


Quy tắc cộng – Quy tắc nhân

ĐỀ THI VÀ ĐÁP ÁN CHỌN ĐỘI DỰ TUYỂN PTNK NĂM 2025

Đề thi và đáp án HSG Quốc gia năm 2025

Đề và đáp án lớp 8 chuyên học kì 1 năm học 2024 – 2025

Đề và đáp án cuối khóa 1 năm học 2024 – 2025

ĐỀ HỌC SINH GIỎI LỚP 7
Bài 1.
a. Tính: $\mathrm{A}=1 \frac{13}{15} \cdot(0,5)^2 \cdot 3+\left(\frac{8}{15}-1 \frac{19}{60}\right): 1 \frac{23}{24}$
b. So sánh: $16^{20}$ và $2^{100}$
Bài 2.
a. Tìm $x$ biết: $|2 x-7|+\dfrac{1}{2}=1 \dfrac{1}{2}$
b. Tìm số tự nhiên n biết: $3^{-1} \cdot 3^n+4.3^n=13.3^5$
Bài 3.
a. Cho dãy tỉ số bằng nhau:
$\dfrac{2 a+b+c+d}{a}=\dfrac{a+2 b+c+d}{b}=\dfrac{a+b+2 c+d}{c}=\dfrac{a+b+c+2 d}{d}$
Tính giá trị biểu thức Q , biết $\mathrm{Q}=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}$
b. Cho biểu thức $M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}$ với $x, y, z$, t là các số tự nhiên khác 0 . Chứng minh $M^{10}<1025$.
Bài 4.
1) Cho tam giác ABC vuông cân tại A . Gọi $M$ là trung điểm $\mathrm{BC}, \mathrm{D}$ là điểm thuộc đoạn $\mathrm{BM}(\mathrm{D}$ khác B và M ). Kẻ các đường thẳng $\mathrm{BH}, \mathrm{CI}$ lần lượt vuông góc với đường thẳng AD tại H và I . Chứng minh rằng:
a. $\mathrm{BAM}=\mathrm{ACM}$ và $\mathrm{BH}=\mathrm{AI}$.
b. Tam giác MHI vuông cân.
2) Cho tam giác ABC có góc $\widehat{\mathrm{A}}=90^{\circ}$. Kẻ AH vuông góc với BC ( H thuộc BC ). Tia phân giác của góc HAC cắt cạnh BC ở điểm D và tia phân giác của góc HAB cắt cạnh BC ở E . Chứng minh rằng $\mathrm{AB}+\mathrm{AC}=\mathrm{BC}+\mathrm{DE}$.
Bài 5. Cho $\mathrm{x}, \mathrm{y}, \mathrm{z}$ là 3 số thực tùy ý thỏa mãn $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$ và $-1 \leq x \leq 1,-1 \leq y \leq 1$, $-1 \leq z \leq 1$. Chứng minh rằng đa thức $x^2+y^4+z^6$ có giá trị không lớn hơn 2 .

HAI ĐƯỜNG THẲNG VUÔNG GÓC
Ví dụ 1: Cho góc bẹt $A O B$ và tia $O M$ sao cho $\widehat{A O M}=60^{\circ}$. Vẽ tia $O N$ nằm trong góc $B O M$ sao cho $O N \perp O M$. Chứng tỏ rằng $\widehat{B O N}=\dfrac{1}{2} \widehat{A O M}$.

Ví dụ 2: Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O E, O F$ sao cho $\widehat{A O E}=\widehat{B O F}<90^{\circ}$. Vẽ tia phân giác $O M$ của góc $E O F$. Chứng tỏ rằng $O M \perp A B$. Ví dụ 3: Cho góc tù $A O B$. Vẽ vào trong góc này các tia $O M, O N$ sao cho $O M \perp O A, O N \perp O B$. Vẽ tia $O K$ là tia phân giác của góc $M O N$. Chứng tỏ rằng tia $O K$ cũng là tia phân giác của góc $A O B$. Bài tập vận dụng Bài 1. Cho hai đường thẳng $A B$ và $C D$ vuông góc với nhau tại $O$. Vẽ tia $O K$ là tia phân giác của góc $A O C$. Tính số đo góc $K O D$ và $K O B$. Bài 2. Cho góc $A O B$ và tia $O C$ nằm trong góc đó sao cho $\widehat{A O C}=4 \widehat{B O C}$. Vẽ tia phân giác $O M$ của góc $A O C$. Tính số đo của góc $A O B$ nếu $O M \perp O B$. Bài 3. Cho góc tù $A O B, \widehat{A O B}=m^{\circ}$. Vẽ vào trong góc này các tia $O C, O D$ sao cho $O C \perp O A ; O D \perp O B$. Do đó, $\widehat{A O D}=\widehat{D O C}=\widehat{C O D} \Leftrightarrow \widehat{A O B}=3 \cdot \widehat{D O C}=3.45^{\circ}=135^{\circ} \Leftrightarrow m=135$ CHỨNG MINH HAI ĐƯỜNG THẲNG VUÔNG GÓC Bài 4. Trong hình 2.7 có góc $M O N$ là góc bẹt, góc $A O C$ là góc vuông. Các tia $O M, O N$ lần lượt là các tia phân giác của các góc $A O B$ và $C O D$. Chứng tỏ rằng $O B \perp O D$. Bài 5. Cho góc nhọn $A O B$. Trên nửa mặt phẳng bờ $O A$ có chứa tia $O B$, vẽ tia $O C \perp O A$. Trên nửa mặt phẳng bờ $O B$ có chứa tia $O A$ vẽ tia $O D \perp O B$. Gọi $O M$ và $O N$ lần lượt là các tia phân giác của các góc $A O D$ và $B O C$. Chứng tỏ rằng $O M \perp O N$. Bài 6. Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O M$ và $O N$ sao cho $\widehat{A O M}=\widehat{B O N}=m^{\circ}(90<m<180)$. Vẽ tia phân giác $O C$ của góc $M O N$. CHỨNG MINH MỘT TIA LÀ TIA PHÂN GIÁC, LÀ TIA ĐỐI Bài 7. Cho góc $A O B$ có số đo bằng $120^{\circ}$. Vẽ tia phân giác $O M$ của góc đó. Trên nửa mặt phẳng bờ $O M$ có chứa tia $O A$, vẽ tia $O N \perp O M$. Trong góc $A O B$ vẽ tia $O C \perp O B$. Chứng tỏ rằng: Bài 8. Cho góc bẹt $A O B$, tia $O C \perp A B$. Vẽ tia $O M$ và $O N$ ở trong góc $B O C$ sao cho $\widehat{B O M}=\widehat{C O N}=\frac{1}{3} \widehat{B O C}$. Tìm trong hình vẽ các tia là tia phân giác của một góc. Bài 9. Cho hai tia $O M$ và $O N$ vuông góc với nhau, tia $O C$ nằm giữa hai tia đó. Vẽ các tia $O A$ và $O B$ sao cho tia $O M$ là tia phân giác của góc $A O C$, tia $O N$ là tia phân giác của góc $B O C$. Chứng tỏ rằng hai tia $O A$, $O B$ đối nhau. ĐƯỜNG TRUNG TRỰC – HAI GÓC CÓ CẠNH TƯƠNG ỨNG VUÔNG GÓC Bài 10. Cho đoạn thẳng $A B=2 a$. Lấy các điểm $E$ và $F$ nằm giữa $A$ và $B$ sao cho $A E=B F$. Chứng tỏ rằng hai đoạn thẳng $A B$ và $E F$ cùng có chung một đường trung trực. Bài 11. Cho bốn điểm $M, N, P, Q$ nằm ngoài đường thẳng $x y$. Biết $M N \perp x y ; P Q \perp x y$ và $x y$ là đường trung trực của đoạn thẳng $N P$. Chứng tỏ rằng bốn điểm $M, N, P, Q$ thẳng hàng. Bài 2.12. Hai góc gọi là có cạnh tương ứng vuông góc nếu đường thẳng chứa mỗi cạnh của góc này tương ứng vuông góc với đường thẳng chứa một cạnh của góc kia. Xem hình $2.8(\mathrm{a}, \mathrm{b})$ rồi kể tên các góc nhọn (hoặc tù) có cạnh tương ứng vuông góc.
a) Chứng tỏ rằng $\widehat{A O D}=\widehat{B O C}$.
b) Tìm giá trị của $m$ để $\widehat{A O D}=\widehat{D O C}=\widehat{C O B}$.
a) Chứng tỏ rằng $O C \perp A B$.
b) Xác định giá trị của $m$ để $O M \perp O N$.
a) Tia $O C$ là tia phân giác của góc $A O M$;
b) Tia $O A$ là tia phân giác của góc $C O N$.

Hệ thức lượng trong tam giác
Ta có một số kí hiệu thường dùng.
Cho tam giác $A B C$, khi đó
- $a=B C, b=A C, c=A B$
- $p=\frac{a+b+c}{2}$ là nửa chu vi tam giác ABC .
- $S=S_{A B C}$ diện tích tam giác ABC .
- R là bán kính đường tròn ngoại tiếp tam giác ABC
- $r$ là bán kính đường tròn nội tiếp tam giác $A B C$
- $m_a, m_b, m_c$ độ dài đường trung tuyến xuất phát từ $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
- $h_a, h_b, h_c$ là độ dài đường cao xuất phát từ $\mathrm{A}, \mathrm{B}, \mathrm{C}$.

Định lý Cosin trong tam giác
Định lý. Cho tam giác ABC
Khi đó ta có:
- $a^2=b^2+c^2-2 b c \cdot \cos A$
- $b^2=a^2+c^2-2 a c \cdot \cos B$
- $c^2=a^2+b^2-2 a b \cdot \cos C$
Chứng minh
Để chứng minh định lý ta có thể sử dụng định lý Pitago và tỉ số lượng giác của góc nhọn, hoặc có thể dùng tích vô hướng, ở đây tôi trình bày theo tích vô hướng.
$a^2=B C^2=(\overrightarrow{A C}-\overrightarrow{A B})^2$
$=\overrightarrow{A C}^2+\overrightarrow{A B}^2-2 \overrightarrow{A C} \cdot \overrightarrow{A B}$
$=A C^2+A B^2-2 A B \cdot A C \cos A $
$=b^2+c^2-2 b c \cdot \cos A$
Các hệ thức còn lại chứng minh tương tự.
Từ định lý trên ta dễ dàng suy ra hệ quả sau
Hệ quả.
Trong tam giác $A B C$
$$
\cos A=\frac{b^2+c^2-a^2}{2 b c} ; \cos B=\frac{a^2+c^2-b^2}{2 a c} ; \cos C=\frac{a^2+b^2-c^2}{2 a b}
$$
Từ đây suy ra tam giác $A B C$ có
$$
A<90^{\circ} \Leftrightarrow b^2+c^2>a^2
$$
và
$$
A>90^{\circ} \Leftrightarrow b^2+c^2<a^2
$$
Nhận xét:
- Định lý cosin là tổng quát của định lý Pitago nêu lên quan hệ giữa cạnh và góc trong tam giác, ứng dụng để tính toán độ dài, góc, thiết lập các đẳng thức hình học.
- Hệ quả định lý cosin sử dụng khi ta muốn chuyển các hệ thức về độ dài các cạnh của tam giác.
Định lý Sin trong tam giác
Định lý.
Cho tam giác $A B C$, gọi $R$ là bán kính đường tròn ngoại tiếp tam giác $A B C$. Khi đó
$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$
Chứng minh. Vẽ đường kính $B D$, khi đó $\angle BDC = \angle BAC$ hoặc $\angle BDC = 180^\circ – \angle BAC$, suy ra:
$$
\sin B A C=\sin B D C=\frac{B C}{B D}=\frac{a}{2 R}
$$
suy ra
$$
\frac{a}{\sin A}=2 R
$$
Chứng minh tương tự ta cũng có
$$
\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$
Hệ quả
- $a=2 R \sin A, b=2 R \sin B, c=2 R \sin C$
- $\sin A=\frac{a}{2 R}, \sin B=\frac{b}{2 R}, \sin C=\frac{c}{2 R}$
- $\frac{a}{b}=\frac{\sin A}{\sin B}$
Nhận xét:
- Nêu lên mối liên hệ giữa cạnh, góc đối diện và bán kính đường tròn ngoại tiếp.
- Tính toán các yếu tố của tam giác khi biết sỗ đo hai góc và một cạnh.
- Chứng minh các đẳng thức hình học khác.
Công thức đường trung tuyến
Định lý. (Độ dài đường trung tuyến) Trong tam giác $A B C$, gọi $m_a, m_b, m_c$ lần lượt là độ dài các đường trung tuyến xuất phát từ $A, B, C$. Khi đó
- $m_a^2=\frac{1}{2}\left(b^2+c^2\right)-\frac{1}{4} a^2$.
- $m_b^2=\frac{1}{2}\left(a^2+c^2\right)-\frac{1}{4} b^2$.
- $m_c^2=\frac{1}{2}\left(b^2+a^2\right)-\frac{1}{4} c^2$.
Chứng minh. Ta có thể chứng minh định lý này bằng định lý Cosin, áp dụng định lý cosin cho hai tam giác $A M B, A M C$ ta có
$$
\cos A M B=\frac{A M^2+M B^2-A B^2}{2 A M \cdot M B}, \cos A M C=\frac{A M^2+M C^2-A C^2}{2 A M \cdot M C}
$$
Mà $\cos A M B+\cos A M C=0$ và $M B=M C=\frac{B C}{2}$
$$
\frac{A M^2+M B^2-A B^2}{2 A M \cdot B M}+\frac{A M^2+M C^2-A C^2}{2 A M \cdot M C}=0
$$
Từ đó ta có $2 A M^2=A B^2+A C^2-M B^2-M C^2$ hay $A M^2=\frac{1}{2}\left(A B^2+A C^2\right)-\frac{1}{4} B C^2$, ta có điều cần chứng minh.
Công thức tính diện tích tam giác
Định lý. Các công thức tính diện tích tam giác
- $S=\frac{1}{2} a \cdot h_a=\frac{1}{2} b \cdot h_b=\frac{1}{2} c \cdot h_c$
- $S=\frac{1}{2} a b \cdot \sin C=\frac{1}{2} b c \cdot \sin A=\frac{1}{2} a c \cdot \sin B$
- $S=\frac{a b c}{4 R}$
- $S=p r$
- $S=\sqrt{p(p-a)(p-b)(p-c)}$ (công thức He-ron)
Chứng minh dành cho bạn đọc.

PHƯƠNG TRÌNH NGHIỆM NGUYÊN DẠNG LUỸ THỪA
A. MỘT SỐ CHÚ Ý KHI GIẢI PHƯƠNG TRÌNH DẠNG LŨY THỪA
Nhận xét: Để giải phương trình nghiệm nguyên dạng lũy thừa ta chú ý một số phương pháp thường sử dụng
- Sử dụng đồng dư để xét tính chẵn lẻ, hay modun của nghiệm.
- Phân tích thành thừa số.
- Đánh giá bất đẳng thức.
Do sử dụng nhiều đồng dư, do đó ta chú ý một số tính chất về đồng dư sau Tính chất 3.2. Cho $a$ là một số nguyên tùy ý. Khi đó
(a) $a^2 \equiv 0,1(b\mod 3)$;
(b) $a^2 \equiv 0,1(b\mod 4)$
(c) $a^2 \equiv 0,1,4 (b\mod 8)$;
(d) $a^2 \equiv 0,1,4 (b\mod 5)$;
(e) $a^3 \equiv-1,0,1 (b\mod 7)$
(f) $a^3 \equiv-1,0,1(b\mod 9)$.
Tính chất 3.3. Cho $p$ là một số nguyên tố và $a, b, c, n$ là các số nguyên dương. Ta có
(a) $a^n \vdots p \Leftrightarrow a \vdots p$;
(b) Nếu $a b=p^n$ thì $\left\{\begin{array}{l}a=p^k \\\ b=p^{n-k}\end{array} \quad\right.$ với $k \in \mathbb{N}$ thỏa $0 \leq k \leq n$;
(c) Nếu a b=c^n và (a, b)=1 thì $a=s^n \text { và } b=r^n$ với $s, r \in \mathbb{N}$.
B MỘT SỐ VÍ DỤ Ví dụ 3.30. Giải phương trình nghiệm nguyên $x^5+2023 x=5^y+2$. Ví dụ 3.31. Tìm các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$. Ví dụ 3.32. Tìm các số nguyên dương $x$ và $y$ sao cho Ví dụ 3.33. Tìm tất cả các số nguyên tố $p$ sao cho luôn tồn tại các số nguyên dương $n, x, y$ thỏa mãn Ví dụ 3.34. Tìm nghiệm tự nhiên của phương trình Ví dụ 3.35. Cho $M=a^2+3 a+1$ với $a$ là số nguyên dương. Ví dụ 3.37. Cho phương trình $2^x+5^y=k^2$ ( $x, y, k$ là các số nguyên dương). Ví dụ 3.38. Cho $k$ là số nguyên dương và $a=3 k^2+3 k+1$. Bài 3.13. Tìm nghiệm nguyên dương của phương trình Bài 3.14. Tìm tập nghiệm nguyên dương của phương trình Bài 3.15. Tìm các số nguyên dương $x, y, z>1$ thỏa mãn Bài 3.16. Tìm nghiệm tự nhiên của phương trình $5^x-3^y=2$. Bài 3.17. Tìm nghiệm nguyên dương của phương trình Bài 3.18. Cho các số nguyên dương $m, n \geq 2$. Tìm nghiệm nguyên dương của phương trình Bài 3.19. Cho $p$ là một số nguyên tố và $a, n$ là các số nguyên dương. Chứng minh rằng nếu $2^p+3^p=$ $a^n$ thì $n=1$. Bài 3.20. Chứng minh rằng tích của ba số nguyên liên tiếp không thể là lũy thừa với số mũ lớn hơn 1 của một số nguyên. Bài 3.21. Cho phương trình $3 x^2-y^2=23^n$ với $n$ là số tự nhiên. Bài 3.22.
Ví dụ 3.29. Tìm các số nguyên $x, y$ thỏa mān $x^3+1=4 y^2$.
$$
9^x-7^x=2^y .
$$
$$
p^n=x^3+y^3 .
$$
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$
(a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
(b) Tìm các giá trị của $a$ để $M$ là lũy thừa của 5 .
(a) Chứng minh rằng phương trình trên vô nghiệm khi $y$ chẵn.
(b) Tìm $k$ để phương trình có nghiệm.
(Đề thi tuyển sinh vào lớp 10 chuyên toán PTNK 2022)
(a) Chứng minh rằng $2 a$ và $a^2$ là tổng của ba số chính phương.
(b) Chứng minh rằng nếu $a$ là uớc của số nguyên $b$ và $b$ bằng tổng của ba số chính phương thì bất kì lũy thừa với số mũ nguyên dương nào của $b$ cũng là tổng của ba số chính phương.
C. CÁC BÀI TẬP RÈN LUYỆN
$$
x^3+x^2+x+1=2011^y .
$$
$$
8^x+15^y=17^z .
$$
$$
(x+1)^y-x^z=1 .
$$
$$
2^x \cdot 3^y+5^z=7^t .
$$
$$
x^n+y^n=3^m .
$$
(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.
(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.
(a) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+4 m=0$ thì cũng tồn tại các số nguyên $a^{\prime}, b^{\prime}, c^{\prime}$ sao cho $a^{\prime}+b^{\prime}+c^{\prime}=0$ và $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime}+m=0$.
(b) Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+2^k=0$.
(Đề thi tuyển sinh lớp 10 chuyên Toán PTNK 2015)