Lời giải do thầy giáo dạy 10 Chuyên toán là Lê Thành Đạt và Đào Sơn Trà thực hiện.

Lời giải do thầy giáo dạy 10 Chuyên toán là Lê Thành Đạt và Đào Sơn Trà thực hiện.
A. MỘT SỐ CHÚ Ý KHI GIẢI PHƯƠNG TRÌNH DẠNG LŨY THỪA
Nhận xét: Để giải phương trình nghiệm nguyên dạng lũy thừa ta chú ý một số phương pháp thường sử dụng
Do sử dụng nhiều đồng dư, do đó ta chú ý một số tính chất về đồng dư sau Tính chất 3.2. Cho $a$ là một số nguyên tùy ý. Khi đó
(a) $a^2 \equiv 0,1(b\mod 3)$;
(b) $a^2 \equiv 0,1(b\mod 4)$
(c) $a^2 \equiv 0,1,4 (b\mod 8)$;
(d) $a^2 \equiv 0,1,4 (b\mod 5)$;
(e) $a^3 \equiv-1,0,1 (b\mod 7)$
(f) $a^3 \equiv-1,0,1(b\mod 9)$.
Tính chất 3.3. Cho $p$ là một số nguyên tố và $a, b, c, n$ là các số nguyên dương. Ta có
(a) $a^n \vdots p \Leftrightarrow a \vdots p$;
(b) Nếu $a b=p^n$ thì $\left\{\begin{array}{l}a=p^k \\\ b=p^{n-k}\end{array} \quad\right.$ với $k \in \mathbb{N}$ thỏa $0 \leq k \leq n$;
(c) Nếu a b=c^n và (a, b)=1 thì $a=s^n \text { và } b=r^n$ với $s, r \in \mathbb{N}$.
B MỘT SỐ VÍ DỤ Ví dụ 3.30. Giải phương trình nghiệm nguyên $x^5+2023 x=5^y+2$. Ví dụ 3.31. Tìm các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$. Ví dụ 3.32. Tìm các số nguyên dương $x$ và $y$ sao cho Ví dụ 3.33. Tìm tất cả các số nguyên tố $p$ sao cho luôn tồn tại các số nguyên dương $n, x, y$ thỏa mãn Ví dụ 3.34. Tìm nghiệm tự nhiên của phương trình Ví dụ 3.35. Cho $M=a^2+3 a+1$ với $a$ là số nguyên dương. Ví dụ 3.37. Cho phương trình $2^x+5^y=k^2$ ( $x, y, k$ là các số nguyên dương). Ví dụ 3.38. Cho $k$ là số nguyên dương và $a=3 k^2+3 k+1$. Bài 3.13. Tìm nghiệm nguyên dương của phương trình Bài 3.14. Tìm tập nghiệm nguyên dương của phương trình Bài 3.15. Tìm các số nguyên dương $x, y, z>1$ thỏa mãn Bài 3.16. Tìm nghiệm tự nhiên của phương trình $5^x-3^y=2$. Bài 3.17. Tìm nghiệm nguyên dương của phương trình Bài 3.18. Cho các số nguyên dương $m, n \geq 2$. Tìm nghiệm nguyên dương của phương trình Bài 3.19. Cho $p$ là một số nguyên tố và $a, n$ là các số nguyên dương. Chứng minh rằng nếu $2^p+3^p=$ $a^n$ thì $n=1$. Bài 3.20. Chứng minh rằng tích của ba số nguyên liên tiếp không thể là lũy thừa với số mũ lớn hơn 1 của một số nguyên. Bài 3.21. Cho phương trình $3 x^2-y^2=23^n$ với $n$ là số tự nhiên. Bài 3.22.
Ví dụ 3.29. Tìm các số nguyên $x, y$ thỏa mān $x^3+1=4 y^2$.
$$
9^x-7^x=2^y .
$$
$$
p^n=x^3+y^3 .
$$
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$
(a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
(b) Tìm các giá trị của $a$ để $M$ là lũy thừa của 5 .
(a) Chứng minh rằng phương trình trên vô nghiệm khi $y$ chẵn.
(b) Tìm $k$ để phương trình có nghiệm.
(Đề thi tuyển sinh vào lớp 10 chuyên toán PTNK 2022)
(a) Chứng minh rằng $2 a$ và $a^2$ là tổng của ba số chính phương.
(b) Chứng minh rằng nếu $a$ là uớc của số nguyên $b$ và $b$ bằng tổng của ba số chính phương thì bất kì lũy thừa với số mũ nguyên dương nào của $b$ cũng là tổng của ba số chính phương.
C. CÁC BÀI TẬP RÈN LUYỆN
$$
x^3+x^2+x+1=2011^y .
$$
$$
8^x+15^y=17^z .
$$
$$
(x+1)^y-x^z=1 .
$$
$$
2^x \cdot 3^y+5^z=7^t .
$$
$$
x^n+y^n=3^m .
$$
(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.
(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.
(a) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+4 m=0$ thì cũng tồn tại các số nguyên $a^{\prime}, b^{\prime}, c^{\prime}$ sao cho $a^{\prime}+b^{\prime}+c^{\prime}=0$ và $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime}+m=0$.
(b) Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+2^k=0$.
(Đề thi tuyển sinh lớp 10 chuyên Toán PTNK 2015)
Bài viết của thầy Nguyễn Vĩnh Khang – Giáo viên Star Education
Các tính chất của ước chung
Nhận xét: Nếu ta đặt $(x, y)=d$, thì $x^{\prime}=\dfrac{x}{d}$ và $y^{\prime}=\dfrac{y}{d}$ nguyên tố cùng nhau. Từ đó lợi dụng các tính chất liên quan đến số nguyên tố cùng nhau như (được sử dụng thẳng, không cần chứng minh)
Tính chất 3.1. Giả sử $a, b, c, n$ là các số nguyên dương, chứng minh những tính chất sau
(a) $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$
(b) $\operatorname{gcd}(a c, b c)=\operatorname{gcd}(a, b) c$
(c) Nếu $\operatorname{gcd}(a, b)=1$, ta có $\operatorname{gcd}(a b, c)=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)$
(d) $\operatorname{gcd}\left(a^n, b^n\right)=\operatorname{gcd}(a, b)^n$.
Chứng minh.
Phần 1: gọi $d=\operatorname{gcd}(a, b, c)$ ta có $d$ là ước của $a, b$, nên $\operatorname{gcd}(a, b)$ : $d$. Nhưng $c: d$, nên ta được một chiều
$$
\operatorname{gcd}(\operatorname{gcd}(a, b), c) \vdots d=\operatorname{gcd}(a, b, c)
$$
Để chứng minh chiều còn lại, gọi $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$. Tương tự như trên ta có $d$ là ước của $\operatorname{gcd}(a, b)$, nên $d$ cũng là ước của $a, b$. Nhưng $d$ là ước của $a, b, c$, nên
$$
\operatorname{gcd}(a, b, c) \vdots d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)
$$
Kết hợp (1.1) và (1.2), ta có đpcm.
Phần 2: nếu $d=(a c, b c)$, ta có $d: c$ do $c$ là ước chung của $a c, b c$. Đặt $d=k c$, ta có $(a c, b c)=k c$, và $a c, b c: k c$. Nói cách khác $a, b: k$, nên $(a, b): k$, và
$$
c(a, b) \vdots k c=(a c, b c)
$$
Mặt khác, đặt $k=(a, b)$, ta có $a, b: k$, nên $a c, b c: k c$. Theo định nghīa, $(a c, b c) \vdots k c=(a, b) c$. Kết hợp với (2.1) ta có đpem $\operatorname{gcd}(a c, b c)=\operatorname{gcd}(a, b) c$.
Phần 3: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo tính chất 2 , ta được
$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(\dfrac{a}{k}, \dfrac{c}{k}\right)=1 \\
\operatorname{gcd}\left(\dfrac{b}{l}, \dfrac{c}{l}\right)=1
\end{array}\right.
$$
Mặt khác $a: k, b: l$, nhưng $a, b$ lại nguyên tố cùng nhau, nên $k, l$ cūng vậy. Kết hợp với $c: k, l$, ta có $c: k, l$. Để ý rằng $\dfrac{c}{k l}$ là ước của $\dfrac{c}{k}$ và $\dfrac{c}{l}$, nên
$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(\dfrac{a}{k}, \dfrac{c}{k l}\right)=1 \\
\operatorname{gcd}\left(\dfrac{b}{l}, \dfrac{c}{k l}\right)=1
\end{array}\right.
$$
Ta chứng minh $\operatorname{gcd}(a b, c)=1$ nếu $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(a, c)=1$. Thật vậy, giả sử ngược lại, tức $\operatorname{gcd}(a b, c) \neq 1$. Khi đó tồn tại $p$ là ước nguyên tố chung của $a b, c$. Nhưng $a b: p$ thì ta phải có $a: p$ hoặc $b: p$, nên $\operatorname{gcd}(a, c): p$ hoặc $\operatorname{gcd}(b, c)$ : $($ cả 2 đều mâu thuẫn với giả thiết).
Áp dụng quan sát trên cho (3.1), ta được
$$
\operatorname{gcd}\left(\dfrac{a b}{k k}, \dfrac{c}{k l}\right)=1 \Leftrightarrow \operatorname{gcd}(a b, c)=k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)
$$
Phần 4: ta chứng minh $\operatorname{gcd}\left(a^n, b^n\right)=1$ nếu $\operatorname{gcd}(a, b)=1$. Thật vậy, giả sử $\operatorname{gcd}\left(a^n, b^n\right) \neq 1$, khi đó $a^n, b^n$ phải có một ước nguyên tố chung $p$. Sử dụng tính chất nếu $x y: p$ thì $x: p$ hoặc $y: p$. Từ đó $a, b: p$, vô lý.
Đặt $d=\operatorname{gcd}(a, b)$, ta có $\operatorname{gcd}\left(\dfrac{a}{d}, \dfrac{b}{d}\right)=1$, nên
$$
\operatorname{gcd}\left(\left(\dfrac{a}{d}\right)^n,\left(\dfrac{b}{d}\right)^n\right)=1
$$
Nhân $d^n$ cho cả 2 vế, và dùng tính chất 2 , ta được
$$
\operatorname{gcd}(a, b)^n=d^n=d^n \operatorname{gcd}\left(\left(\dfrac{a}{d}\right)^n,\left(\dfrac{b}{d}\right)^n\right)=\operatorname{gcd}\left(a^n, b^n\right)
$$
Hệ quả 3.1
Giả sử $a, b, c, n$ là các số nguyên dương, chứng minh những tính chất sau
(a) Nếu $a b: c$ và $(a, b)=1$, tồn tại $k, l$ sao cho $k l=c$, và $a: k, b \vdots l$.
(b) Nếu $a b=c^n$ và $(a, b)=1(n \geq 2)$, tồn tại $k, l$ sao cho $k l=c$ và $a=k^n, b=l^n$.
Chứng minh.
Phần 1: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo bài tập trước, ta có $k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)=$ $\operatorname{gcd}(a b, c)=c$, và $a: k, b: l$ theo định nghĩa.
Phần 2: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo bài tập trước, ta có $k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)=\operatorname{gcd}(a b, c)=$ c. Mặt khác
$$
k^n=\operatorname{gcd}\left(a^n, c^n\right)=\operatorname{gcd}\left(a^n, a b\right)=a \operatorname{gcd}\left(a^{n-1}, b\right)=a
$$
, ở đây $\operatorname{gcd}\left(a^{n-1}, b\right)=1$ do nếu tồn tại $p$ là ước nguyên tố chung cho $a^{n-1}, b$, ta phải có $p$ là ước chung của $a, b$ (vô lý). Chứng minh tương tự, ta cũng có $l^n=b$. Ta có đpcm.
B. MỘT SỐ VÍ DỤ ÁP DỤNG
Ví dụ 3.1 (Junior Balkan Mathematical Olympiad 2001).
Tìm ước chung lớn nhất của $A_0, A_1, A_2, \ldots, A_{1999}$, với $A_n=2^{3 n}+3^{6 n+2}+5^{6 n+2}$.
Do $A_0=35=5 \cdot 7$, nên ước chung lớn nhất, gọi là $d$, phải là 1 trong 4 số ${1,5,7,35}$. Do $A_1=$ $2^3+3^8+5^8 \equiv 8+(-2)^8 \equiv 4(\bmod 5)$ nên $d \neq 5,35$. Mặt khác, theo định lý Fermat, ta có $3^6 \equiv 5^6$ $(\bmod 7)$, nên
$$
A_n \equiv 8^n+\left(3^6\right)^n \cdot 9+\left(5^6\right)^n \cdot 25 \equiv 1+9+25 \equiv 0 \quad(\bmod 7)
$$
Ta kết luận $d=7$.
Ví dụ 3.2. Chứng minh rằng nếu $d>0$ không phải là số chính phương, thì $\sqrt{d}$ là số vô tỷ.
Để ý rằng $d=1^2 \cdot d$ nên $d$ luôn có thể viết thành dạng $d=x^2 y$ (với $x, y>0$ ). Chọn $x$ lớn nhất có thể, và để ý $y \neq 1$. Nếu $y$ có ước chính phương $z^2$ ngoài 1 , thì $d=x^{\prime 2} y^{\prime}$, với $x^{\prime}=x z>x$ và $y^{\prime}=\dfrac{y}{z}$, vô lý. Như vậy $y$ là tích các số nguyên tố khác nhau (do nếu $p$ là ước nguyên tố của $y$, thì $\dfrac{y}{p}$ không thể nào chia hết cho $p$ được).
Giả sử $\sqrt{d}=\dfrac{a}{b}$ là một số hữu tỷ, với $a, b$ nguyên dương nguyên tố cùng nhau. Ta có $$ a^2=b^2 d=(b x)^2 \cdot y $$ nên $a^2: y$. Nhưng $y$ chỉ là tích các số nguyên tố khác nhau, nên $a: y$. Thế $a=c y$ vào (*), ta được
$$
c^2 y^2=(b x)^2 y \Leftrightarrow b^2 x^2=c^2 y
$$
Để ý $c^2 y: b^2$, nhưng $(c, b)=1$ (do $(a, b)=1$ ), nên $y: b^2$. Ta đã chọn sao cho $y$ không thể nào có ước chính phương nào ngoài 1 , nên $b=1$ ! Từ đó ta có $\sqrt{d}=a$, hay $d=a^2$, vô lý.
Gọi $d>0$ là một ước chung của $a^m+b^n, a^m-b^n$. Khi đó $\left\{\begin{array}{I}2 a^m=\left(a^m+b^n\right)+\left(a^m-b^n\right) \vdots d \\\ 2 b^n=\left(a^m+b^n\right)-\left(a^m-b^n\right) \vdots d\end{array}\right.$.
Để ý rằng $a, b$ khác tính chẵn lẻ, nên $a^m+b^n$ và $a^m-b^n$ luôn lẻ. Nhưng $d$ là một ước chung, nên $d$ lẻ. Như vậy $a^m, b^n: d$.
Nếu $d \neq 1$, gọi $p$ là một ước nguyên tố của $d$ (có thể $d=p$ ). Khi đó $a^m, b^n: p$, nên ta cũng có $a, b: p$. Điều này mâu thuẫn với giả thiết $a, b$ nguyên tố cùng nhau, nên $d=1$. Nhưng $d$ bất kỳ, nên $a^m+b^n, a^m-b^n$ chỉ có ước chung (dương) là 1 . Hay nói cách khác, $a^m+b^n, a^m-b^n$ nguyên tố cùng nhau.
Ví dụ 3.4. Cho 2 số hữu tỷ $\dfrac{a}{b}, \dfrac{c}{d}$ viết ở dạng tối giản (tức $(a, b)=(c, d)=1$ ) sao cho $d\frac{a}{b}+\dfrac{c}{d}$ là một số nguyên. Chứng minh rằng $|b|=|d|$.
Ta có $\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a d+b c}{b d}$ là một số nguyên, nên $a d+b c: b$, hay $a d: b$. Nhưng $a, b$ nguyên tố cùng nhau, nên $d: b$.
Chứng minh tương tự với $a d+b c: d$, ta có $b: d$. Như vậy $|b|=|d|$.
Ví dụ 3.5 (Spanish Mathematical Olympiad 1996).
Giả sử $a, b$ là các số nguyên dương sao cho $\dfrac{a+1}{b}+\dfrac{b+1}{a}$ là số nguyên. Nếu $d$ là ước chung lớn nhất của $a, b$
(a) Chứng minh rằng $a+b \geq d^2$.
(b) Tìm một cặp $(a, b)$ mà $a+b=d^2$.
(a) Đặt $a=d a^{\prime}, b=d b^{\prime}$, ta có
$$
\dfrac{a+1}{b}+\dfrac{b+1}{a}=\dfrac{d^2\left(a^{\prime 2}+b^{\prime 2}\right)+d\left(a^{\prime}+b^{\prime}\right)}{d^2 a^{\prime} b^{\prime}} \in \mathbb{Z}
$$
nên $\dfrac{d^2\left(a^{\prime 2}+b^{\prime 2}\right)+d\left(a^{\prime}+b^{\prime}\right)}{d^2}=a^{\prime 2}+b^{\prime 2}+\dfrac{a^{\prime}+b^{\prime}}{d}$ cūng là số nguyên. Như vậy $a^{\prime}+b^{\prime}: d$. Nhưng $a, b$ nguyên dương, nên $a^{\prime}+b^{\prime} \geq d$, hay $a+b=d\left(a^{\prime}+b^{\prime}\right) \geq d^2$.
(b) $a=3, b=6$, thì $\dfrac{a+1}{b}+\dfrac{b+1}{a}=3$ và $a+b=9=\operatorname{gcd}(a, b)^2$.
Ví dụ 3.6 (Romanian Mathematical Olympiad 2003).
Cho $n$ là một số chẵn nguyên dương. Tìm tất cả các số nguyên dương $a, b$ sao cho $a^n+b^n: a+b$.
Do $n$ chẵn ta có $a^n-b^n: a^2-b^2: a+b$. Như vậy
$$
\left\{\begin{array}{l}
2 a^n=\left(a^n+b^n\right)+\left(a^n-b^n\right) \vdots a+b \\\
2 b^n=\left(a^n+b^n\right)-\left(a^n-b^n\right) \vdots a+b
\end{array}\right.
$$
Gọi $d=(a, b)$, và $a=d u, b=d v$, ta có $u, v$ nguyên tố cùng nhau và $\operatorname{gcd}(a, b)=2 d^n \operatorname{gcd}\left(u^n, v^n\right)=$ $2 d^n: d(u+v)$. Nói cách khác, $2 d^{n-1}: u+v$.
Để cho ra tất cả giá trị $a, b$ có thể, ta bắt đầu với 2 số $u, v$ nguyên dương và nguyên tố cùng nhau. Tiếp theo chọn $d$ bất kỳ sao cho $2 d^{n-1}: u+v(d$ luôn tồn tại do ta có thể chọn $d=u+v)$. Khi đó $a=d u, b=d v$ thỏa mãn đề bài.
Thật vậy, từ $a^n+b^n=d^n\left(u^n+v^n\right)$, ta chia làm 2 trường hợp
(a) Nếu $u, v$ đều lẻ: ta có $u^n+v^n$ chẵn, nên $a^n+b^n: 2 d^n: d(u+v)=a+b$.
(b) Nếu, không mất tính tổng quát, $u$ chẵn, $v$ lẻ: do $2 d^{n-1}: u+v$, và $u+v$ lẻ, nên $d^{n-1}: u+v$. Từ đó $a^n+b^n: d^n: d(u+v)=a+b$.
Ta kết luận $a=d u, b=d v$, với $u, v$ nguyên tố cùng nhau sao cho $u+v$ là ước của $2 d^{n-1}$.
Ví dụ 3.7 (India Mathematical Olympiad 1998).
Tìm tất cả các bộ số nguyên dương $(x, y, n)$ sao cho
$$
\operatorname{gcd}(x, n+1)=1 \text { và } x^n+1=y^{n+1} .
$$
Do $x>0$, nên $y^{n+1}=x^n+1>1$. Ta có
$$
x^n=y^{n+1}-1=(y-1)\left(y^n+y^{n-1}+\cdots+y+1\right)
$$
Do $y-1>1$, ta phải có $y-1: p$ với $p$ là một ước nguyên tố nào đó của $x$. Từ đó
$$
y^n+y^{n-1}+\cdots+y+1 \equiv \underbrace{1+1+\cdots+1}_{n \text { số } 1} \equiv n+1 \quad(\bmod p)
$$
Như vậy $p$ là ước chung của $x$ và $n+1$, vô lý.
Ví dụ 3.8 (Bulgarian Mathematical Olympiad 2001).
Tìm tất cả các bộ $(a, b, c)$ nguyên dương sao cho $a^3+b^3+c^3$ chia hết cho $a^2 b, b^2 c$, và $c^2 a$.
Đầu tiên để ý rằng nếu $d$ là ước chung của $a, b$, ta có $a^3+b^3+c^3: a^2 b: d^3$, nên $c: d$. Như vậy nếu ta đặt $d=(a, b, c)$, và $a=d u, b=d v, c=d w, u, v$ phải nguyên tố cùng nhau. Chứng minh tương tự, ta có $u, v, w$ đôi một nguyên tố cùng nhau.
Do $a^3+b^3+c^3: a^2 b$, ta có
$$
d^3\left(u^3+v^3+w^3\right): d^3 u^2 v \Leftrightarrow u^3+v^3+w^3: u^2 v
$$
Từ đó, $u^3+v^3+w^3: u^2$, và $v^3+w^3: u^2$. Chứng minh tương tự, ta cūng có $u^3+v^3+w^3: v^2, w^2$, và $w^3+u^3: v^2, u^3+v^3: w^2$. Nhưng $u, v, w$ nguyên tố cùng nhau đôi một, nên
$$
\left\{\begin{array}{l}
u^3+v^3+w^3: u^2 v^2 w^2 \\\
v^3+w^3: u^2 \\\
w^3+u^3: v^2 \\\
u^3+v^3: w^2
\end{array}\right.
$$
Không mất tính tổng quát, giả sử $u \leq v \leq w$. Do $a, b, c$ nguyên dương, $u, v, w$ cũng nguyên dương, và $u^2 v^2 w^2 \leq u^3+v^3+w^3 \leq 3 w^3$. Nói cách khác, $w \geq \dfrac{u^2 v^2}{3}$. Mặt khác, $u^3+v^3: w^2$, nên ta được
$$
u^3+v^3 \geq w^2 \geq \dfrac{u^4 v^4}{9} (*)
$$
Nhưng $u \leq v$, nên $2 v^3 \geq u^3+v^3 \geq \frac{u^4 v^4}{9}$, hay $u^4 v \leq 18$. Ta suy ra $u=1$ hoặc $u=2$. Nhưng $u=2$ thì $v \geq 2$, nên $32 \leq u^4 v \leq 18$, vô lý.
*Như vậy $u=1$. Nếu $v=1$ thì 2 : $w^2$, cho nên $w=1$. Ta có bộ $(a, b, c)=(d, d, d)$ thỏa mãn. Nếu $v \geq 2$, ta phải có $w>v$, hay $w \geq v+1 \geq 3$ do $v, w$ nguyên tố cùng nhau. Nhưng $u^3+v^3+w^3: u^2 v^2 w^2$, nên ta có
$$
1+v^3+w^3: v^2 w^2 \Rightarrow v^2 w^2 \leq 1+v^3+w^3 \leq 1+(w-1)^3+w^3<2 w^3
$$
Chia $w^2$ cho cả 2 vế, ta được $v^2<2 w$, hay $w>\frac{v^2}{2}$. Mặt khác, ta có $v^3+u^3: w^2$, nên
$$
v^3+1 \geq w^2>\frac{v^4}{4} \Leftrightarrow 4>v^3(v-4)
$$
Vậy $v \leq 4$. Nhưng $v \geq 2$, ta xét các trường hợp sau
(a) $v=4$ : khi đó $u^3+v^3=65: w^2$, nên $w=1$ (vô lý do $v \leq w$ ).
(b) $v=3$ : khi đó $u^3+v^3=28: w^2$, nên $w \in{1,2}$ (cũng vô lý như trên).
(c) $v=2$ : khi đó $u^3+v^3=9: w^2$, nên $w=3$ (do $w \geq v$ ).
Kiểm tra lại, ta nhận $(a, b, c)=(d, 2 d, 3 d)$ và các hoán vị của nó. Ta kết luận
$$
\begin{aligned}
& (a, b, c)=(k, k, k),(k, 2 k, 3 k),(k, 3 k, 2 k), \
& \quad(2 k, k, 3 k),(2 k, 3 k, k),(3 k, k, 2 k),(3 k, 2 k, k) \quad k \geq 1
\end{aligned}
$$
Ví dụ 3.9. Cho các số nguyên dương $x, y, z$ sao cho $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}$. Giả sử $x, y, z$ nguyên tố cùng nhau (tức $(x, y, z)=1$ ), chứng minh rằng $x+y$ là một số chính phương.
Viết lại phương trình thành $x+y=\dfrac{x y}{z}$. Đặt $d=(x, y)$, và $x=d a, y=d b$, ta có $(d, z)=1$ (do $(x, y, z)=1)$ và $(a, b)=1$. Thêm nữa
$$
a+b=\dfrac{d a b}{z}
$$
Ta có $d a b: z$, và $(d, z)=1$, nên $a b: z$. Do $(a, b)=1$, ta sẽ chứng minh $z$ có thể tách thành $z=r s$ sao cho $a: r$ và $b: s$.
*Đặt $r=(a, z)$ và $s=(b, z)$.
Như vậy $k l: q$ và $(k, q)=1$. Chứng minh tương tự, ta có $(l, q)=1$. Từ đó $q=1$, và $z=r s$.
Tóm tắt lại, ta có $a=k r, b=l s$ và $z=r s$.
*Thế vào $a+b=\dfrac{d a b}{z}$, ta có
$$
k r+l s=d k l
$$
Để ý $(a, b)=1$ nên $(k, l s)=1$. Mặt khác, $l s=d k l-k r: k$, cho nên $k=1$. Chứng minh tương tự, ta có $l=1$, nên $a b=r s=z$, và $a+b=\dfrac{d a b}{z}=d$. Từ đó $x+y=d(a+b)=d^2$ là một số chính phương.
Ví dụ 3.10. Giải phương trình nghiệm nguyên sau (theo các biến $x, y, n, m$ ) với $m, n \geq 0$.
$$
x^n+y^n=2^m
$$
Đặt $d=(x, y)>0$ và $x=d u, y=d v$, ta có $u, v$ nguyên tố cùng nhau và $d^n\left(u^n+v^n\right)=2^m$. Như vậy $d=2^e\left(0 \leq e \leq \frac{m}{n}\right)$. Đặt $k=2^{m-n e}$, ta xét phương trình sau (với $u, v$ nguyên tố cùng nhau).
$$
u^n+v^n=2^k
$$
(a) Nếu $n$ chẵn
(a) Nếu $n=0$ : phương trình gốc trở thành $2^m=2$, nên $m=1$. Ta nhận bộ nghiệm $(x, y, 0,1)$ với mọi $x, y \neq 0$.
(b) Nếu $n \geq 2$ :
i. Nếu $k=0$ : ta có $u^n+v^n=1$. Nhưng $n$ chẵn, nên phương trình chỉ có 4 nghiệm $(0, \pm 1)$ và $( \pm 1,0)$. Ta nhận bộ
$$
(x, y, m, n)=\left( \pm 2^e, 0, n e, n\right),\left(0, \pm 2^e, n e, n\right) \quad(n \text { chẵn })
$$
ii. Nếu $k \geq 1$ : ta có $u^n+v^n$ chẵn. Kết hợp với $u, v$ nguyên tố cùng nhau, ta được $u, v$ cùng lẻ. Xét modulo 4, ta có $2^k=u^n+v^n \equiv 1+1 \equiv 2(\bmod 4)$. Nói cách khác $k=1$ và $u^n+v^n=2$, hay $u, v= \pm 1$. Ta nhận bộ
$$
(x, y, m, n)=\left( \pm 2^e, \pm 2^e, n e+1, n\right) \quad(n \text { chẵn })
$$
(b) Nếu $n$ lẻ: ta có $2^k=(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)$, nên $u+v=2^s$ với $s \geq 0$.
(a) Nếu $n=1$ : ta có $u+v=2^k$, nên ta nhận các bộ sau
$$
(x, y, m, n)=\left(u, 2^m-u, m, 1\right) \quad(u \text { nguyên bất kỳ })
$$
(b) Nếu $n \geq 3$ :
i. Nếu $k=0$ : ta có $u^n+v^n=1$. Nhưng $u^n+v^n=(u+v)\left(u^{n-1}-u^{n-2} v+\cdots-u v^{n-2}+v^{n-1}\right)$, cho nên $u+v= \pm 1$.
*Với $v=1-u$, ta xét phương trình sau
$$
u^n-(u-1)^n=1
$$
Ta có $u=0,1$ là nghiệm, cho nên ta nhận các bộ sau
$$
(x, y, m, n)=\left(2^e, 0, n e, n\right),\left(0,2^e, n e, n\right) \quad(n \text { lẻ })
$$
Nếu $u \geq 2$, ta chứng minh
$$
u^n-(u-1)^n>1
$$
với mọi $n \geq 2$ bằng quy nạp. Khi $n=2$, ta có $u^2-(u-1)^2=2 u-1 \geq 3>1$. Giả sử bất đẳng thức đúng với $n$, ta chứng minh nó đúng với $n+1$
$$
\begin{aligned}
u^{n+1}-(u-1)^{n+1} & =u^n+(u-1) u^n-(u-1)^{n+1} \
& =u^n+(u-1)\left[u^n-(u-1)^n\right] \
& \geq 2^n+(2-1) \cdot 1>1
\end{aligned}
$$
Nếu $u \leq-1$, ta cũng chứng minh $u^n-(u-1)^n=(1-u)^n-(-u)^n>1$ với mọi $n \geq 2$ bằng quy nạp. Khi $n=2$, ta có $(1-u)^n-(-u)^n=-2 u+1>1$. Giả sử bất đẳng thức đúng với $n$, ta chứng minh nó đúng với $n+1$
$$
\begin{aligned}
(1-u)^{n+1}-(-u)^{n+1} & =(1+w)^{n+1}-w^{n+1} \quad(\text { đặt } w=-u \geq 1) \
& =w(w+1)^n+(w+1)^n-w^{n+1} \
& =(w+1)^n+w\left[(w+1)^n-w^n\right] \
& \geq 2^n+1 \cdot 1>1
\end{aligned}
$$
*Với $v=-1-u$, ta xét phương trình sau
$$
u^n-(u+1)^n=1 \Leftrightarrow(u+1)^n-u^n=-1
$$
Dùng những bất đẳng thức ta đã chứng minh ở trên, cộng với trường hợp $u=0,1$ không thỏa, ta kết luận trường hợp này vô nghiệm.
ii. Nếu $k \geq 1$ : ta có $u^n+v^n$ chẵn, và $u, v$ nguyên tố cùng nhau, nên $u, v$ cùng lẻ. Như vậy
$$
u^{n-1}-u^{n-2} v+\cdots-v^{n-1} \equiv \underbrace{1+1+\cdots+1}_{n \text { số } 1} \equiv n \equiv 1 \quad(\bmod 2)
$$
Kết hợp với $(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)=2^k$, ta phải có
Kết hợp với $(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)=2^k$, ta phải có
$$
\left\{\begin{array}{l}
u+v=2^k \quad(k \geq 1) \\\
u^{n-1}-u^{n-2} v+\cdots+v^{n-1}=1
\end{array}\right.
$$
Để ý $u^n+v^n=2^k=u+v$, ta sẽ chứng minh
$\left(u^n-v^n\right)(u-v) \geq 0$ với mọi $u, v$ và $n$ lẻ bằng quy nạp lên $n$. Trường hợp $n=1$ chính là $(u-v)^2 \geq 0$, còn $n=3$ là $\left(u^3-v^3\right)(u-v)=(u-v)^2\left(u^2+u v+v^2\right) \geq 0$.
Giả sử nó đúng với $n-2$ và $n$, ta chứng minh nó cũng đúng với $n+2$
$$
\begin{aligned}
\left(u^{n+2}-v^{n+2}\right)(u-v)= & \left(u^{n+2}-u^2 v^n+u^2 v^n-u^n v^2+u^n v^2-v^{n+2}\right)(u-v) \
= & u^2\left(u^n-v^n\right)(u-v)+u^2 v^2\left(u^{n-2}-v^{n-2}\right)(u-v) \
& +v^2\left(u^n-v^n\right)(u-v) \geq 0
\end{aligned}
$$
Đúng theo bất đẳng thức ta đã chứng minh ở trên.
Áp dụng vào bài toán, ta có $u+v=u^n+v^n \geq \frac{u^2+v^2}{2} \cdot\left(u^{n-2}+v^{n-2}\right) \geq\left(\frac{u^2+v^2}{2}\right)^2$. $\left(u^{n-4}+v^{n-4}\right) \geq \cdots\left(\frac{u^2+v^2}{2}\right)^{(n-1) / 2}(u+v)$. Nhưng $u+v=2^k \geq 2^1>1$, nên
$$
\left(\frac{u^2+v^2}{2}\right)^{(n-1) / 2} \leq 1 \Leftrightarrow u^2+v^2 \leq 2
$$
Xét các giá trị $u, v=0, \pm 1$ thỏa mãn điều kiện trên, ta được các cặp $(u, v)=$ $(0,0),( \pm 1,0),(0, \pm 1),( \pm 1, \pm 1)$. Thử vào $u+v=u^n+v^n=2^k$ (với $2^k \geq 2^1=2$ ), ta chỉ có đúng $u=v=1$ và $k=1$ thỏa. Ta nhận các bộ
$$
(x, y, m, n)=\left(2^e, 2^e, n e+1, n\right) \quad(n \geq 3 \text { lẻ })
$$
Tổng hợp các trường hợp lại, ta kết luận các nghiệm $(x, y, m, n)$ như sau
(a) $\left(2^e, 0, n e, n\right),\left(0,2^e, n e, n\right)$, và $\left(2^e, 2^e, n e+1, n\right)(e, n \geq 0)$.
(b) $\left(-2^e, 0, n e, n\right),\left(0,-2^e, n e, n\right)$, và $\left( \pm 2^e, \pm 2^e, n e+1, n\right)(e, n \geq 0, n$ chẵ $)$.
(c) $\left(u, 2^m-u, m, 1\right)(u \in \mathbb{Z}, m \geq 0)$
Ví dụ 3.11. Tìm tất cả các số nguyên dương $x, y, z$ sao cho
$$
16 x y z=d(x+y+z)^2
$$
với $d$ là ước chung của $x, y, z$
Đặt $x=d a, y=d b, z=d c$, ta có $(a, b, c)=1$. Phương trình tương đương với $16 a b c=(a+b+c)^2$.
*Gọi $p^{2 k+1}$ là một ước của $a, p$ nguyên tố. Ta sẽ chứng minh $p^{2 k+2}$ cũng là ước của $a$.
(a) Nếu $p=2$ : đặt $a=2^{2 k+1} u$, ta có
$$
2^{2 k+5} u b c=\left(2^{2 k+1} u+b+c\right)^2
$$
Nếu $b$ chẵn thì $c$ cũng phải chẵn (và ngược lại), nhưng điều này mâu thuẫn với $a, b, c$ nguyên tố cùng nhau. Như vậy $b, c$ phải lẻ. Đê ý vế trái là bội của $2^{2 k+5}$ (mũ lẻ), nên $Q^2: 2^{2 k+5}(Q=$ $2^{2 k+1} u+b+c$. Nói cách khác, $Q: 2^{k+3}$ hay $Q=2^{k+3} R$. Từ đó
$$
2^{2 k+5} u b c=Q^2=2^{2 k+6} R^2
$$
nên $2^{2 k+5} u b c: 2^{2 k+6}$. Nhưng $b, c$ lẻ, nên ta có $u: 2$. Như vậy $a=2^{2 k+1} u: 2^{2 k+2}$.
(b) Nếu $p>2$ : lập luận tương tự như trên, ta đặt $Q=a+b+c$ và $a=p^{2 k+1} u$. Phương trình tương đương với
$$
Q^2=16 p^{2 k+1} u b c: p^{2 k+1}
$$
hay $Q: p^{k+2}$. Ta có $16 p^{2 k+1} u b c=Q^2: p^{2 k+2}$. Nhưng $p>2$, nên $u b c: p$.
Giả sử, không mất tính tổng quát b:p. Khi đó $(a+b+c)^2=16 a b c: p$, nên $a+b+c: p$. Nhưng $a: p$, nên c:p. Ta có điều vô lý do $a, b, c$ nguyên tố cùng nhau. Như vậy $u: p$, nên $a=p^{2 k+1} u: p^{2 k+2}$.
Như vậy nếu $a=p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ là phân tích thừa số nguyên tố, các số mũ $\alpha_i$ phải chẵn (nếu $\alpha_i$ lẻ thì $p_i^{\alpha_i+1}$ cũng là ước của $a$, vô lý). Cùng với $a>0$, ta kết luận $a$ là số chính phương. Chứng minh tương tự, $b, c$ cũng chính phương.
*Đặt tiếp $a=u^2, b=v^2, c=w^2(u, v, w>0)$, ta có phương trình
$$
16 u^2 v^2 w^2=\left(u^2+v^2+w^2\right)^2 \Leftrightarrow u^2+v^2+w^2=4 u v w
$$
Do $a, b, c$ nguyên tố cùng nhau, $u, v, w$ cũng phải nguyên tố cùng nhau. Mặt khác, xét modulo 4 cho cả 2 vế, ta có $u^2+v^2+w^2 \equiv 0,1,2,3(\bmod 4)$, với $u^2+v^2+w^2 \equiv 0(\bmod 4)$ khi và chỉ khi $u^2, v^2, w^2 \equiv 0 (\text{b mod 4} )$. Như vậy $u, v, w$ đều chẵn, vô lý.
Ta kết luận phương trình vô nghiệm.
Thời gian làm bài 150 phút
Bài 1: ( 1,0 điểm)
Cho $x, y$ là hai số thực thỏa mãn $x y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1$.
Tính giá trị của biểu thức $M=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)$.
Bài 2: (2,5 điểm)
a) Giải phương trình $\sqrt{x+4}+|x|=x^2-x-4$
b) Giải hệ phương trình $\left\{\begin{array}{l}\frac{x}{y+z}=2 x-1 \\\ \frac{y}{z+x}=3 y-1 \\\ \frac{z}{x+y}=5 z-1\end{array}\right.$
Bài 3: (1,5 điểm)
Cho hình vuông $A B C D$. Trên các cạnh $B C$ và $C D$ lần lượt lấy các điểm $M$ và $N$ sao cho $\widehat{M A N}=45^{\circ}$.
a) Chứng minh $M N$ tiếp xúc với đường tròn tâm $A$ bán kính $A B$.
b) Kė $M P$ song song với $A N$ ( $P$ thuộc đoạn $A B$ ) và kẻ $N Q$ song song với $A M$ ( $Q$ thuộc đoạn $A D$ ). Chứng minh $A P=A Q$.
Bài 4: (2,0 điếm)
Cho ba số thực dương $a, b, c$ thỏa $a+b+c=3$.
a) Chứng minh rằng $a b+b c+c a \leq 3$.
b) Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}$.
Bài 5: (2,0 điểm)
Cho tam giác $A B C$ nhọn $(A B<A C)$ có các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ tại $I$. Đường thẳng qua $A$ vuông góc với $I H$ tại $K$ và cắt $B C$ tại $M$.
a) Chứng minh tứ giác $I F K C$ nội tiếp và $\frac{B I}{B D}=\frac{C I}{C D}$.
b) Chứng minh $M$ là trung điểm của $B C$.
Bài 6: (1,0 điểm )
Số nguyên dương $n$ được gọi là “số tốt” nếu $n+1$ và $8 n+1$ đều là các số chính phương.
a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có $1,2,3$ chữ số.
b) Tìm các số nguyên $k$ thỏa mãn $|k| \leq 10$ và $4 n+k$ là hợp số với mọi $n$ là “số tốt”.
Đáp án do Star Education thực hiện
THỜI GIAN LÀM BÀI 150 PHÚT
Bài 1. (1,0 diểm) Cho $a, b$ là các số thực, $b \neq 0$ thỏa mãn điều kiện
$$
a^2+b^2=\frac{4 b^2}{\sqrt{a^2+b^2}+a}+a \sqrt{a^2+b^2}
$$
Tính giá trị của biểu thức $P=a^2+b^2$.
Bài 2. (2,5 điếm)
a) Giải phương trình: $x=\frac{5}{x-1}+2 \sqrt{x-2}$.
b) Giải hệ phương trình $\left\{\begin{array}{l}\frac{9 y+49}{x+y}+x+y=23 \\\ x \sqrt{x}+y \sqrt{y}=7(\sqrt{x}+\sqrt{y})\end{array}\right.$.
Bài 3. (2,5 điểm) Cho tam giác $A B C$ vuông tại $A(A B<A C)$, có đường cao $A H$. Dường tròn tâm $I$ nội tiếp tam giác $A B C$, tiếp xúc với các cạnh $B C, C A, A B$ lần lượt tại $D, E, F$. Gọi $J$ là giao điểm của $A I$ và $D E . K$ là trung điểm $A B$.
a) Chứng minh tứ giác $B I J D$ nội tiếp
b) Gọi $M$ là giao điểm của $K I$ và $A C, N$ là giao điểm của $A H$ và $E D$. Chứng minh $A M=A N$.
c) Gọi $Q$ là giao điểm của $D I$ và $E F, P$ là trung điểm của $B C$. Chứng minh ba điểm $A, P, Q$ thẳng hàng.
Bài 4. (2,0 diểm) Cho các số thực dương $x, y, z$ thỏa mãn $\sqrt{1+4 x y+2 x+2 y}+2 z=5$.
a) Chứng minh $\frac{1}{\sqrt{(2 x+1)(2 y+1)}}+\frac{1}{2 z+1} \geq \frac{2}{3}$.
b) Tìm giá trị nhỏ nhất của biễu thức $P=\frac{x+1}{2 x+1}+\frac{y+1}{2 y+1}+\frac{2 z+3}{4 z+2}$.
Bài 5. (1,0 điểm) Cho đường tròn tâm $O$ nội tiếp hình thoi $A B C D$. Gọi $E, F, G, H$ là các điểm lần lượt thuộc các cạnh $A B, B C, C D, D A$ sao cho $E F, G H$ cùng tiếp xúc với $(O)$.
a) Chứng minh $C G \cdot A H=A O^2$.
b) Chứng minh $E H$ song song $F G$.
Bài 6. (1,0 điểm) Xét các số nguyên $a<b<c$ thỏa mãn $n=a^3+b^3+c^3-3 a b c$ là số nguyên tố.
a) Chứng minh $a<0$.
b) Tìm tât cả các số nguyên $a, b, c(a<b<c)$ sao cho $n$ là một ước của 2023.
ĐÁP ÁN CỦA GIÁO VIÊN STAR EDUCATION
Thời gian làm bài: 150 phút
Đề bài:
Bài 1. (2 điểm)
1) Giải hệ phương trình $\left\{\begin{array}{l}x^3+z^3=y \\\ y^3+x^3=z \\\ z^3+y^3=x\end{array}\right.$.
2) Cho hai số nguyên dương $a, b$ phân biệt. Chứng minh phương trình sau có đúng ba nghiệm
$$
(\sqrt{x}-1)\left[x^2-2(a+b) x+a b+2\right]=0 .
$$
Bài 2. (1.5 điểm) Cho ba số thực $a, b, c$ không âm thóa mãn: $a^2+b^2+c^2+3=2(a b+b c+c a)$.
Chứng minh
$$
3 \leq a+b+c \leq \frac{2(a b+b c+c a)+3}{3} .
$$
Bài 3. (2 điểm) Với mỗi số tự nhiên $\mathrm{n}$, đặt $a_n=(2+\sqrt{3})^n+(2-\sqrt{3})^n$.
a) Chứng minh $a_{n+2}=4 a_{n+1}-a_n$ với mọi $n=0,1,2, \ldots$.
b) Tìm $\mathrm{n}$ để $a_n$ chia hết cho 4 .
c) Tìm $\mathrm{n}$ đề $a_n$ chia hết cho 14 .
Bài 4. (3 điểm) Cho tứ giác $A B C D$ nội tiếp đường tròn $(\mathrm{O})$ có tam giác $A B D$ là tam giác nhọn và đường chéo $\mathrm{AC}$ đi qua tâm $\mathrm{O}$ của đường tròn $(\mathrm{O})$. Gọi $\mathrm{I}$ là trung điểm $\mathrm{BD}, \mathrm{H}$ là trực tâm của tam giác $A B D$, $\mathrm{E}$ là giao điểm khác $\mathrm{A}$ của $\mathrm{AI}$ với $(\mathrm{O})$ và $\mathrm{K}$ là hình chiếu vuông góc của $\mathrm{H}$ lên $\mathrm{AI}$.
a) Chứng minh $C E H K$ là hình bình hành và $I B^2=I D^2=I A \cdot I K$.
b) Lấy điểm $\mathrm{F}$ trên cung nhỏ $\widehat{B D}$ của đường tròn $(\mathrm{O})$ sao cho $\widehat{B A F}=\widehat{D A I}$. Chứng minh các điểm $\mathrm{K}$ và $\mathrm{F}$ đối xứng nhau qua đường thẳng $\mathrm{BD}$.
c) Chứng minh các đường phân giác trong các góc $\widehat{B A D}$ và $\widehat{B K D}$ cắt nhau trên $\mathrm{BD}$.
d) Trên đường thẳng qua $\mathrm{H}$ và song song $\mathrm{AC}$ lấy điểm $\mathrm{T}$ sao cho $T H=T K$. Chứng minh các điểm $\mathrm{O}, \mathrm{K}, \mathrm{F}, \mathrm{T}$ cùng thuộc một đường tròn.
Bài 5. (1.5 điểm) Cho các sổ nguyên dương $a_1<a_2<a_3<\ldots<a_{30}<a_{31}$. Người ta ghi tất cả các số này lên 31 chiếc thẻ, mỗi thẻ ghi một số.
a) Biết rằng tổng các số được ghi trên 16 thẻ bất kỳ trong số 31 thẻ trên luôn lớn hơn tổng các số được ghi trên 15 thè còn lại. Chứng minh $a_1 \geq 226$.
b) Lấy $a_1, a_2, \ldots, a_{31}$ là 31 số nguyên dương đầu tiên: $1,2, \ldots, 31$. Người ta bỏ 31 thẻ được ghi các số này vào hai chiếc hộp một cách ngẫu nhiên. Khi kiểm tra một hộp thi thấy rằng trong hộp đó không có hai thẻ nào có tồng hai số được ghi là số chính phương. Chứng minh trong hộp còn lại ta có thể chọn ra được bốn thè và chia chúng thành hai cặp sao cho tổng hai sô̂ được ghi trên mỗi cặp là số chính phương.
Đáp án tham khảo từ Star Education
THỜI GIAN LÀM BÀI: 120 PHÚT
Bài 1. Giải hệ phương trình sau:
$$
\left\{\begin{array}{l}
(x+y)\left(4+\frac{1}{x y}\right)=1 \\\
\left(4 x+\frac{1}{x}\right)\left(4 y+\frac{1}{y}\right)=-20
\end{array}\right.
$$
Bài 2. Cho các số $a, b, c>0$ thỏa mãn $a b+b c+c a=a b c$.
a) Chứng minh rằng: $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}} \leq \sqrt{3}$.
b) Chứng minh rằng: $(\sqrt{a}+\sqrt{b}+\sqrt{c})^2 \leq a b c \leq \frac{(a+b+c)^2}{3}$.
Bài 3. Cho bảng $4 \times 4$ được tô bằng ô đen hoặc trắng sao cho
i) mỗi hàng có số ô đen bằng nhau;
ii) mỗi cột có số ô đen đôi một khác nhau.
a) Tìm số ô đen ở mỗi hàng.
b) Một cặp ô được gọi là “tốt” khi có một ô đen và một ô trắng đứng cạnh nhau. Tìm số cặp tốt nhiều nhất tính theo hàng; số cặp tốt nhiều nhất tính theo cột.
Bài 4. Cho $m, n$ là các số nguyên không âm thỏa mãn $m^2-n=1$. Đặt $a=n^2-m$.
a) Chứng minh rằng $a$ là số lẻ.
b) Giả sử $a=3 \cdot 2^k+1, k$ là số nguyên không âm. Chứng minh rằng $k=1$.
c) Chứng minh rằng $a$ không là số chính phương.
Bài 5. Cho tam giác $A B C$ có đường tròn nội tiếp $(I) . D, E, F$ lần lượt là các tiếp điểm của $(I)$ với $B C, C A, A B$. Gọi $L$ là chân đường phân giác ngoài của $\angle B A C$ $(L \in B C)$. Vẽ tiếp tuyến $L H$ với đường tròn $(I)(H \neq D$ là tiếp điểm).
a) Chứng minh đường tròn ngoại tiếp tam giác $H A L$ đi qua tâm $I$.
b) Chứng minh $\angle B A D=\angle C A H$.
c) $A H$ kéo dài cắt $(I)$ tại $K(K \neq H)$. Gọi $G$ là trọng tâm của tam giác $K E F . D G$ cắt $E F$ tại $J$. Chứng minh rằng $K J \perp E F$.
d) Gọi $S$ là trung điểm $B C, K J$ cắt $(I)$ tại $R(R \neq K)$. Chứng minh rằng $A S, I R, E F$ dồng quy.
ĐÁP ÁN ĐƯỢC THỰC HIỆN BỞI STAR EDUCATION
Bài 1. Cho hai phương trình: $x^2-2 a x+3 a=0 \quad$ (1) và $x^2-4 x+a=0$
a) Chứng minh ít nhất một trong hai phương trình trên có nghiệm.
b) Giả sử hai phương trình đều có hai nghiệm phân biệt. $T_1, T_2$ là tổng bình phương các nghiệm của (1) và $(2)$. Chứng minh $T_1+5 T_2>68$
Bài 2. Cho các số dương $a \geq b \geq c$ thỏa $a^2+b^2+c^2=1$. Chứng minh:
$$
\sqrt{4+(b+c)^2} \leq 2 a+b+c \leq \sqrt{4+4 a^2}
$$
Bài 3. Cho phương trình: $2^x+5^y=k^2\left(x ; y ; k \in \mathbb{N}^*\right)$
a) Chứng minh phương trình trên vô nghiệm khi $y$ là số chẵn.
b) Tìm $k$ để phương trình có nghiệm.
Bài 4. Cho tam giác $A B C$ có trực tâm $H, D$ đối xứng với $H$ qua $A$. $I$ là trung điểm của $C D$, đường tròn $(I)$ đường kính $C D$ cắt $A B$ tại $E, F(E$ thuộc tia $A B)$
a) Chứng minh $\angle E C D=\angle F C H$ và $A E=A F$.
b) Chứng minh $H$ là trực tâm của $\triangle C E F$.
c) $B H$ cắt $A C$ tại $K$. Chứng minh $E F K H$ nội tiếp và $E F$ là tiếp tuyến chung của $(C K E)$ và $(C K F)$.
d) Chứng minh tiếp tuyến tại $C$ của $(I)$ và tiếp tuyến tại $K$ của $(K E F)$ cắt nhau trên đường thẳng $A B$.
Bài 5. Cho dãy số nguyên $a_1 \geq a_2 \geq a_3 \geq \ldots \geq a_{21} \geq a_{22}$ thỏa mãn:
i) $\left|a_i\right| \leq 11$ và $a_i \neq 0 \forall i=1 ; 2 ; \ldots ; 22$
ii) $a_1+a_2+a_3+\ldots+a_{22}=1$
a) Chứng minh: $a_1 ; a_2>0$
b) Chứng minh có thể chọn $k \geq 1$ số từ $a_2 ; a_3 ; \ldots ; a_{22}$ để tổng $S$ của chúng thỏa $-10 \leq a_1+S \leq 0$.
c) Chứng minh từ dãy đã cho có thể chọn $n \geq 1$ số có tổng bằng 0 .
Bài 1. (1 điểm) Giải hệ phương trình sau: $\left\{\begin{array}{l}x+y+\frac{x+2 y}{x y}=6 \\\ x^2+y^2+\frac{x^2+4 y^2}{(x y)^2}=14\end{array}\right.$
Bài 2. (1,5 điểm) Cho phương trình $\sqrt{x^2-(2 m+1) x+m^2+m}=2 x-2 m$
a) Giải phương trình khi $m=2$.
b) Tìm tất cả các giá trị của $m$ để phương trình có 2 nghiệm phân biệt.
Bài 3. (1 điểm) Cho $(P): y=x^2$ và đường thẳng $(d): y=(m+2) x-2 m$.
a) Tìm $m$ để $d$ cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
b) Tìm $m$ để $x_1+2 y_2=7$.
Bài 4. (1,5 điểm) Cho các số thực không âm $x, y, z$ đôi một khác nhau thỏa mãn:
$$
(x+z)(y+z)=1
$$
a) Chứng minh $x y z(x+y+z) \leq \frac{1}{4}$
b) Tìm giá trị nhỏ nhất của biểu thức:
$$
P=\frac{1}{(x-y)^2}+\frac{1}{(x+z)^2}+\frac{1}{(y+z)^2}
$$
Bài 5. (3 điểm) Cho tam giác $A B C$ nội tiếp đường tròn $(O)$ cố định, $A, B$ cố định, $C$ thay đổi trên cung lớn $A B$. Gọi $K$ là trung điểm $A B ; D$ và $E$ là hình chiếu của $K$ trên $C A, C B$.
a) Chứng minh $\frac{K D}{K E}=\frac{B C}{A C}$ và tìm vị trí của $C$ để $D E$ lớn nhất.
b) $D E$ cắt $A B$ và $C O$ tại $N, M$. Chứng minh rằng đường tròn ngoại tiếp tam giác $C M N$ đi qua một điểm cố định.
c) $(C D E)$ và $(O)$ cắt nhau tại $F$ khác $A$. NF cắt $(C D E)$ tại $G$. Chứng minh $G$ thuộc một đường thẳng cố định.
Kí hiệu $(C D E)$ là bán kính đường tròn ngoại tiếp tam giác $C D E$.
Bài 6. (2 điểm)
a) Tìm tất cả các giá trị của $n$ nguyên dương để $25^n+7^n+1$ chia hết cho 9 .
b) Tìm giá trị nhỏ nhất của biểu thức $A=\left|25^n-7^m-3^m\right|$ trong đó $n, m$ là số nguyên dương.
HẾT
Lời giải
Thời gian làm bài 150 phút
Đề bài.
Bài 1. (2,5 diểm)
(a) Giải phương trình $3 x^3+x+3+(8 x-3) \sqrt{2 x^2+1}=0$.
(b) Cho phương trinh $(\sqrt{x}+1)\left(x^2-3(m+1) x+2 m^2+5 m+2\right)=0(m$ là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn nghiệm này là bình phương nghiệm kia.
(c) n là số tự nhiên lớn hơn hoạc bằng 4, cho $n$ số thực $a_1 \leq a_2 \leq \cdots \leq a_n$ thỏa mãn $a_1+a_2+\cdots a_n=0$ và $\left|a_1\right|+\left|a_2\right|+\cdots\left|a_n\right|=A$. Chứng minh rằng
$$
a_n-a_1 \geq \frac{2 A}{n}
$$
Bài 2. (1,5 điểm) Xét các số $a, b, c$ khác 0 và đôi một phân biệt sao cho các phương trình sau đây có một nghiệm chung:
$$
a x^3+b x+c=0(1), b x^3+c x+a=0(2), c x^3+a x+b=0(3) .
$$
(a) Chứng minh $a+b+c=0$.
(b) Chứng minh rằng một trong các phương trình này có ba nghiệm (không nhất thiết phân biệt).
Bài 3. $(1,5$ điểm)
(a) Tìm số tự nhiên có hai chũ số sao cho nó bằng tổng bình phương các chũ số của nó.
(b) Tìm tất cả các số nguyên tố p, sao cho p có thể biểu diễn được dưới dạng $\sqrt{\frac{a^2-4}{b^2-1}}$, trong đó a,b là các số nguyên dương.
Bài 4. ( 3,5 điểm) Cho đường tròn $(O ; R)$ và dây cung $B C=R \sqrt{3}$ cố định, $A$ thay đổi trên cung lớn $B C$ sao cho tam giác $A B C$ nhọn. Các đường cao $B D, C E$ cắt nhau tại $H$. Phân giác trong góc $A$ cắt $D E$ và $B C$ lần lượt tại $K, L$.
(a) Tính $\angle B A C$ và $\angle O H C$.
(b) Chứng minh $\frac{A K}{A L}$ không đổi. Tìm vị trí của A để KL lớn nhât, tính giá trị đó theo $R$.
(c) Chứng minh đường thẳng d qua L vuông góc $O A$ tiếp xúc với một đường tròn cố định.
(d) Đường thẳng qua K vuông góc DE và đường thẳng qua L vuông góc $B C$ cắt nhau tại P. Chứng minh AP luôn đi qua một điểm cố định.
Bài 5. (1 điểm) Có 10 viên bi vàng và 10 viên bi xanh được xếp thành một hàng. Chúng minh rằng tồn tại 10 viên bi liên tiếp sao cho số viên bi vàng và xanh bằng nhau.
LỜI GIẢI