&\\\\ x_2^2+ax_2+(\dfrac{a-1}{2})^2=x_3&\ …&\\\\ x_n^2+ax_n+(\dfrac{a-1}{2})^2=x_1 \end{cases}$
Hệ phương trình và các phương pháp giải của nó chúng ta đã nghiên cứu trong các bài giảng trước, bài viết này ta tiếp tục với các hệ phương trình nhưng chứa thêm tham số, việc giải các hệ phương trình chứa tham số căn bản cũng dựa trên các phương pháp đã biết, tuy vậy ta phải xét nhiều trường hợp hơn đòi hỏi suy luận tốt và sự cẩn thận nhất định của học sinh.
Ví dụ 1. Cho hệ phương trình: $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\\\ x+y=m\end{array}\right.$ (a) Giải hệ với $m=7$ (b) Tìm $m$ sao cho hệ có nghiệm $(x, y)$
Lời giải a) $\left\{\begin{array}{l}\sqrt{x-2}+\sqrt{y-1}=2 \\\\ x+y=m\end{array}\right.$ ĐKXĐ: $x \geq 2, y \geq 1$ Đặt $ a=\sqrt{x-2}, b = \sqrt{y-1}$ ta có $a, b \geq 1$ và $a+b = 2, a^2+b^2 = 4$.
Từ đó ta có $b = 2-a, a^2+(2-a)^2 = 4$, giải ra được $a= 2, b=0$ và $a=0, b=2$.
Với $a = 2,b=0$ ta có $x=6, y=1$
Với $a=0,b=2$ ta có $x=2, y = 5$.
Vậy hệ phương trình có hai nghiệm $(2 ; 5),(6 ; 1)$
b) Đặt $u=\sqrt{x-2}, v=\sqrt{y-1}(u, v \geq 0$ Hệ phương trình trở thành: $\left\{\begin{array}{l}u+v=2 \\\\ u^2+v^2=m-3\end{array}\right.$ $\Rightarrow 2 u^2-4 u+7-m=0 \quad(2)$ Để hệ (1) có nghiệm thì (2) phải có nghiệm không âm, nhỏ hơn hoặc bằng 2, khi và chỉ khi: $$ \left\{\begin{array} { l } { \Delta ^ { \prime } \geq 0 } \\\\ { S > 0 } \\\\ { P \geq 0 } \\\\ { ( x _ { 1 } – 2 ) ( x _ { 2 } – 2 ) > 0 } \\\\ { S \leq 4 } \end{array} \Leftrightarrow \left\{\begin{array}{l} m \geq 5 \\\\ m \leq 7 \end{array}\right.\right. $$ Vậy $5 \leq m \leq 7$ thì hệ đã cho có nghiệm $(x, y)$
Ví dụ 2. Giải và biện luận hệ phương trình sau: $\left\{\begin{array}{l}\frac{x y z}{x+y}=m \\\\ \frac{x y z}{y+z}=1 \ \frac{x y z}{z+x}=2\end{array}\right.$
Lời giải
Lời giải. Đặt $a=x y, b=y z, c=x z$ ta tính được: $\frac{1}{a}=\frac{3 m-2}{4 m}, \frac{1}{b}=\frac{m+2}{4 m}, \frac{1}{c}=\frac{2-m}{4 m}$. Khi đó $\frac{1}{(x y z)^2}=\frac{1}{a b c}=\frac{(3 m-2)(m+2)(2-m)}{64 m^3}=P$. Nếu $P \leq 0 \Leftrightarrow m \leq-2,0 \leq m \leq \frac{2}{3}$ hoặc $m \geq 2$ thì hệ vô nghiệm. Ta có $P>0 \Leftrightarrow-2<m<0$ hoặc $\frac{2}{3}<m<2$. Khi đó $(x y z)^2=\frac{64 m^3}{(3 m-2)(m+2)(2-m)}=\frac{1}{P}$. Suy ra $x y z= \pm \sqrt{\frac{1}{P}}$.
Nếu $x y z=\sqrt{\frac{1}{P}}$ thì $x=\frac{2-m}{4 m} \sqrt{\frac{1}{P}}$, $$ y=\frac{m+2}{4 m} \sqrt{\frac{1}{P}}, z=\frac{3 m-2}{4 m} \sqrt{\frac{1}{P}} \text {. } $$
Nếu $x y z=-\sqrt{\frac{1}{P}}$ thì $x=\frac{m-2}{4 m} \sqrt{\frac{1}{P}}$, $$ y=\frac{-m-2}{4 m} \sqrt{\frac{1}{P}}, z=\frac{2-3 m}{4 m} \sqrt{\frac{1}{P}} \text {. } $$
Ví dụ 3. Cho hệ phương trình $\left\{\begin{array}{l}(x-2 y)(x+m y)=m^2-2 m-3 \\\\ (y-2 x)(y+m x)=m^2-2 m-3\end{array}\right.$
a) Giải hệ phương trình khi $m=-3$
b) Tìm $m$ để hệ có ít nhất một nghiệm $\left(x_\circ, y_\circ \right)$ thỏa $x_\circ>0, y_\circ>0$.
Lời giải a) Khi $m=-3$ ta có hệ: $$ \left\{\begin{array} { l } { ( x – 2 y ) ( x – 3 y ) = 1 2 } \\\\ { ( y – 2 x ) ( y – 3 x ) = 1 2 } \end{array} \Leftrightarrow \left\{\begin{array}{l} x^2-5 x y+6 y^2=12(1) \\\\ y^2-5 x y+6 x^2=12(2) \end{array}\right.\right. $$ Lấy (1) – (2) ta có $5\left(y^2-x^2\right)=0 \Leftrightarrow x=y, x=-y$. Với $x=y$ thế vào (1) ta có $x^2=6 \Leftrightarrow x=\sqrt{6}, y=\sqrt{6}$ hoặc $x=-\sqrt{6}, y=$ $-\sqrt{6}$ Với $x=-y$ thế vào (1) ta có $x^2=1 \Leftrightarrow x=1, x=-1$. Với $x=1, y=-1$, với $x=-1, y=1$. Vậy hệ phương trình có 4 nghiệm. b) Hệ có thể viết lại $\left\{\begin{array}{l}x^2+(m-2) x y-2 m y^2=m^2-2 m-3(1) \\\\y^2+(m-2) x y-2 m x^2=m^2-2 m-3(2)\end{array}\right.$ Lấy (1) – (2) ta có $(2 m+1)\left(y^2-x^2\right)=0$. Xét $m=\frac{-1}{2}$ ta có hệ trở thành: $x^2-\frac{5}{2} x y+y^2+\frac{7}{4}=0$, có nghiệm $\left(\frac{5+\sqrt{2}}{2}, 2\right)$ thỏa đề bài. Xét $m \neq \frac{-1}{2}$ ta có $x=y$ hoặc $x=-y$. Trường hợp $x=-y$ không thỏa đề bài. Trường hợp $x=y$, thế vào (1) ta có: $$ -(m+1) x^2=m^2-2 m-3=(m+1)(m-3) $$ Nếu $m=-1$ ta có $(x-2 y)(x-y)=0,(y-2 x)(y-x)=0$ có nghiệm thỏa đề bài, chỉ cần chọn $x=1, y=1$. Nếu $m \neq-1$ ta có $x^2=3-m$ để có nghiệm $x_o=y_o>0$ thì $m<3$. Khi đó phương trình có nghiệm $x_0=\sqrt{3-m}, y_o=\sqrt{3-m}$ thỏa đề bài. Kết luận $m=\frac{-1}{2}, m=-1$ và $m<3$.
Ví dụ 4. Cho hệ phương trình với $k$ là tham số: $$\left\{\begin{array}{l} \frac{x}{\sqrt{y z}}+\sqrt{\frac{x}{y}}+\sqrt{\frac{x}{z}}=k \\\\ \frac{y}{\sqrt{z x}}+\sqrt{\frac{y}{z}}+\sqrt{\frac{y}{x}}=k \\\\ \frac{z}{\sqrt{x y}}+\sqrt{\frac{z}{x}}+\sqrt{\frac{z}{y}}=k \end{array}\right. $$ (a) Giải hệ với $k=1$. (b) Chứng minh hệ vô nghiệm với $k \geq 2$ và $k \neq 3$.
Lời giải
Điều kiện xác định là: $x, y, z$ cùng dương hoặc cùng âm. Đặt $a=\sqrt{\frac{x}{y}}, b=\sqrt{\frac{y}{z}}, c=\sqrt{\frac{z}{x}}$ thì $a, b, c>0$ và $a b c=1$. Ta có: $\frac{a}{c}=\frac{|x|}{\sqrt{y z}}, \frac{b}{a}=\frac{|y|}{\sqrt{z x}}, \frac{c}{b}=\frac{|z|}{\sqrt{x y}}$. a) Khi $k=1$, nếu $x, y, z>0$ thì $\frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=1$. Cộng lại suy ra $\left(a+\frac{1}{a}\right)+\left(b+\frac{1}{b}\right)+\left(c+\frac{1}{c}\right)+\left(\frac{c}{c}+\frac{b}{a}+\frac{c}{b}\right)=3$ Theo bất đẳng thức Cô-si thì rõ ràng $a+\frac{1}{a} \geq 2, b+\frac{1}{b} \geq 2, c+\frac{1}{c} \geq 2$ nên đẳng thức trên không thể xảy ra. Xét trường hợp $x, y, z$ cùng âm thì $$ -\frac{a}{c}+a+\frac{1}{c}=-\frac{b}{a}+b+\frac{1}{a}=-\frac{c}{a}+c+\frac{1}{b}=1 $$ Trừ vào các vế và phân tích, ta suy ra: $$ \frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=0 $$ Từ đây dễ dàng suy ra ít nhất 2 trong $a, b, c$ phải là 1 mà $a b c=1$ nên $a=b=c=1$. Vì thế nên thay vào ta có $x=y=z<0$. Và mọi bộ số như thế đều thỏa mãn hệ.
b) Với $k \geq 2$, giả sử hệ có nghiệm $(x, y, z)$. Nếu như $x, y, z<0$ thì ta có $\frac{(a-1)(b-1)}{a}=\frac{(b-1)(c-1)}{b}=\frac{(c-1)(a-1)}{c}=k-1>0$. Từ đó suy ra $a-1, b-1, c-1$ dều cùng dấu, kéo theo $a, b, c>1$ hoặc $a, b, c<1$ Tuy nhiên $a b c=1$ nên điều này không thể xảy ra. Do đó, ta phải có $a, b, c>0$ nên đưa về $$ \frac{a}{c}+a+\frac{1}{c}=\frac{b}{a}+b+\frac{1}{a}=\frac{c}{b}+c+\frac{1}{b}=k $$ Trong các số $a, b, c$ giả sử $a=\max {a, b, c}$ thì $k=\frac{a}{c}+a+\frac{1}{c} \geq$ $\frac{a}{c}+2 \sqrt{\frac{a}{c}} \geq 1+2=3$ nên ta cần có $k \geq 3$. Vì $k \neq 3$ nên $k>3$. Vì $a=\max {a, b, c} \geq 1$ nên ta có $2 b+1 \geq \frac{b}{a}+b+\frac{1}{a}=k>3$ kéo theo $b>1$. Tương tự từ $2 c+1>\frac{c}{b}+c+\frac{1}{b}=k>3$ nên $c>1$. Từ đây suy ra $a, b, c>1$ trong khi $a b c=1$, vô lý. Vậy hệ luôn vô nghiệm với $k \geq 2$ và $k \neq 3$.
Bài tập rèn luyện
Bài 1. Cho hê phương trình $\left\{\begin{array}{l}x+y=m-2 \\\\x^2+y^2+2 x+2 y=-m^2+4\end{array}\right.$ (trong đó $m$ là tham số $x$ và y là ẩn) a) Tìm $m$ để hệ phương trình trên có nghiệm. b) Tìm giá trị lớn nhất, nhỏ nhất của biểu thúc $A=x y+2(x+y)+2011$.
Bài 2. Cho hệ phương trình $\left\{\begin{array}{c}x^2+y^2+x y=m^2-2 m+4 \\\\ x^2+y^2-3 x y=5 m^2-10 m+4\end{array} \quad\right.$ (m là tham số) a) Giải hệ phương trình khi $m=-1$. b) Chứng minh rằng hệ phương trình luôn có nghiệm với mọi giá trị của $m$. Tìm $m$ để phương trình có nghiệm $(x ; y)$ thỏa $y>x>0$ và $5 x^2-2 x y+y^2$ đạt giá trị nhỏ nhất.
Bài 3. Tìm $a$ để hệ phương trình $\left\{\begin{array}{c} & \frac{a x+y}{y+1}+\frac{a y+x}{x+1}=a \\\\ & a x^2+a y^2=(a-2) x y-x \end{array} \quad\right.$ có nghiệm duy nhất.
Trong tập hợp bao gồm các phần tử, tập không có phần tử nào gọi là tập rỗng, kí hiệu $\emptyset $.
Phần tử $a$ thuộc tập $X$, kí hiệu là $a \in X$. Phần tử $b$ không thuộc tập $X$ kí hiệu là $b \notin X$.
Cách cho tập hợp:
Cho bằng cách liệt kê. Ví dụ $A = \{1, 2, 3, 4, 5 \}$.
Cho bằng đặc trưng của tập hợp $A = \{n \in \mathbb{N}|n \vdots 5 \}$.
2.Tập hợp con – Tập hợp bằng nhau.
Tập $A$ là tập con của $B$ (hay $A$ chứa trong $B$) khi và chỉ khi mọi phần tử của $A$ đều là phần tử của $B$.
$(A \subset B) \Leftrightarrow (\forall x \in A \Rightarrow x \in B) $
Ta có các tình chất sau:
Tập rỗng là con của mọi tập hợp.
Một tập là tập con của chính nó
Nếu $A \subset B$ và $B \subset C$ thì $A \subset C$.
3. Các phép toán trên tập hợp
a. Giao của hai tập hợp.
$A \cap B = \{x| x\in A \wedge x \in B \}$.
b. Hợp của hai tập hợp.
$A \cup B = \{x|x \in A \vee x \in B$\}$.
c. Hiệu – Phần bù
$A \setminus B = \{x|x \in A \wedge x \notin B \}$
Ví dụ. Cho $A = \\{1, 2, 3, 4 \\}, B = \\{3, 4, 5, 6 \\}, C = \\{5, 6, 1, 8\\}$.
Khi đó $A \cap B = \\{3, 4 \\}, A \cup C = \\{1, 2, 3, 4, 5, 6, 8\\}, A \setminus B = \\{1, 2\\}, B \setminus A = \\{5, 6\\}$.
4. Các tập hợp số
a) Tập các số tự nhiên $\mathbb{N} = \\{0, 1, 2, …\\}$.
Tính chất.
Một tập con của $\mathbb{N}$ luôn có phần tử nhỏ nhất.
Tập số tự nhiên không có số lớn nhất.
Giữa hai số tự nhiên liên tiếp không có số tự nhiên nào.
b) Tập các số nguyên $\mathbb{Z} = \\{…,-2,-1,0,1,2,…\\}$
c) Tập các số hữu tỉ. $\mathbb{Q} = \\{\dfrac{m}{n}|m, n \in \mathbb{Z}, n \neq 0 \\}$.
Tính chất.
Tổng hiệu tích thương (mẫu khác 0) của hai số hữu tỉ là một số hữu tỉ.
Giữa hai số hữu tỉ bất kì luôn có một số hữu tỉ
d) Tập các số thực. Hợp của tập các hữu tỷ và vô tỷ.
Các tập con của tập các số thực.
Bài tập.
Cho $A = \{0, 1, 2, 3, 4, 5 \}, B = \{2,3, 4, 8 \}, C = \{3, 4, 10, 11 \}$. Tìm $A \setminus B, A \cap B, (A \cup B) \setminus C$.
Cho $A = [-4;2], B = (-1;5), C = (-\infty;0)$. Tìm $\mathbb{R} \setminus A, A \cup B, C \setminus B, (A\cap B) \setminus C$.
Cho hai tập A, B thoả mãn $C_{R}A=(2, +\infty), C_{R}B=(- \infty,1) \cup [3, + \infty)$. Hãy xác định các tập $A \cap B, A \cup B, A \setminus B, B \setminus A$ và phần bù của các tập trên.
Cho $A=[\dfrac{1}{2}, +\infty), B=\{x \in \mathbb{R}: |2x-1| \le 1\}$. Tìm $A \cap B, A \cup B, A \setminus B, B \setminus A$ và phần bù của các tập trên.
Cho $A=(2m-1, 2m+3), B=(-6,1]$. Tìm $m$ để a. $A \subset B.$ b. $B \subset A.$
Lớp 10A có 40 học sinh, trong đó có 15 bạn được xếp học lực giỏi, 20 bạn được xếp hạnh kiểm tốt, 10 bạn vừa học lực giỏi vừa hạnh kiểm tốt. a. Hỏi lớp 10A có bao nhiêu bạn được khen thưởng, biết để được khen thưởng thì bạn đó hoặc phải có học lực giỏi hoặc phải có hạnh kiểm tốt. b. Lớp 10 A có bao nhiêu bạn chưa có học lực giỏi và chưa có hạnh kiểm tốt?
Bài 1. Cho đường tròn $(O)$. $A, B$ là hai điểm cố định đối xứng nhau qua $O$, $M$ là điểm chuyển động trên $(O)$. $MA, MB$ giao với $(O)$ tại $P$ và $Q$. Chứng minh rằng $\dfrac{{\overline {AM} }}{{\overline {AP} }} + \dfrac{{\overline {BM} }}{{\overline {BQ} }}$ nhận giá trị không đổi.
Bài 2. Cho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ củaCho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ của đường tròn ngoại tiếp tam giác $BFK$ và đường kính $KN$ của đường tròn ngoại tiếp tam giác $CEK$. Chứng minh rằng ba điểm $M, H, N$ thẳng hàng.
Gợi ý
Gọi $P$ là giao điểm của $(KBF)$ và $KCE)$.
Ta có $AF.AB = AE.AC = AH.AD$ nên $A$ thuộc trục đẳng phương của $(KBF)$ và $(KCE)$. Suy ra $A, P, K$ thẳng hàng.
Do đó $AP. AK = AH.AD$, suy ra $\angle HPK = \angle ADK = 90^\circ$.
Mặt khác $KM, KN$ là đường kính của $(KBF), (KCE)$ nên $\angle KPM = \angle KPN = 90^\circ$. Vậy $H,M, P, N$ thẳng hàng.
Bài 3. Cho tam giác $ABC$ nhọn, $\angle B > \angle C$. Gọi $M$ là trung điểm đoạn $BC$ và $E, F$ lần lượt là chân đường cao từ $B$ và $C$. Gọi $K, L$ lần lượt là trung điểm của $ME$, $MF$. Gọi $T$ là giao điểm của $KL$ sao cho $TA||BC$. Chứng minh $TA = TM$.
Gợi ý
Xét đường tròn đường kính $AH$.
$ME, MF$ là tiếp tuyến của $(AH)$.
$KL$ là trục đẳng phương của $(AH)$ và đường tròn điểm $M$.
Mà $TA$ là tiếp tuyến của $(AH)$ nên $TA^2 = TM^2$.
Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, một đường thẳng qua $(O)$ song song với $BC$, cắt $AB$, $AC$ lần lượt tại $F, E$. Đường tròn ngoại tiếp các tam giác $(BFO)$ và $(CEO)$ cắt nhau tại điểm thứ 2 là $D$ và cắt $BC$ tại $L, K$. Gọi $M$ là giao của $BE$ và $CF$. Gọi $N$ là giao của $FL$ và $EK$. Chứng minh rằng $D, M, N$ thẳng hàng.
Gợi ý
Gọi $D’$ là giao điểm của đường cao hạ từ $A$ với $(O)$. Chứng minh được $D’BFO, D’CEO$ nội tiếp nên $D’ \equiv D$.
Chứng minh tứ giác $EFLK$ nội tiếp. Trục đẳng phương của $(OFBD), (OECD), (EFLK)$ cắt nhau tại $N$ nên $D, O, N$ thẳng hàng.
Gọi $P$ là trung điểm $BC$ ta có $A, M, P$ thẳng hàng.
Áp dụng Menelaus cho tam giác $ABP$ với đường thẳng $FC$ ta có $\dfrac{PM}{AM} = \dfrac{BF}{2AF} = \dfrac{OP}{AD}$. Suy ra $O, M, D$ thẳng hàng.
Vậy $D, M, N$ thẳng hàng.
Bài 5. (IMO 2000) Cho hai đường tròn $w_1$ và $w_2$ cắt nhau tại $M$ và $N$. Gọi $l$ là tiếp tuyến chung của $w_1, w_2$ sao cho $l$ gẩn $M$ hơn $N$. Gọi tiếp điểm của $l$ với $w_1$ là $A$, với $w_2$ là $B$. Đường thẳng qua $M$ song song với $l$ cắt $w_1$ tại $C$ và cắt $w_2$ tại $D$. Đường thẳng $CA$ và $DB$ cắt nhau tại $E$; đường thẳng $AN$ và $CD$ cắt nhau tại $P$; $BN$ và $CD$ cắt nhau tại $Q$. Chứng minh rằng $EP = EQ$.
Gợi ý
Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.
Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.
$PQ||AB$, suy ra $M$ là trung điểm của $PQ$.
Ta có $\angle FBA = \angle FDM = \angle ABM$ và $\angle FAB = \angle BAM$. Suy ra $\triangle AEM = \triangle BEM$. Suy ra $BE = BM, AE = AM$ và $AB$ là trung trực của $EM$, suy ra $EM \bot AB$. Do đó $EM \bot PQ$.
$EM \bot PQ$ và $MP = MQ$ nên tam giác $EPQ$ cân.
Bài 6. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với góc $A$ nhọn. Gọi $D$ là điểm chính giữa của cung nhỏ $BC$ và $E, F$ lần lượt là trung điểm của $AC, AB$. Giả sử $DE, DF$ cắt lại với $(O)$ tại điểm thứ hai tương ứng là $Y$, $Z$. Đường tròn $(AEY)$ cắt $(AFZ)$ tại điểm thứ hai $M$. Gọi $N$ là trung điểm của $BC$ và đường tròn $(DNM)$ giao với $BC$ tại điểm thứ hai $X$. Chứng minh rằng $AX$ là tiếp tuyến của $(O)$.
Gợi ý
Gọi $L, K$ là giao điểm của $DZ, DY$ với $BC$.
Ta có $DL.DZ = DB^2 = DK.DY$, suy ra $LKYZ$ nội tiếp. Suy ra $EFZY$ nội tiếp.
Khi đó $AM, ZF, YE$ đồng quy tại $D$.
Chứng minh $E, M, F$ thẳng hàng.
Ta có $\angle XMD = \angle XND = 90^o$, suy ra $XM \bot AP$ và $AM = MP$ suy ra $XA = XP$.
Từ đó chứng minh được $AX$ là tiếp tuyến của $(O)$.
Bài 7. (China 2010) Lấy $AB$ là dây cung của đường tròn tâm $O$, $M$ là điểm chính giữa cung $AB$ và $C$ là điểm nằm ngoài đường tròn $(O)$. Từ $C$ vẽ hai tiếp tuyến đến $(O)$ tại tiếp điểm $S, T$. Gọi $E$ là giao điểm của $MS$ và$ AB$, $F$ là giao điểm của $MT$ và $AB$. Từ $E, F$ vẽ các đường thẳng vuông góc với $AB$, cắt $OS$ và $OT$ lần lượt tại $X$ và $Y$. Một đường thẳng qua $C$ cắt $(O)$ tại $P$ và $Q$, $MP$ cắt $AB$ tại $R$. Chứng minh rằng $XY$ đi qua tâm đường tròn ngoại tiếp tam giác $PQR$.
Gợi ý
Chứng minh $XE = XS$.
Chứng minh $P, Q, U, R$ đồng viên, $Q, S, E, U$ đồng viên.
Chứng minh $MS.ME = MQ.MU = MP.MR$. Suy ra $M$ thuộc trục đẳng phương của $(PQR)$ và $(X)$. Và $CS^2 = CP.CQ$ nê $C$ cũng thuộc trục đẳng phương của hai đường tròn trên.
Do đó $MC \bot ZX$.
Cmtt thì $MC \bot ZY$, suy ra $Z, X, Y$ thẳng hàng.
Bài 8. Cho hai đường tròn $(C_1)$ và $(C_2)$ tiếp xúc ngoài với nhau tại tiếp điểm $M$. Gọi $AB$ là một tiếp tuyến chung của $()C1)$ và $(C_2)$ với $A, B$ phân biệt lần lượt là các tiếp điểm. Trên tia tiếp tuyến chung Mx của hai đường tròn ($Mx$ không cắt $AB$) lấy điểm $C$ khác $M$. Gọi $E$ và $F$ lần lượt là giao điểm thứ hai của $CA$ với $(C_1)$ và $CB$ với $(C_2)$. Chứng minh rằng tiếp tuyến của $(C_1)$ tại $E$, tiếp tuyến của $(C_2)$ tại $F$ và $Mx$ đồng quy.
Gợi ý
Gọi $G$ là giao điểm tiếp tuyến tại $E$ của $(C_1)$ và tại $F$ của $(C_2)$.
Ta có $CE.CA = CF.CB$ nên $AEFB$ nội tiếp.
$\angle GEA = \angle BAE = \angle CFE$, suy ra $GE$ cũng là tiếp tuyến tại $E$ của $(CEF)$.
Chứng minh tương tự thì $FG$ là tiếp tuyến tại $F$ của $(CEF)$.
Suy ra $CG$ là đường đối trung của $CEF$.
Mặt khác $CM$ qua trung điểm $AB$ và $CEF \backsim CBA$ nên $CM$ cũng là đường đối trung của $CEF$.
Vậy $G \in CM$.
Bài 9. Cho tam giác $ABC$ là tam giác nhọn, không cân nội tiếp đường tròn tâm O. Gọi $AD, BE, CF$ là ba đường phân giác trong của tam giác $ABC$. Gọi $L, M,N$ lần lượt là trung điểm của $AD, BE, CF$. Gọi $(O_1), (O_2), (O_3)$ lần lượt là các đường tròn đi qua $L$, tiếp xúc với $OA$ tại $A$; đi qua $M$, tiếp xúc với $OB$ tại $B$; đi qua $N$ tiếp xúc với $OC$ tại $C$. Chứng minh rằng $(O_1), (O_2), (O_3)$ có đúng hai điểm chung và đường thẳng nối hai điểm đó đi qua trọng tâm tam giác $ABC$.
Gợi ý
Gọi $AA_1, BB_1, CC_1$ là các đường cao của tam giác $ABC$. $A_2$ là giao điểm của $AO_1$ và $BC$.
Tam giác $A_2AD$ cân tại $A_2$ nên $A_2L \bot AL$. Và $O_1AL \backsim A_2AD$ nên $O_1$ là trung điểm của $AA_2$. Do đó $A_1$ thuộc đường tròn $(O_1)$ đường kính $AA_2$. Chứng minh tương tự thì $B_1, B_2 \in (O_2), C_1, C_2 \in (O_3)$.
Ta có $HA_1.HA = HB_1.HB$ và $OA, OB$ tiếp xúc với $(O_1), (O_2)$ và $OA = OB$ nên $HO$ là trục đẳng phương của $(O_1), (O_2)$.
Chứng minh tương tự thì $HO$ cũng là trục đẳng phương của các cặp đường tròn $(O_1), (O_3)$ và $(O_2), (O_3)$.
Do đó các đường tròn đi qua 2 điểm chung và đường thẳng qua 2 điểm chung là $HO$, và $HO$ qua $G$.
Bài 10. Cho tam giác $ABC$ và điểm $D$ thay đổi trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $H$ là trực tâm.(a) Đường tròn ngoại tiếp tam giác $AEF$ và đường tròn đường kính $AH$ cắt nhau tại điểm thứ hai là $P$. Chứng minh $AP$ đi qua trung điểm của $BC$.(b) Chứng minh trực tâm tam giác $PEF$ thuộc một đường thẳng cố định.
Gợi ý
Các đường cao $AN, BE, CL$ cắt nhau tại $H$. Gọi $AM$ là trung tuyến, $HP \bot AM$. Chứng minh $P \in (AEF)$.
$\dfrac{PK}{PN} = \dfrac{AC}{AB}$.
$BF.BA = BD.BC, BK.BA = BL.BC$, suy ra $KF.BA = DL.BC$.
Tương tự $EN.AC = DL.BC$, suy ra $\dfrac{KF}{EN} = \dfrac{AC}{AB}$.
Do đó tam giác $PKF$ và $PNE$ đồng dạng, suy ra $P \in (AEF)$.
Gọi $X, Y$ là giao điểm của $(P;PA)$ với $AB, AC$. Chứng minh trực tâm tam giác $PEF$ thuộc $XY$.
Bài 11. Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.(a) Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. (b) Chứng minh $MP, NQ$ và $BC$ đồng quy.
Gợi ý
1.
Gọi $H$ là trực tâm tam giác $ABC$ và $AF$ là đường cao thì $HM.HN = HA.HF = HP.HQ$, suy ra $M, N, P, Q$ cùng thuộc đường tròn.
2.
Ta có $AN^2 = AH.AF = AE.AC = AQ^2$, tương tự $AM = AP$. Suy ra $A$ là tâm của $(MNPQ)$.
Do đó $\angle PVN = \angle PFN$, suy ra $FVNP$ nội tiếp.
Khi đó $\angle VFN = \angle VPN = \angle MQN = \dfrac{1}{2} \angle MAN = \angle MAB = 90^o – \angle AMN = 90^o – \angle APN = 90^o – \angle AFN = \angle NFC$.
Do đó $F, K, C$ thẳng hàng.
Bài 12. (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$. (a) Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng. (b) Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.
Gợi ý
1.
Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.
2.
Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
Định lý 1. Trong một tam giác tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại.
Chứng minh.
Giả thiết : $\triangle \mathrm{ABC}$.
Kết luận : $\mathrm{AC}+\mathrm{BC}>\mathrm{AB} ; \mathrm{AB}+$ $+\mathrm{BC}>\mathrm{AC} ; \mathrm{AB}+\mathrm{AC}>\mathrm{BC}$.
Trên tia đối của tia $\mathrm{CA}$ xác định điểm $\mathrm{D}$ sao cho $\mathrm{CL}=\mathrm{CB}$ (h. 94). Tia $\mathrm{BC}$ nằm giữa hai tia $\mathrm{BA}$ và
$\mathrm{BD}$, do đó : $\widehat{\mathrm{ABD}}>\mathrm{CBD}$. (1)
Theo cách xác định điểm $\mathrm{D}$ thì tam giác $\mathrm{BCD}$ là tam giác cân cạnh đáy $\mathrm{BD}$; do đó : $\widehat{\mathrm{CBD}}=\widehat{\mathrm{D}}$.
(2)
Từ (1) và $(2)$ suy ra: $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$.
Trong tam giác $\mathrm{ABD}$ : vì $\widehat{\mathrm{ABD}}>\widehat{\mathrm{D}}$ nên $\mathrm{AD}>\mathrm{AB}$. Ta biết $\mathrm{AD}=\mathrm{AC}+\mathrm{CD}=\mathrm{AC}+\mathrm{CB}$, do đó $\mathrm{AC}+\mathrm{CB}>\mathrm{AB}$.
Chứng minh tương tự cho các trường hợp còn lại.
Hệ quả. Trong một tam giác hiệu độ dài hai cạnh nhỏ hơn độ dài cạnh còn lại.
Ví dụ 1. Có thể có tam giác nào mà ba cạnh như sau không :
a) $5 \mathrm{~m}, 10 \mathrm{~m}, 12 \mathrm{~m}$;
b) $1 \mathrm{~m}, 2 \mathrm{~m}, 3,3 \mathrm{~m}$; c) $1,2 \mathrm{~m}, 1 \mathrm{~m}, 2,2 \mathrm{~m}$.
Ví dụ 2. Trong một tam giác cân, một cạnh bằng 25m, cạnh kia bằng $10 \mathrm{~m}$. Cạnh nào là cạnh đáy ? Vi sao ?
Ví dụ 3. Cho tam giác $ABC$ có $M$ là trung điểm của đoạn $AC$. Chứng minh
$2BM + AC > AB + BC$.
Bài tập.
Tính chu vi tam giác cân $\mathrm{ABC}$ biết rằng :
a) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$.
b) $\mathrm{AB}=25 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$.
Cho điểm $M$ nằm trong tam giác $\mathrm{ABC}$. Chứng minh rằng tổng $\mathrm{MA}+\mathrm{MB}+\mathrm{MC}$ lớn hơn nửa chu vi nhưng nhỏ hơn chu vi tam giạc.
Cho điểm $\mathrm{D}$ nằm trên cạnh $\mathrm{BC}$ của tam giác $\mathrm{ABC}$. Chứng minh rằng :
$$
\frac{A B+A C-B C}{2}<A D<\frac{A B+A C+B C}{2}
$$