Author Archives: tangvu

Trục đẳng phương – Tâm đẳng phương

Bài 1. Cho đường tròn $(O)$. $A, B$ là hai điểm cố định đối xứng nhau qua $O$, $M$ là điểm chuyển động trên $(O)$. $MA, MB$ giao với $(O)$ tại $P$ và $Q$. Chứng minh rằng $\dfrac{{\overline {AM} }}{{\overline {AP} }} + \dfrac{{\overline {BM} }}{{\overline {BQ} }}$ nhận giá trị không đổi. 

Bài 2. Cho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ củaCho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ của đường tròn ngoại tiếp tam giác $BFK$ và đường kính $KN$ của đường tròn ngoại tiếp tam giác $CEK$. Chứng minh rằng ba điểm $M, H, N$ thẳng hàng.

Gợi ý

Gọi $P$ là giao điểm của $(KBF)$ và $KCE)$.

  • Ta có $AF.AB = AE.AC = AH.AD$ nên $A$ thuộc trục đẳng phương của $(KBF)$ và $(KCE)$. Suy ra $A, P, K$ thẳng hàng.
  • Do đó $AP. AK = AH.AD$, suy ra $\angle HPK = \angle ADK = 90^\circ$.
  • Mặt khác $KM, KN$ là đường kính của $(KBF), (KCE)$ nên $\angle KPM = \angle KPN = 90^\circ$. Vậy $H,M, P, N$ thẳng hàng.

Bài 3. Cho tam giác $ABC$ nhọn, $\angle B > \angle C$. Gọi $M$ là trung điểm đoạn $BC$ và $E, F$ lần lượt là chân đường cao từ $B$ và $C$. Gọi $K, L$ lần lượt là trung điểm của $ME$, $MF$. Gọi $T$ là giao điểm của $KL$ sao cho $TA||BC$. Chứng minh $TA = TM$.

Gợi ý

Xét đường tròn đường kính $AH$.

  •  $ME, MF$ là tiếp tuyến của $(AH)$.
  • $KL$ là trục đẳng phương của $(AH)$ và đường tròn điểm $M$.
  • Mà $TA$ là tiếp tuyến của $(AH)$ nên $TA^2 = TM^2$.

Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, một đường thẳng qua $(O)$ song song với $BC$, cắt $AB$, $AC$ lần lượt tại $F, E$. Đường tròn ngoại tiếp các tam giác $(BFO)$ và $(CEO)$ cắt nhau tại điểm thứ 2 là $D$ và cắt $BC$ tại $L, K$. Gọi $M$ là giao của $BE$ và $CF$. Gọi $N$ là giao của $FL$ và $EK$. Chứng minh rằng $D, M, N$ thẳng hàng.

Gợi ý
  • Gọi $D’$ là giao điểm của đường cao hạ từ $A$ với $(O)$. Chứng minh được $D’BFO, D’CEO$ nội tiếp nên $D’ \equiv D$.
  • Chứng minh tứ giác $EFLK$ nội tiếp. Trục đẳng phương của $(OFBD), (OECD), (EFLK)$ cắt nhau tại $N$ nên $D, O, N$ thẳng hàng.
  • Gọi $P$ là trung điểm $BC$ ta có $A, M, P$ thẳng hàng.
  • Áp dụng Menelaus cho tam giác $ABP$ với đường thẳng $FC$ ta có $\dfrac{PM}{AM} = \dfrac{BF}{2AF} = \dfrac{OP}{AD}$. Suy ra $O, M, D$ thẳng hàng.
  • Vậy $D, M, N$ thẳng hàng.
  • Bài 5. (IMO 2000) Cho hai đường tròn $w_1$ và $w_2$ cắt nhau tại $M$ và $N$. Gọi $l$ là tiếp tuyến chung của $w_1, w_2$ sao cho $l$ gẩn $M$ hơn $N$. Gọi tiếp điểm của $l$ với $w_1$ là $A$, với $w_2$ là $B$. Đường thẳng qua $M$ song song với $l$ cắt $w_1$ tại $C$ và cắt $w_2$ tại $D$. Đường thẳng $CA$ và $DB$ cắt nhau tại $E$; đường thẳng $AN$ và $CD$ cắt nhau tại $P$; $BN$ và $CD$ cắt nhau tại $Q$. Chứng minh rằng $EP = EQ$.

    Gợi ý

    Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.

    Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.

    $PQ||AB$, suy ra $M$ là trung điểm của $PQ$.

    Ta có $\angle FBA = \angle FDM = \angle ABM$ và $\angle FAB = \angle BAM$. Suy ra $\triangle AEM = \triangle BEM$.  Suy ra $BE = BM, AE = AM$ và $AB$ là trung trực của $EM$, suy ra $EM \bot AB$. Do đó $EM \bot PQ$.

    $EM \bot PQ$ và $MP = MQ$ nên tam giác $EPQ$ cân.

    Bài 6. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với góc $A$ nhọn. Gọi $D$ là điểm chính giữa của cung nhỏ $BC$ và $E, F$ lần lượt là trung điểm của $AC, AB$. Giả sử $DE, DF$ cắt lại với $(O)$ tại điểm thứ hai tương ứng là $Y$, $Z$. Đường tròn $(AEY)$ cắt $(AFZ)$ tại điểm thứ hai $M$. Gọi $N$ là trung điểm của $BC$ và đường tròn $(DNM)$ giao với $BC$ tại điểm thứ hai $X$. Chứng minh rằng $AX$ là tiếp tuyến của $(O)$.

    Gợi ý

    Gọi $L, K$ là giao điểm của $DZ, DY$ với $BC$.

    • Ta có $DL.DZ = DB^2 = DK.DY$, suy ra $LKYZ$ nội tiếp. Suy ra $EFZY$ nội tiếp.
    • Khi đó $AM, ZF, YE$ đồng quy tại $D$.
    • Chứng minh $E, M, F$ thẳng hàng.
    • Ta có $\angle XMD = \angle XND = 90^o$, suy ra $XM \bot AP$ và $AM = MP$ suy ra $XA = XP$.
    • Từ đó chứng minh được $AX$ là tiếp tuyến của $(O)$.

    Bài 7. (China 2010) Lấy $AB$ là dây cung của đường tròn tâm $O$, $M$ là điểm chính giữa cung $AB$ và $C$ là điểm nằm ngoài đường tròn $(O)$. Từ $C$ vẽ hai tiếp tuyến đến $(O)$ tại tiếp điểm $S, T$. Gọi $E$ là giao điểm của $MS$ và$ AB$, $F$ là giao điểm của $MT$ và $AB$. Từ $E, F$ vẽ các đường thẳng vuông góc với $AB$, cắt $OS$ và $OT$ lần lượt tại $X$ và $Y$. Một đường thẳng qua $C$ cắt $(O)$ tại $P$ và $Q$, $MP$ cắt $AB$ tại $R$. Chứng minh rằng $XY$ đi qua tâm đường tròn ngoại tiếp tam giác $PQR$.

    Gợi ý
    • Chứng minh $XE = XS$.
    • Chứng minh $P, Q, U, R$ đồng viên, $Q, S, E, U$ đồng viên.
    • Chứng minh $MS.ME = MQ.MU = MP.MR$. Suy ra $M$ thuộc trục đẳng phương của $(PQR)$ và $(X)$. Và $CS^2 = CP.CQ$ nê $C$ cũng thuộc trục đẳng phương của hai đường tròn trên.
    • Do đó $MC \bot ZX$.
    • Cmtt thì $MC \bot ZY$, suy ra $Z, X, Y$ thẳng hàng.

    Bài 8. Cho hai đường tròn $(C_1)$ và $(C_2)$ tiếp xúc ngoài với nhau tại tiếp điểm $M$. Gọi $AB$ là một tiếp tuyến chung của $()C1)$ và $(C_2)$ với $A, B$ phân biệt lần lượt là các tiếp điểm. Trên tia tiếp tuyến chung Mx của hai đường tròn ($Mx$ không cắt $AB$) lấy điểm $C$ khác $M$. Gọi $E$ và $F$ lần lượt là giao điểm thứ hai của $CA$ với $(C_1)$ và $CB$ với $(C_2)$. Chứng minh rằng tiếp tuyến của $(C_1)$ tại $E$, tiếp tuyến của $(C_2)$ tại $F$ và $Mx$ đồng quy.

    Gợi ý

    Gọi $G$ là giao điểm tiếp tuyến tại $E$ của $(C_1)$ và tại $F$ của $(C_2)$.

    •  Ta có $CE.CA = CF.CB$ nên $AEFB$ nội tiếp.
      $\angle GEA = \angle BAE = \angle CFE$, suy ra $GE$ cũng là tiếp tuyến tại $E$ của $(CEF)$.
    • Chứng minh tương tự thì $FG$ là tiếp tuyến tại $F$ của $(CEF)$.
      Suy ra $CG$ là đường đối trung của $CEF$.
    • Mặt khác $CM$ qua trung điểm $AB$ và $CEF \backsim CBA$ nên $CM$ cũng là đường đối trung của $CEF$.
    • Vậy $G \in CM$.

    Bài 9. Cho tam giác $ABC$ là tam giác nhọn, không cân nội tiếp đường tròn tâm O. Gọi $AD, BE, CF$ là ba đường phân giác trong của tam giác $ABC$. Gọi $L, M,N$ lần lượt là trung điểm của $AD, BE, CF$. Gọi $(O_1), (O_2), (O_3)$ lần lượt là các đường tròn đi qua $L$, tiếp xúc với $OA$ tại $A$; đi qua $M$, tiếp xúc với $OB$ tại $B$; đi qua $N$ tiếp xúc với $OC$ tại $C$. Chứng minh rằng $(O_1), (O_2), (O_3)$ có đúng hai điểm chung và đường thẳng nối hai điểm đó đi qua trọng tâm tam giác $ABC$.

    Gợi ý

    Gọi $AA_1, BB_1, CC_1$ là các đường cao của tam giác $ABC$. $A_2$ là giao điểm của $AO_1$ và $BC$.

    • Tam giác $A_2AD$ cân tại $A_2$ nên $A_2L \bot AL$. Và $O_1AL \backsim A_2AD$ nên $O_1$ là trung điểm của $AA_2$. Do đó $A_1$ thuộc đường tròn $(O_1)$ đường kính $AA_2$. Chứng minh tương tự thì $B_1, B_2 \in (O_2), C_1, C_2 \in (O_3)$.
    • Ta có $HA_1.HA = HB_1.HB$ và $OA, OB$ tiếp xúc với $(O_1), (O_2)$ và $OA = OB$ nên $HO$ là trục đẳng phương của $(O_1), (O_2)$.
    • Chứng minh tương tự thì $HO$ cũng là trục đẳng phương của các cặp đường tròn $(O_1), (O_3)$ và $(O_2), (O_3)$.
    • Do đó các đường tròn đi qua 2 điểm chung và đường thẳng qua 2 điểm chung là $HO$, và $HO$ qua $G$.

    Bài 10. Cho tam giác $ABC$ và điểm $D$ thay đổi trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $H$ là trực tâm.(a) Đường tròn ngoại tiếp tam giác $AEF$ và đường tròn đường kính $AH$ cắt nhau tại điểm thứ hai là $P$. Chứng minh $AP$ đi qua trung điểm của $BC$.(b) Chứng minh trực tâm tam giác $PEF$ thuộc một đường thẳng cố định.

    Gợi ý
    1. Các đường cao $AN, BE, CL$ cắt nhau tại $H$. Gọi $AM$ là trung tuyến, $HP \bot AM$. Chứng minh $P \in (AEF)$.
      $\dfrac{PK}{PN} = \dfrac{AC}{AB}$.
      $BF.BA = BD.BC, BK.BA = BL.BC$, suy ra $KF.BA = DL.BC$.
      Tương tự $EN.AC = DL.BC$, suy ra $\dfrac{KF}{EN} = \dfrac{AC}{AB}$.
      Do đó tam giác $PKF$ và $PNE$ đồng dạng, suy ra $P \in (AEF)$.
    2. Gọi $X, Y$ là giao điểm của $(P;PA)$ với $AB, AC$. Chứng minh trực tâm tam giác $PEF$ thuộc $XY$.

    Bài 11. Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.(a) Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. (b) Chứng minh $MP, NQ$ và $BC$ đồng quy.

    Gợi ý

    1.

    • Gọi $H$ là trực tâm tam giác $ABC$ và $AF$ là đường cao thì $HM.HN = HA.HF = HP.HQ$, suy ra $M, N, P, Q$ cùng thuộc đường tròn.

    2.

    • Ta có $AN^2 = AH.AF = AE.AC = AQ^2$, tương tự $AM = AP$. Suy ra $A$ là tâm của $(MNPQ)$.
    • Gọi $V$ là giao điểm của $MP$ và $QN$.
    • Ta có $\angle PFN = \angle PFA +\angle AFN = \angle AQP + \angle AMN = 180^o – \angle BAC – \angle PAN$.
    • Mặt khác $\angle PVN = 180^o – \angle VMQ – \angle VQM = 180^o – \angle PMN – \angle PQN – \angle HMQ – \angle HQM = 180^o – \angle PAN – \angle BAC$.
    • Do đó $\angle PVN = \angle PFN$, suy ra $FVNP$ nội tiếp.
    • Khi đó $\angle VFN = \angle VPN = \angle MQN = \dfrac{1}{2} \angle MAN = \angle MAB = 90^o – \angle AMN = 90^o – \angle APN = 90^o – \angle AFN = \angle NFC$.
    • Do đó $F, K, C$ thẳng hàng.

    Bài 12. (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$. (a) Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng. (b) Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.

    Gợi ý

    1.

    • Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
    • Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
    • Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
    • Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.

    2.

    • Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
    • Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
    • Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
    • Vậy $AF$ luôn đi qua điểm $G$ cố định.

    Đề thi học sinh giỏi khối 10

    Kì thi chọn đội dự tuyển trường Phổ thông Năng khiếu

    Đề thi và đáp án chọn đội dự tuyển 10 trường PTNK năm 2023

    Đề thi và đáp án chọn đội dự tuyển trường PTNK năm 2022

    Đề thi và đáp án chọn đội dự tuyển PTNK năm 2021 – Toán Việt (toanviet.net)

    Đề thi và đáp án chọn đội dự tuyển trường PTNK năm 2020 – Toán Việt (toanviet.net)

    Đề thi và đáp án chọn đội dự tuyển PTNK năm học 2019 – 2020 – Toán Việt (toanviet.net)

    Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018 – Toán Việt (toanviet.net)

    Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017 – Toán Việt (toanviet.net)

    Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013 – Toán Việt (toanviet.net)

    Kì thi Olympic truyền thống 30/4 (SGD TPHCM)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2011 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2010 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2009 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2008 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2007 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2005 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2004 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2003 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2002 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2000 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1999 – Toán Việt (toanviet.net)

    ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1998 – Toán Việt (toanviet.net)

    Kì thi duyên hải Bắc bộ

    Kì thi HSG lớp 10 của các tỉnh, thành phố

    Đề thi tuyển sinh vào 10 chuyên toán

    Trường Phổ thông Năng khiếu

    Toán chung cho tất cả các thí sinh

    Đáp án đề thi Toán không chuyên trường Phổ thông Năng Khiếu năm 2021 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2020 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2019 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2018 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2017 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2016 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2015 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2014 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2013 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2012 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2011 – Toán Việt (toanviet.net)
    Môn toán chuyên
    ĐỀ VÀ ĐÁP ÁN THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU NĂM 2023 – Toán Việt (toanviet.net)

    ĐỀ và ĐÁP ÁN THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU NĂM 2022 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2021 – Toán Việt (toanviet.net)

    Đề thi vào lớp 10 Chuyên Toán vào trường PTNK năm 2020 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2019 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2018 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2017 – Toán Việt (toanviet.net)

    Đề thi vào lớp 10 chuyên toán Phổ thông Năng khiếu: Năm 2016 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2015 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2014 – Toán Việt (toanviet.net)

    Đáp án và bình luận thi vào lớp 10 PTNK năm 2013: Đề chuyên toán – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2012 – Toán Việt (toanviet.net)

    SGD TP. Hồ Chí Minh

    Đề toán chung cho tất cả các thí sinh

    Đề thi và đáp án tuyển sinh vào 10 TPHCM 2020 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào 10 TPHCM 2019 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào 10 TPHCM 2018 – Toán Việt (toanviet.net)

    Đề thi và đáp án vào lớp 10 TPHCM 2017 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2016 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2015 – Toán Việt (toanviet.net)

    Đề thi và đáp án thi vào lớp 10 TPHCM 2014 – Toán Việt (toanviet.net)

    Đề thi và đáp án thi vào lớp 10 TPHCM 2013 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2012 – Toán Việt (toanviet.net)

    Đề thi và đáp án tuyển sinh vào 10 TPHCM 2011 – Toán Việt (toanviet.net)

    Đề toán chuyên

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2020 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2019 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2018 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2017 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2016 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM – NĂM 2015 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM – NĂM 2014 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM 2013 – Toán Việt (toanviet.net)

    ĐỀ THI VÀO CHUYÊN TOÁN LỚP 10 TP.HCM 2012 – Toán Việt (toanviet.net)

    Đề thi thử Star Education

    Đề toán chung

    ĐỀ THI THỬ VÀO LỚP 10 KHÔNG CHUYÊN – TT STAR EDUCATION 2022 – Toán Việt (toanviet.net)

    ĐỀ THI THỬ VÀO LỚP 10 KHÔNG CHUYÊN LẦN 2 TT STAR EDUCATION 2020 – Toán Việt (toanviet.net)

    Đề thi thử vào lớp 10 – Không chuyên PTNK – Toán Việt (toanviet.net)

    Đề thi thử vào lớp 10 PTNK – Đề toán chung – Lần 2 – Toán Việt (toanviet.net)

    Đề toán chuyên

    ĐỀ THI THỬ VÀO LỚP 10 TOÁN CHUYÊN – TT STAR EDUCATION 2022 – Toán Việt (toanviet.net)

    Đề thi thử vào lớp chuyên toán Star Education năm 2021 – Lần 2 – Toán Việt (toanviet.net)

    ĐỀ THI THỬ VÀO LỚP 10 TRUNG TÂM STAR EDUCATION TOÁN CHUYÊN – 2020 – Toán Việt (toanviet.net)

    Bất biến và đơn biến – Phần 1

    Lê Anh Vinh

    ĐH Giáo dục, ĐHQGHN

    1/ Khởi động:

    Chúng ta sẽ bắt đầu bằng một ví dụ đơn giản. Giáo viên yêu cầu học sinh làm một thí nghiệm nhỏ – viết lên bảng $a+b$ số gồm $a$ số 0 và $b$ số 1 . Sau đó thực hiện $a+b-1$ lần phép biến đổi sau: xoá hai số bất kỳ trên bảng. Nếu chúng bằng nhau thì viết số 0 lên bảng và nếu khác nhau thì viết số 1 lên bảng. Sau khi học sinh làm thử trên vở, giáo viên có thể nói ngay số còn lại trên bảng là số 1 hay số 0 .

    Học sinh sẽ thắc mắc một cách tự nhiên: làm thế nào giáo viên biết được số còn lại trên bảng? Rõ ràng các phép biến đổi có thể thực hiện theo nhiều cách khác nhau, nhưng sau các phép biến đổi, tổng các số trên bảng là không đổi theo modulo $2 .$ Do đó, số còn lại trên bảng sẽ là 1 nếu $b$ lẻ và 0 trong trường hợp ngược lại.

    Chúng ta tiếp tục với các ví dụ sau.

    Bài toán 1.1. Khối $A0$  có một ngôn ngữ riêng chỉ gồm hai chữ cái $A$ và $0$ , đồng thời thỏa mãn hai điều kiện sau:

    • Nếu xóa hai chữ cái kề nhau $\mathrm{A} 0$ trong bất kì một từ nào, ta không làm thay đổi nghĩa của từ đó.
    • Nếu thêm tổ hợp 0A hoặc AA00 vào vị trí bất kì nào trong một từ, ta cũng không làm thay đổi nghĩa của từ đó.

    Liệu hai từ A00 và 0AA có cùng nghĩa không ?
    Giải

    Dễ thấy sau mỗii phép biến đổi, số lượng $\mathrm{A}$ và 0 thêm vào hay bớt đi là như nhau.  Vì vậy, xuất phát từ $\mathrm{A} 00$ với nhiều chữ cái 0 hơn, ta không thể thu được $0 \mathrm{AA}$ với nhiều chữ cái $\mathrm{A}$ hơn. Đại lượng bất biến ở đây có thể chọn là sai khác giữa số chữ cái ${A}$ và chữ cái 0 trong một từ.

    Lời giải trên đã chỉ ra ý tưởng cơ bản nhất của bất biến. Cho trước một số cấu hình, chúng ta có thể thực hiện một số phép biến đổi trên chúng. Câu hỏi đật ra là có thể thu được một cấu hình này từ một câu hình khác không? Tính bất biến thường được dùng để chỉ ra rằng từ một cấu hình không thể đạt tới một cấu hình khác. Để làm được điều đó, chúng ta xây dựng một đại lượng không đổi (hoặc thay đổi đơn điệu – khi đó ta có khái niệm nửa bất biến) dưới các phép biến đổi sao cho giá trị của đại lượng này là khác nhau ở hai cấu hình trong cần hỏi. Tuy nhiên, đối với các bài toán bất biến, phần khó nhất thường là chỉ ra đại lương bất biến. Trong bài giảng này, chúng ta sẽ hệ thống một số dạng bất biến thường gặp qua một loạt các ví dụ từ đơn giản đến nâng cao.

    Bài toán 1.2. Một hình tròn được chia làm 6 ô dẻ quạt bằng nhau và đặt một quân tốt vào mỗi ô. Trong mỗi bước, cho phép chuyển hai quân tốt bất kỳ vào ô kề với nó. Hỏi có thể chuyển tất cả quân cờ vào một ô hay không?

    Giải

    Đánh số các ô từ 1 đến 6 theo chiều kim đồng hồ. Với mỗi cách sắp xếp, xét $S$ là tổng các ô có chứa quân cờ (tính cả bội). Khi đó, tính chẵn lẽ của $S$ không thay đổi.

    Trong một số trường hợp, bất biến không chỉ được dùng để chứng minh ta không thể thu được cấu hình này từ một cấu hình khác mà còn có thể sử dụng để tìm hiểu cấu hình nào có thể thu được từ một cấu hình cho trước. Ta có ví dụ sau.

    Bài toán 1.3. Các số $1,2,3, \ldots, 20$ được viết lên bảng. Mỗi phép biến đổi, ta xóa hai số $a, b$ và thêm vào số $a+b-1$. Số nào sẽ còn lại trên bảng sau 19 bước?

    Giải

    Với bộ $n$ số trên bảng ta xét đại lượng $X$ bằng tổng các số trên bảng trừ đi $n$. Khi đó $X$ không thay đổi trong các phép biến đổi. Lúc đầu $X=(1+2+\ldots+20)-20=190$. Sau 19 bước, $X=190$ hay số còn lại sẽ là $191 .$

    Sẽ không ngạc nhiên nếu như một số học sinh đưa ra lập luận như sau: tại mỗi bước, tổng các số giảm đi 1 . Lúc đầu tổng là 210 và sau 19 bước, số còn lại sẽ là $210-19=191$. Cách giải này hiển nhiên đúng nhưng không làm rõ được ý tưởng của “bất biến”. Chúng ta sẽ đưa cho học sinh một bài toán tương tự, mà ở đây, những lập luận “rút gọn” như vậy là khó có thể thực hiện được.

    Bài toán 1.4. Các số $1,2,3, \ldots, 20$ được viết lên bảng. Mỗi phép biến đổi, ta xóa hai số $a, b$ và thêm vào số $ab+a+b$. Số nào sẽ còn lại trên bảng sau 19 bước?

    Sau đây là một số bài toán khá thú vị sử dụng y tưởng của bất biến.

    Bài toán 1.5. Trong bàn cờ $8 \times 8$, một ô bị tô màu đen và các ô còn lại được tô màu trắng. Liệu có thể làm cho cả bảng màu trắng bằng cách tô lại các hàng và cột không? Ở dây, tô lại một hàng hay cột được hiểu như là một phép đổi màu tất cả các ô trên hàng hoặc cột đó.

    Bài toán 1.6. Giải Bài 5 cho bảng $3 \times 3$.

    Bài toán 1.7. Giải Bài 5 cho bảng $8 \times 8$ với bốn ô ở góc được tô màu đen và các ô khác được tô màu trắng.

    Lưu ý rằng Bài 5 , khác với Bài 6 và Bài 7 , có thể giải chỉ sử dụng tính chã̃n lẻ của số ô đen trên bảng. Để giải Bài 6 , ta có thể xét tính chã̃n lẻ của số ô đen trong bốn ô ở góc. Để giải Bài 7 , ta phải xét tính chẵn lẻ của số ô đen trong bốn ô cụ thể, ví dụ bốn ô ở góc phải trên.

    Bài toán 1.8. Các số $1,2, \ldots, 2013$ được viết lên bảng. Cho phép xóa đi hai số và thay bởi hiệu của chúng. Liệu có thể thu được một bảng gồm toàn số 0 không?

    Có nhiều cách để giải bài toán trên, một trong những bất biến có thể sử dụng là tính chẵn lẻ của tổng các số viết trên bảng. Lưu ý rằng tổng và hiệu của hai số bất kỳ là cùng tính chẵn lẻ.

    Bài toán 1.9. Có 13 con tắc kè xanh, 15 con tắc kề đỏ và 17 con tắc kè vàng trên một hòn đảo. Khi hai con tắc kè khác màu gặp nhau, chúng đổi sang màu còn lại. Liệu có thể đến một lúc nào đó tất cả các con tắc kè có cùng màu hay không?

    Giải

    Mỗi “trạng thái” trên đảo gồm $a$ con tắc kè xanh, $b$ con tắc kè đỏ và $c$ con tắc kè vàng với $a+b+c=45$. Phép biến đổi màu sẽ chuyển từ trạng thái $(a, b, c)$ sang một trong ba trạng thái $(a-1, b-1, c+2),(a-1, b+2, c-1)$ hoặc $(a+2, b-1, c-1)$. Dễ thấy $(a-1)-(b-1) \equiv(a-1)-(b+2) \equiv(a+2)-(b-1) \equiv a-b$ mod $3 .$ Bất biến $X=$ sai khác giữa số tắc kè xanh và số tắc kề đỏ theo modulo 3. Lúc đầu $X \equiv 2 \bmod 3$ và khi tất cả các tắc kè cùng màu thì $X \equiv 0 \bmod 3$. Vì vậy, trường hợp tất cả các con tắc kè có cùng màu không thể xảy ra.

    Bài toán 1.10. Viết 11 số $+1$ và 01 số $-1$ lên đỉnh của 12 giác đều. Cho phép đổi dấu của các số trên $k$ đỉnh bất kỳ của đa giác. Có thể hay không luôn chuyển số $-1$ sang đỉnh kề của nó nếu

    a) $k=3$

    b) $k=4$;

    c) $k=6 ?$

    Giải

    Câu trả lời là phủ định trong cả ba trường hợp. Chứng minh cho cả ba trường hợp có thể thực hiện như sau: chúng ta chọn các đỉnh cách đều nhau đúng $k-1$ dỉnh (ví dụ khi $k=3$ ta chọn được 4 dỉnh, khi $k=4$ ta chọn được 3 điểm và $k=6$ ta chọn được 2 điểm). Bất biến của chúng ta là tích các số trên các đỉnh được chọn. Chúng ta xếp số – 1 vào một trong các điểm được chọn. Dễ kiểm tra rằng nếu số $-1$ được chuyển sang đỉnh kề thì tích các số trên các điểm được chọn lúc đó sẽ là $1 .$

    Lưu ý rằng khái niệm bất biến là khá trừu tượng và phức tạp đối với phần lớn học sinh trong lần tiếp cận đầu tiên. Chúng ta nên lưu ý phân tích các lập luận logic của việc sử dụng các đại lượng bất biến trong giải các bài toán cụ thể. Ở đây, chúng tôi chỉ đưa ra những gợi ý tóm tắt cho các bài toán nhưng khi hướng dẫn cho học sinh, có thể sử dụng các ví dụ minh họa khiến lời giải trở nên trực quan và dễ hiểu hơn. Ngoài ra, chúng ta chỉ nên giới thiệu khái niệm và phương pháp sử dụng bất biến sau khi mỗi học sinh đã tự tìm tòi và giải quyết độc lập một vài ví dụ minh họa đơn giản nhất, thậm chí đã sử dụng bất biến mà không hề ý thức được điều đó. Rõ ràng, bước khó nhất khi giải các bài toán sử dụng bất biến là phát hiện ra được đại lượng bất biến phù hợp. Đây là một nghê thuật mà chúng ta chỉ có thể thành thạo được thông qua việc giải một loạt các bài toán trong cùng một chủ đề.

    2/ Cơ bản:

    Chúng ta đã gặp một số bất biến trong phần Khởi động. Tiếp theo chúng ta sẽ xem xét một số dạng bất biến cơ bản khác, ví dụ như tính chẵn lẻ, tô màu, công thức đại số, cặp nghịch đối của hoán vị,… Đối với mỗi bài toán, giáo viên có thể bắt đầu bằng việc thảo luận với học sinh dạng bất biến có thể sử dụng là gì.

    Bài toán 2.1. Trên bảng viết các số $1,2, \ldots, 1000$. Ở mỗi bước cho phép thay một số bằng tổng các chữ số của nó. Quá trình dừng lại khi có toàn các số có một chữ số. Hỏi số số 1 còn lại trên bảng nhiều hơn hay số số 2 còn lại trên bảng nhiều hơn?

    Giải

    Nếu chúng ta viết tất cả các số trên bảng theo modulo 9 thì các số này sẽ là bất biến trong các phép biến đổi. Do số các số đồng dư 1 mod 9 nhiều hơn số các số đồng dư $2 \bmod 9$ trong tập $\{1, \ldots, 1000\}$, số các số 1 còn lại trên bảng sẽ nhiều hơn số số 2 còn lại trên bảng.

    Bài toán 2.2. Vào năm 3000, ở Việt Nam, một nhân dân tệ (RMB) đổi được 10 đồng Việt Nam (VNĐ). Trong khi đó, ở Trung Quốc, một VNĐ đổi được $10 \mathrm{RMB}$. Một du khách người Nhật lúc đầu có $01 \mathrm{VND}$. Ông này có thể đi lại tùy ý giữa hai nước VN và TQ. Hỏi ông ta có thể làm cho số VNĐ và RMB ông ta có là bằng nhau hay không?

    Giải

    Xét $X=$ số VNĐ $-$ số RMB của du khách. Khi đó $X \bmod 11$ sẽ là bất biến trong các bước đổi tiền. Nếu số VNĐ và RMB bằng nhau thì $X \equiv 0 \bmod 11$. Lúc đầu $X \equiv 1 \bmod 11$, do đó không thể thu được $X \equiv 0$ mod 11. Ta có câu trả lời phủ định.

    Bài toán 2.3. Hình vuông $8 \times 8$ bỏ đi hai ô ở góc đối nhau. Có thể phủ phần còn lại bởi 31 quân đômino $1 \times 2$ không? Nếu bỏ hai ô bất kì thì sao?

    Giải

    Chúng ta tô màu hình vuông đen trắng như bàn cờ vua. Hai ổ ở góc đối nhau luôn cùng mau nên sau khi bỏ chúng đi, số ô đen khác số ô trắng. Mỗi quân đômino phủ đúng một ô đen, một ô trắng nên phần còn lại của hình vuông không thể phủ kín được bởi các quân đômino. Bất biến ở đây chính là hiệu số giữa số ô trắng và số ô đen trên bảng.

    Bài toán 2.4. Cho đa thức $P(x)=a x^{2}+b x+c$, có thể thực hiện một trong hai phép biến đổi:

    a) Đổi chỗ $a$ và $c$.

    b) Đổi biến $x$ bởi $x+t$ với $t \in \mathbb{R}$.

    Hỏi từ $x^{2}-31 x-3$ có thu được $x^{2}-20 x-12$ không? Tìm mối liên hệ của hai đa thức bậc hai $P(x)$ và $Q(x)$ sao cho từ đa thức này có thể thu được đa thức kia bởi hai phép biến đổi nói trên.

    Giải

    Bất biến của chúng ta là định thức $\Delta=b^{2}-4 a c$ của đa thức $P(x)=a x^{2}+b x+c$. Dễ kiểm tra rằng hai phép biến đổi a) và b) không làm thay đổi định thức của đa thức. Định thức $\Delta_{1}$ của $x^{2}-31 x-3$ và định thức $\Delta_{2}$ của $x^{2}-20 x-12$ là khác nhau. Ta có câu trả lời phủ định! Chúng tôi để lại câu hỏi tìm mối liên hệ giữa hai đa thức bậc hai nhận được từ nhau qua hai phép biến đổi trong đề bài cho bạn đọc.

    Bài toán 2.5. Tô đen 09 ô của hình vuông $10 \times 10$. Mỗi lần tô màu đen một ô chưa tô nếu nó kề với ít nhất hai ô đen (kề được hiểu là chung cạnh). Có thể tô màu hết bàn cờ hay không? Nếu là 10 ô thì sao? Nếu là hình vuông $n \times n$ thì lúc đầu cần tô đen ít nhất bao nhiêu ô để có thể tô đen cả bàn cờ?

    Giải

    Nếu tô 10 ô thì câu trả lời là khẳng định. Ví dụ ta có thể bắt đầu với 10 ô đen trên đường chéo chính của hình vuông.

    Nếu tô 9 ô thì câu trả lời là phủ đinh. Xét $X$ là tổng chu vi của phần tô đen trên hình thì lúc đầu $X \leq 36$. Dễ kiểm tra $X$ là nửa bất biến, cụ thể, $X$ là không tăng. Nếu cả bàn cờ được tô màu thì lúc này $X=40$ – mâu thuẫn. Vậy, không thể tô đen được cả bàn cờ nếu xuất phát với 9 ô màu đen.

    Bài toán 2.6. Cho một hoán vị của các số $1,2, \ldots, 2012$. Mỗi lần cho đổi chỗ hai số bất kì. Sau 2011 bước có thể quay về hoán vị ban đầu không?

    Giải

    Bài toán này liên quan đến số cặp nghịch đối của một hoán vị. Cặp nghịch đối của hoán vị $\pi$ của $\{1, \ldots, n\}$ là số cặp $1 \leq i<j \leq n$ sao cho $\pi(i)>\pi(j)$. Bạn đọc hãy tự kiểm tra rằng tính chẵn lẻ của số cặp nghịch đối thay đổi khi chúng ta hoán vị một cặp trong dãy. Sau 2011 bước, số cặp nghịch đối sẽ bị thay đổi tính chẵn lẻ và chúng ta không thể quay trở về hoán vị ban đầu.

    Bài toán 2.7. Trên bảng viết các số $1,2,3,4,5$. Mỗi bước cho phép chọn hai số $a, b$ và thay bởi $a+b, a b$. Hỏi có thu được $21,27,64,180,540$ hay không?

    Giải

    Bài toán này thoạt nhìn khá đơn giản nhưng để tìm được bất biến không phải là điều dễ dàng. Trước hết ta kiểm tra rằng số các số chia hết cho 3 không giảm và số lượng này tăng khi và chỉ khi từ hai số chia 3 dư 1 và chia 3 dư 2 chúng ta thu được một số chia hết cho 3 và một số chia hết cho 2 . Vì vậy, khi chúng ta lần đầu tiên chuyển sang trạng thái có 4 số chia hết cho 3 thì số còn lại chia 3 dư 2 , nhưng 64 chia 3 dư 1 nên câu trả lời sẽ là phủ định.

    Bài toán 2.8. Trên bảng viết số $99 \ldots 99$ (2012 lần). Mỗi bước cho phép chọn một số $a$, phân tích $a$ thành tích hai số $m, n$ và viết lên bảng $m \pm 2, n \pm 2$ tùy ý. Ví dụ: $a=15, a=3.5$ có thể viết lên bảng $1=3-2$ và $7=5+2$. Hỏi sau một số bước như vậy, có thể thu được trên bảng toàn các số 9 không?

    Giải

    Đây cũng không phải là một bài toán “dễ” như cách phát biểu cũng như lời giải của nó. Bất biến là trên bảng luôn có ít nhất một số chia 4 dư 3 .

    Bài toán 2.9. Một túi gồm 1001 viên đá. Mỗi bước chọn một túi có nhiều hơn 01 viên. Bỏ đi một viên và chia các viên còn lại thành 02 túi. Hỏi có thể làm như vậy để thu được tất cả các túi đều có 03 viên?

    Giải

    Xét $X$ là tổng số đá và số túi tại mỗi bước. Dễ thấy $X \bmod 4$ không đổi. Lúc đầu $X=1002$ không chia hết cho 4 . Nếu tất cả các túi có 3 viên thì $X$ lúc đó chia hết cho 4, mẫu thuẫn. Vậy câu trả lời là phủ định.

    Bài toán 2.10. Chúng ta xét một quân cờ đặc biệt, được gọi là quân “lạc đà”, di chuyển trên bàn cờ $10 \times 10$ như là một quân mã $(1,3)$. Có nghĩa là di chuyển sang ô kề và sau đó di chuyển ba ô theo hướng vuông góc với hướng vừa di chuyển. Quân mã thông thường di chuyển theo hướng $(1,2)$. Liệu quân lạc đà có thể di chuyển từ một ô sang ô kề nó không?

    Giải

    Câu trả lời là không. Xét các tô màu đen trắng của bàn cờ thông thường. Dễ dàng kiểm tra được rằng quân lạc đà luôn di chuyển trong các ô cùng màu và hai ô kề nhau lại là khác màu.

    Bài toán 2.11. Một bảng hình chữ nhật có thể phủ kín không đè lên nhau bởi các hình $1 \times 4$ và $2 \times 2$. Khi bỏ các hình này ra ngoài, chúng ta làm mất một hình $2 \times 2$ và thay vào đó một hình $1 \times 4$. Liệu có có thể dùng các hình lúc này phủ kín hình chữ nhật được không?

    Giải

    Câu trả lời là phủ định. Hãy tìm một cách tô màu các ô của hình chữ nhật bởi các màu $1,2,3,4$ sao cho mỗi hình $2 \times 2$ có một ô mỗi màu và hình $1 \times 4$ hoặc không có ô màu $i$ hoặc có 2 ô màu $i$ với mỗi $i=1,2,3,4$.

    Bài toán 2.12. Có thể hay không một quân mã đi qua tất cả các ô của bàn cờ $4 \times N$, mỗi ô đúng một lần và quay lại ô xuất phát ban đầu?

    Giải

    Tô màu hàng thứ nhất $1,2,1,2, \ldots$. Tô màu hàng thứ hai $3,4,3,4, \ldots . .$ Tô màu hàng thứ ba $4,3,4,3, \ldots$, và tô màu hàng thứ tư $2,1,2,1, \ldots$.. Giả sử tồn tại một chu trình bởi quân mã trên bàn cờ. Dẽ̃ kiểm tra rằng với cách tô của chúng ta, nếu quân mã đứng ở ô màu 1 hoặc 2 thì bước tiếp theo sẽ là ô màu 3 hoặc 4 , tương ứng. Do số ô mỗi màu là như nhau, các cập màu sẽ thay đổi luân phiên trong chu trình. Bạn đọc hãy tự chỉ ra rằng lúc này ta phải luân phiên giữa các ô màu 1 và màu 3 hoặc luân phiên giữa các ô màu 2 và màu 4 . Hay nói một cách khác, chúng ta không thể đi hết được cả bàn cờ.

    Bài toán 2.13. Có ba máy in thẻ trong đó các thẻ là một cặp các số tự nhiên (không sắp thứ tự). Máy thứ nhất nhận một thẻ với hai số $a, b$ và cho ra thẻ với hai số $a+1, b+1$. Máy thứ hai chỉ nhận các thẻ với hai số chẵn $a, b$ và cho ra thẻ với hai số $a / 2, b / 2$. Máy thứ ba nhận thẻ gồm hai $a, b$ và thẻ gồm hai $b, c$ và cho ra thẻ gồm hai số $a, c$. Các máy cũng sẽ trả lại các thẻ được đưa vào. Có thể nhận được thẻ gồm hai số 1 và 2012 chỉ từ một tấm thẻ gồm hai số 5 và 19 được không? Tổng quát, từ thẻ gồm hai số 5 và 19 có thể nhận được những thẻ như thế nào?

    Giải

    Ba phép toán có thể viết lại dưới dạng $(a, b) \rightarrow(a+1, b+1)$, $(a, b) \rightarrow(a / 2, b / 2)$ và $(a, b),(b, c) \rightarrow(a, c)$. Trong phép biến đổi thứ nhất, hiệu giữa hai số trên thẻ không đổi. Trong phép biến đổi thứ hai, hiệu giữa hai số trên thẻ giảm một nửa. Và trong phép biến đổi thứ ba, hiệu hai số trên thẻ mới bằng tổng hiệu các số trên hai thẻ cũ. Như vậy, hiệu các số trên thẻ không phải là bất biến! Tuy nhiên, nếu nhìn kĩ, có thể tính chia hết cho một số bất kì sẽ được bảo toàn. Kiểm tra được rằng $19-5=14$ chia hết cho 7 nhưng $2012-1$ thì không. Câu trả lời là phủ định. Phần còn lại của bài toán được dành cho độc giả với gợi ý là tất cả các thẻ gồm hai số $\mathrm{a}, \mathrm{b}$ thỏa mān $a-b$ chia hết cho 7 đều nhận được.

    Bài toán 2.14. Một quân cờ di chuyển trên bàn cờ $n \times n$ theo một trong ba cách: đi lên một ô, sang bên phải một ô, đi xuống về bên trái một ô. Hỏi quân cờ có thể đi qua tất cả các ô, mỗi ô đúng một lần và quay lại ô kề bên phải ô xuất phát được không?

    Giải

    Sau mỗi bước, tổng thứ tự của hàng và cột chứa quân cờ hoặc giảm đi 2 hoặc tăng lên 1 . Như vậy, khi xét theo modulo 3 thì tổng này tăng 1 mỗi bước. Do có $n^{2}-1$ bước, nếu kết thúc ở ô kề bên phải ô xuất phát thì tổng này tăng 1 đơn vị. Do đó $n^{2}-2$ chia hết cho 3 , mẵu thuẫn. Vậy câu trả lời lại là phủ định.

    Bài toán 2.15. Có bảy số 0 và một số 1 được điền vào các đỉnh của khố lập phương. Mỡi bước cho phép cộng thêm 1 vào các số ở một cạnh nào đó. Có thể thu được khối lập phương với tất cả các số bằng nhau không? Có thể thu được khối lập phương với tất cả các số chia hết cho 3 không?

    Giải

    Chúng ta đánh dấu 4 đỉnh của khối lập phương sao cho các đỉnh này không kề nhau. Xét hiệu giữa tổng các số được đánh dấu và các số không được đánh dấu thì tổng này không đổi. Sử dụng bất biến này, chúng ta dễ dàng chứng minh được rằng câu trả lời trong cả hai trường hợp là phủ định.

    Bài toán 2.16. Hình tròn được chia thành 06 hình dẻ quạt, trong đó điền các số $1,0,1,0,0,0$ theo thứ tự chiều kim đồng hồ. Cho phép thêm 1 vào các số trong hai ô kề nhau. Có thể làm cho tất cả các số bằng nhau được không?

    Giải

    Tương tự như Bài 25 , đánh số các dẻ quạt $1,2, \ldots, 6$ và tô màu đỏ các dẻ quạt $1,3,5$. Xét hiệu giữa tổng các số trên các dẻ quạt được tô màu và tổng các số trên các dẻ quạt còn lại thì tổng này không đổi.

    Bài toán 2.17. Chúng ta thực hiện phép biến đổi trên các bộ ba số như sau: thay hai số trong chúng, ví dụ $a$ và $b$, bời $(a+b) / \sqrt{2}$ và $(a-b) / \sqrt{2}$. Hỏi có thể nhận được $1, \sqrt{2}, 1+\sqrt{2}$ từ $2, \sqrt{2}, 1 / \sqrt{2}$ không?

    Giải

    Tổng bình phương của các số trong mọi cấu hình là không đổi. Sử dụng bất biến này, dễ dàng đưa ra câu trả lời phủ định cho bài toán.

    Bài toán 2.18. Các số thực được viết lên vòng tròn. Nếu bốn số liên tiếp $a, b, c, d$ thỏa mān $(a-d)(b-c)>0$ thì có thể đổi chỗ $b$ và $c$. Chứng minh rằng quá trình sẽ phải kết thúc.

    Giải

    Giả sử các số trên vòng tròn theo thứ tự là $a_{1}, a_{2}, \ldots, a_{n}$. Xét $X=\sum_{i=1}^{n} a_{i} a_{i+1}$ với $a_{n+1}=a_{1} .$ Khi đó trong mối phép biến đổi $X$ tăng thực sự. Nếu quá trình kéo dài vô hạn thì tổng này có vô hạn giá trị, nhưng tổng chỉ có tối đa $n !$ giá trị. Suy ra quá trình buộc phải kết thúc.

    Bài toán 2.19. Cho một đồ thị $n$ đỉnh, bậc của mỗi đỉnh không quá 5. Chứng minh rằng các đỉnh có thể tô bởi ba màu sao cho không quá $n / 2$ cạnh có các đỉnh mút cùng màu.

    Lời giải của Bài 29 được dành cho bạn đọc!

    Một số lưu ý cho kì thi vào lớp 10: Môn Toán chuyên

    Tới giờ phút này có lẽ những bạn muốn thi vào lớp 10 chuyên toán có lẽ đã chuẩn bị hết các kiến thức và kĩ năng chuẩn bị cho kì thi cam go, thời điểm này cũng không học được nhiều cái mới và cũng không đủ thời gian thẩm thấu, tốt nhất cứ ôn lại các phần mình đã được học, làm bài thật chắc chắn và tập phản xạ với đề thi. Tôi xin có một vài lưu ý cho các em như sau:

    ĐẠI SỐ: Xem lại các chuyên đề biến đổi đại số, các phương pháp nâng cao giải phương trình, hệ phương trình: đặt ẩn phụ, lượng liên hợp,…Định lý Viete và các bài toán liên quan, bất đẳng thức và một số phương pháp chứng minh, chủ yếu các phương pháp nhẹ nhàng cauchy hai số, biến đổi tương đương.

    HÌNH HỌC: Chú ý các bài toán phụ, các mô hình định lý quen thuộc, bổ đề nào sử dụng cần phải chứng minh lại, sử dụng kiến thức trong SGK, các bài toán cố định, di động, cực trị hình học.

    SỐ HỌC: Chú ý các phương pháp về chứng minh chia hết, phải nắm chắc các tính chất số học, phương trình nghiệm nguyên: biến đổi thành tích, tổng, đồng dư và kẹp, nắm các tính chất của số nguyên tố, lũy thừa số nguyên, biểu diễn thập phân…

    TỔ HỢP: Chú ý các phương pháp chứng minh: phản chứng, Dirichlet, quy nạp, một số quy tắc suy luận có lý.

    GIẢI ĐỀ: Nên dành thời gian để giải đề thi hàng tuần, có thể là đề thi cũ của các trường mà mình muốn thi vào, làm bài dễ đến bài khó, làm bài nào chắc bài đó và ghi chép cẩn thận. Nhiều khi chấm thi các bạn ghi 2, 3 tời giấy đôi mà không được điểm nào, viết lung tung với toán chuyên là không có điểm, chú ý tới tính logic của lời giải, giải thích rõ ràng nhất là với các bài số học và tổ hợp. Việc giải đề trong thời gian cho phép giúp rèn luyện sự cẩn thận, tập trung cho kì thi thật, giải đề  xong thấy không ổn phần nào thì xem kĩ lại phần đó, khó quá thì cho qua.

    CHÚC CÁC EM THI TỐT!