Bài viết của thầy Nguyễn Vĩnh Khang – Giáo viên Star Education
Các tính chất của ước chung
Nhận xét: Nếu ta đặt $(x, y)=d$, thì $x^{\prime}=\dfrac{x}{d}$ và $y^{\prime}=\dfrac{y}{d}$ nguyên tố cùng nhau. Từ đó lợi dụng các tính chất liên quan đến số nguyên tố cùng nhau như (được sử dụng thẳng, không cần chứng minh)
- Nếu $a b: c$, và $(b, c)=1$, ta có $a: c$.
- Nếu $a: b$ và $a: c$, với $(b, c)=1$, ta có $a: b c$.
- Nếu $(a, b)=1, r$ là ước của $a, s$ là ước của $b$, ta cũng có $(r, s)=1$.
để phân tích bài toán tiếp. Việc đặt ước chung như vậy sẽ làm đơn giản bài toán (do ta có thể rút $d$ ra rồi triệt tiêu, nếu được) và cho thêm dữ kiện $\left(x^{\prime}, y^{\prime}\right)=1$.
Tính chất 3.1. Giả sử $a, b, c, n$ là các số nguyên dương, chứng minh những tính chất sau
(a) $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$
(b) $\operatorname{gcd}(a c, b c)=\operatorname{gcd}(a, b) c$
(c) Nếu $\operatorname{gcd}(a, b)=1$, ta có $\operatorname{gcd}(a b, c)=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)$
(d) $\operatorname{gcd}\left(a^n, b^n\right)=\operatorname{gcd}(a, b)^n$.
Chứng minh.
Phần 1: gọi $d=\operatorname{gcd}(a, b, c)$ ta có $d$ là ước của $a, b$, nên $\operatorname{gcd}(a, b)$ : $d$. Nhưng $c: d$, nên ta được một chiều
$$
\operatorname{gcd}(\operatorname{gcd}(a, b), c) \vdots d=\operatorname{gcd}(a, b, c)
$$
Để chứng minh chiều còn lại, gọi $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$. Tương tự như trên ta có $d$ là ước của $\operatorname{gcd}(a, b)$, nên $d$ cũng là ước của $a, b$. Nhưng $d$ là ước của $a, b, c$, nên
$$
\operatorname{gcd}(a, b, c) \vdots d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)
$$
Kết hợp (1.1) và (1.2), ta có đpcm.
Phần 2: nếu $d=(a c, b c)$, ta có $d: c$ do $c$ là ước chung của $a c, b c$. Đặt $d=k c$, ta có $(a c, b c)=k c$, và $a c, b c: k c$. Nói cách khác $a, b: k$, nên $(a, b): k$, và
$$
c(a, b) \vdots k c=(a c, b c)
$$
Mặt khác, đặt $k=(a, b)$, ta có $a, b: k$, nên $a c, b c: k c$. Theo định nghīa, $(a c, b c) \vdots k c=(a, b) c$. Kết hợp với (2.1) ta có đpem $\operatorname{gcd}(a c, b c)=\operatorname{gcd}(a, b) c$.
Phần 3: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo tính chất 2 , ta được
$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(\dfrac{a}{k}, \dfrac{c}{k}\right)=1 \\
\operatorname{gcd}\left(\dfrac{b}{l}, \dfrac{c}{l}\right)=1
\end{array}\right.
$$
Mặt khác $a: k, b: l$, nhưng $a, b$ lại nguyên tố cùng nhau, nên $k, l$ cūng vậy. Kết hợp với $c: k, l$, ta có $c: k, l$. Để ý rằng $\dfrac{c}{k l}$ là ước của $\dfrac{c}{k}$ và $\dfrac{c}{l}$, nên
$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(\dfrac{a}{k}, \dfrac{c}{k l}\right)=1 \\
\operatorname{gcd}\left(\dfrac{b}{l}, \dfrac{c}{k l}\right)=1
\end{array}\right.
$$
Ta chứng minh $\operatorname{gcd}(a b, c)=1$ nếu $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(a, c)=1$. Thật vậy, giả sử ngược lại, tức $\operatorname{gcd}(a b, c) \neq 1$. Khi đó tồn tại $p$ là ước nguyên tố chung của $a b, c$. Nhưng $a b: p$ thì ta phải có $a: p$ hoặc $b: p$, nên $\operatorname{gcd}(a, c): p$ hoặc $\operatorname{gcd}(b, c)$ : $($ cả 2 đều mâu thuẫn với giả thiết).
Áp dụng quan sát trên cho (3.1), ta được
$$
\operatorname{gcd}\left(\dfrac{a b}{k k}, \dfrac{c}{k l}\right)=1 \Leftrightarrow \operatorname{gcd}(a b, c)=k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)
$$
Phần 4: ta chứng minh $\operatorname{gcd}\left(a^n, b^n\right)=1$ nếu $\operatorname{gcd}(a, b)=1$. Thật vậy, giả sử $\operatorname{gcd}\left(a^n, b^n\right) \neq 1$, khi đó $a^n, b^n$ phải có một ước nguyên tố chung $p$. Sử dụng tính chất nếu $x y: p$ thì $x: p$ hoặc $y: p$. Từ đó $a, b: p$, vô lý.
Đặt $d=\operatorname{gcd}(a, b)$, ta có $\operatorname{gcd}\left(\dfrac{a}{d}, \dfrac{b}{d}\right)=1$, nên
$$
\operatorname{gcd}\left(\left(\dfrac{a}{d}\right)^n,\left(\dfrac{b}{d}\right)^n\right)=1
$$
Nhân $d^n$ cho cả 2 vế, và dùng tính chất 2 , ta được
$$
\operatorname{gcd}(a, b)^n=d^n=d^n \operatorname{gcd}\left(\left(\dfrac{a}{d}\right)^n,\left(\dfrac{b}{d}\right)^n\right)=\operatorname{gcd}\left(a^n, b^n\right)
$$
Hệ quả 3.1
Giả sử $a, b, c, n$ là các số nguyên dương, chứng minh những tính chất sau
(a) Nếu $a b: c$ và $(a, b)=1$, tồn tại $k, l$ sao cho $k l=c$, và $a: k, b \vdots l$.
(b) Nếu $a b=c^n$ và $(a, b)=1(n \geq 2)$, tồn tại $k, l$ sao cho $k l=c$ và $a=k^n, b=l^n$.
Chứng minh.
Phần 1: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo bài tập trước, ta có $k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)=$ $\operatorname{gcd}(a b, c)=c$, và $a: k, b: l$ theo định nghĩa.
Phần 2: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo bài tập trước, ta có $k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)=\operatorname{gcd}(a b, c)=$ c. Mặt khác
$$
k^n=\operatorname{gcd}\left(a^n, c^n\right)=\operatorname{gcd}\left(a^n, a b\right)=a \operatorname{gcd}\left(a^{n-1}, b\right)=a
$$
, ở đây $\operatorname{gcd}\left(a^{n-1}, b\right)=1$ do nếu tồn tại $p$ là ước nguyên tố chung cho $a^{n-1}, b$, ta phải có $p$ là ước chung của $a, b$ (vô lý). Chứng minh tương tự, ta cũng có $l^n=b$. Ta có đpcm.
B. MỘT SỐ VÍ DỤ ÁP DỤNG
Ví dụ 3.1 (Junior Balkan Mathematical Olympiad 2001).
Tìm ước chung lớn nhất của $A_0, A_1, A_2, \ldots, A_{1999}$, với $A_n=2^{3 n}+3^{6 n+2}+5^{6 n+2}$.
Do $A_0=35=5 \cdot 7$, nên ước chung lớn nhất, gọi là $d$, phải là 1 trong 4 số ${1,5,7,35}$. Do $A_1=$ $2^3+3^8+5^8 \equiv 8+(-2)^8 \equiv 4(\bmod 5)$ nên $d \neq 5,35$. Mặt khác, theo định lý Fermat, ta có $3^6 \equiv 5^6$ $(\bmod 7)$, nên
$$
A_n \equiv 8^n+\left(3^6\right)^n \cdot 9+\left(5^6\right)^n \cdot 25 \equiv 1+9+25 \equiv 0 \quad(\bmod 7)
$$
Ta kết luận $d=7$.
Ví dụ 3.2. Chứng minh rằng nếu $d>0$ không phải là số chính phương, thì $\sqrt{d}$ là số vô tỷ.
Để ý rằng $d=1^2 \cdot d$ nên $d$ luôn có thể viết thành dạng $d=x^2 y$ (với $x, y>0$ ). Chọn $x$ lớn nhất có thể, và để ý $y \neq 1$. Nếu $y$ có ước chính phương $z^2$ ngoài 1 , thì $d=x^{\prime 2} y^{\prime}$, với $x^{\prime}=x z>x$ và $y^{\prime}=\dfrac{y}{z}$, vô lý. Như vậy $y$ là tích các số nguyên tố khác nhau (do nếu $p$ là ước nguyên tố của $y$, thì $\dfrac{y}{p}$ không thể nào chia hết cho $p$ được).
Giả sử $\sqrt{d}=\dfrac{a}{b}$ là một số hữu tỷ, với $a, b$ nguyên dương nguyên tố cùng nhau. Ta có $$ a^2=b^2 d=(b x)^2 \cdot y $$ nên $a^2: y$. Nhưng $y$ chỉ là tích các số nguyên tố khác nhau, nên $a: y$. Thế $a=c y$ vào (*), ta được
$$
c^2 y^2=(b x)^2 y \Leftrightarrow b^2 x^2=c^2 y
$$
Để ý $c^2 y: b^2$, nhưng $(c, b)=1$ (do $(a, b)=1$ ), nên $y: b^2$. Ta đã chọn sao cho $y$ không thể nào có ước chính phương nào ngoài 1 , nên $b=1$ ! Từ đó ta có $\sqrt{d}=a$, hay $d=a^2$, vô lý.
Gọi $d>0$ là một ước chung của $a^m+b^n, a^m-b^n$. Khi đó $\left\{\begin{array}{I}2 a^m=\left(a^m+b^n\right)+\left(a^m-b^n\right) \vdots d \\\ 2 b^n=\left(a^m+b^n\right)-\left(a^m-b^n\right) \vdots d\end{array}\right.$.
Để ý rằng $a, b$ khác tính chẵn lẻ, nên $a^m+b^n$ và $a^m-b^n$ luôn lẻ. Nhưng $d$ là một ước chung, nên $d$ lẻ. Như vậy $a^m, b^n: d$.
Nếu $d \neq 1$, gọi $p$ là một ước nguyên tố của $d$ (có thể $d=p$ ). Khi đó $a^m, b^n: p$, nên ta cũng có $a, b: p$. Điều này mâu thuẫn với giả thiết $a, b$ nguyên tố cùng nhau, nên $d=1$. Nhưng $d$ bất kỳ, nên $a^m+b^n, a^m-b^n$ chỉ có ước chung (dương) là 1 . Hay nói cách khác, $a^m+b^n, a^m-b^n$ nguyên tố cùng nhau.
Ví dụ 3.4. Cho 2 số hữu tỷ $\dfrac{a}{b}, \dfrac{c}{d}$ viết ở dạng tối giản (tức $(a, b)=(c, d)=1$ ) sao cho $d\frac{a}{b}+\dfrac{c}{d}$ là một số nguyên. Chứng minh rằng $|b|=|d|$.
Ta có $\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a d+b c}{b d}$ là một số nguyên, nên $a d+b c: b$, hay $a d: b$. Nhưng $a, b$ nguyên tố cùng nhau, nên $d: b$.
Chứng minh tương tự với $a d+b c: d$, ta có $b: d$. Như vậy $|b|=|d|$.
Ví dụ 3.5 (Spanish Mathematical Olympiad 1996).
Giả sử $a, b$ là các số nguyên dương sao cho $\dfrac{a+1}{b}+\dfrac{b+1}{a}$ là số nguyên. Nếu $d$ là ước chung lớn nhất của $a, b$
(a) Chứng minh rằng $a+b \geq d^2$.
(b) Tìm một cặp $(a, b)$ mà $a+b=d^2$.
(a) Đặt $a=d a^{\prime}, b=d b^{\prime}$, ta có
$$
\dfrac{a+1}{b}+\dfrac{b+1}{a}=\dfrac{d^2\left(a^{\prime 2}+b^{\prime 2}\right)+d\left(a^{\prime}+b^{\prime}\right)}{d^2 a^{\prime} b^{\prime}} \in \mathbb{Z}
$$
nên $\dfrac{d^2\left(a^{\prime 2}+b^{\prime 2}\right)+d\left(a^{\prime}+b^{\prime}\right)}{d^2}=a^{\prime 2}+b^{\prime 2}+\dfrac{a^{\prime}+b^{\prime}}{d}$ cūng là số nguyên. Như vậy $a^{\prime}+b^{\prime}: d$. Nhưng $a, b$ nguyên dương, nên $a^{\prime}+b^{\prime} \geq d$, hay $a+b=d\left(a^{\prime}+b^{\prime}\right) \geq d^2$.
(b) $a=3, b=6$, thì $\dfrac{a+1}{b}+\dfrac{b+1}{a}=3$ và $a+b=9=\operatorname{gcd}(a, b)^2$.
Ví dụ 3.6 (Romanian Mathematical Olympiad 2003).
Cho $n$ là một số chẵn nguyên dương. Tìm tất cả các số nguyên dương $a, b$ sao cho $a^n+b^n: a+b$.
Do $n$ chẵn ta có $a^n-b^n: a^2-b^2: a+b$. Như vậy
$$
\left\{\begin{array}{l}
2 a^n=\left(a^n+b^n\right)+\left(a^n-b^n\right) \vdots a+b \\\
2 b^n=\left(a^n+b^n\right)-\left(a^n-b^n\right) \vdots a+b
\end{array}\right.
$$
Gọi $d=(a, b)$, và $a=d u, b=d v$, ta có $u, v$ nguyên tố cùng nhau và $\operatorname{gcd}(a, b)=2 d^n \operatorname{gcd}\left(u^n, v^n\right)=$ $2 d^n: d(u+v)$. Nói cách khác, $2 d^{n-1}: u+v$.
Để cho ra tất cả giá trị $a, b$ có thể, ta bắt đầu với 2 số $u, v$ nguyên dương và nguyên tố cùng nhau. Tiếp theo chọn $d$ bất kỳ sao cho $2 d^{n-1}: u+v(d$ luôn tồn tại do ta có thể chọn $d=u+v)$. Khi đó $a=d u, b=d v$ thỏa mãn đề bài.
Thật vậy, từ $a^n+b^n=d^n\left(u^n+v^n\right)$, ta chia làm 2 trường hợp
(a) Nếu $u, v$ đều lẻ: ta có $u^n+v^n$ chẵn, nên $a^n+b^n: 2 d^n: d(u+v)=a+b$.
(b) Nếu, không mất tính tổng quát, $u$ chẵn, $v$ lẻ: do $2 d^{n-1}: u+v$, và $u+v$ lẻ, nên $d^{n-1}: u+v$. Từ đó $a^n+b^n: d^n: d(u+v)=a+b$.
Ta kết luận $a=d u, b=d v$, với $u, v$ nguyên tố cùng nhau sao cho $u+v$ là ước của $2 d^{n-1}$.
Ví dụ 3.7 (India Mathematical Olympiad 1998).
Tìm tất cả các bộ số nguyên dương $(x, y, n)$ sao cho
$$
\operatorname{gcd}(x, n+1)=1 \text { và } x^n+1=y^{n+1} .
$$
Do $x>0$, nên $y^{n+1}=x^n+1>1$. Ta có
$$
x^n=y^{n+1}-1=(y-1)\left(y^n+y^{n-1}+\cdots+y+1\right)
$$
Do $y-1>1$, ta phải có $y-1: p$ với $p$ là một ước nguyên tố nào đó của $x$. Từ đó
$$
y^n+y^{n-1}+\cdots+y+1 \equiv \underbrace{1+1+\cdots+1}_{n \text { số } 1} \equiv n+1 \quad(\bmod p)
$$
Như vậy $p$ là ước chung của $x$ và $n+1$, vô lý.
Ví dụ 3.8 (Bulgarian Mathematical Olympiad 2001).
Tìm tất cả các bộ $(a, b, c)$ nguyên dương sao cho $a^3+b^3+c^3$ chia hết cho $a^2 b, b^2 c$, và $c^2 a$.
Đầu tiên để ý rằng nếu $d$ là ước chung của $a, b$, ta có $a^3+b^3+c^3: a^2 b: d^3$, nên $c: d$. Như vậy nếu ta đặt $d=(a, b, c)$, và $a=d u, b=d v, c=d w, u, v$ phải nguyên tố cùng nhau. Chứng minh tương tự, ta có $u, v, w$ đôi một nguyên tố cùng nhau.
Do $a^3+b^3+c^3: a^2 b$, ta có
$$
d^3\left(u^3+v^3+w^3\right): d^3 u^2 v \Leftrightarrow u^3+v^3+w^3: u^2 v
$$
Từ đó, $u^3+v^3+w^3: u^2$, và $v^3+w^3: u^2$. Chứng minh tương tự, ta cūng có $u^3+v^3+w^3: v^2, w^2$, và $w^3+u^3: v^2, u^3+v^3: w^2$. Nhưng $u, v, w$ nguyên tố cùng nhau đôi một, nên
$$
\left\{\begin{array}{l}
u^3+v^3+w^3: u^2 v^2 w^2 \\\
v^3+w^3: u^2 \\\
w^3+u^3: v^2 \\\
u^3+v^3: w^2
\end{array}\right.
$$
Không mất tính tổng quát, giả sử $u \leq v \leq w$. Do $a, b, c$ nguyên dương, $u, v, w$ cũng nguyên dương, và $u^2 v^2 w^2 \leq u^3+v^3+w^3 \leq 3 w^3$. Nói cách khác, $w \geq \dfrac{u^2 v^2}{3}$. Mặt khác, $u^3+v^3: w^2$, nên ta được
$$
u^3+v^3 \geq w^2 \geq \dfrac{u^4 v^4}{9} (*)
$$
Nhưng $u \leq v$, nên $2 v^3 \geq u^3+v^3 \geq \frac{u^4 v^4}{9}$, hay $u^4 v \leq 18$. Ta suy ra $u=1$ hoặc $u=2$. Nhưng $u=2$ thì $v \geq 2$, nên $32 \leq u^4 v \leq 18$, vô lý.
*Như vậy $u=1$. Nếu $v=1$ thì 2 : $w^2$, cho nên $w=1$. Ta có bộ $(a, b, c)=(d, d, d)$ thỏa mãn. Nếu $v \geq 2$, ta phải có $w>v$, hay $w \geq v+1 \geq 3$ do $v, w$ nguyên tố cùng nhau. Nhưng $u^3+v^3+w^3: u^2 v^2 w^2$, nên ta có
$$
1+v^3+w^3: v^2 w^2 \Rightarrow v^2 w^2 \leq 1+v^3+w^3 \leq 1+(w-1)^3+w^3<2 w^3
$$
Chia $w^2$ cho cả 2 vế, ta được $v^2<2 w$, hay $w>\frac{v^2}{2}$. Mặt khác, ta có $v^3+u^3: w^2$, nên
$$
v^3+1 \geq w^2>\frac{v^4}{4} \Leftrightarrow 4>v^3(v-4)
$$
Vậy $v \leq 4$. Nhưng $v \geq 2$, ta xét các trường hợp sau
(a) $v=4$ : khi đó $u^3+v^3=65: w^2$, nên $w=1$ (vô lý do $v \leq w$ ).
(b) $v=3$ : khi đó $u^3+v^3=28: w^2$, nên $w \in{1,2}$ (cũng vô lý như trên).
(c) $v=2$ : khi đó $u^3+v^3=9: w^2$, nên $w=3$ (do $w \geq v$ ).
Kiểm tra lại, ta nhận $(a, b, c)=(d, 2 d, 3 d)$ và các hoán vị của nó. Ta kết luận
$$
\begin{aligned}
& (a, b, c)=(k, k, k),(k, 2 k, 3 k),(k, 3 k, 2 k), \
& \quad(2 k, k, 3 k),(2 k, 3 k, k),(3 k, k, 2 k),(3 k, 2 k, k) \quad k \geq 1
\end{aligned}
$$
Ví dụ 3.9. Cho các số nguyên dương $x, y, z$ sao cho $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}$. Giả sử $x, y, z$ nguyên tố cùng nhau (tức $(x, y, z)=1$ ), chứng minh rằng $x+y$ là một số chính phương.
Viết lại phương trình thành $x+y=\dfrac{x y}{z}$. Đặt $d=(x, y)$, và $x=d a, y=d b$, ta có $(d, z)=1$ (do $(x, y, z)=1)$ và $(a, b)=1$. Thêm nữa
$$
a+b=\dfrac{d a b}{z}
$$
Ta có $d a b: z$, và $(d, z)=1$, nên $a b: z$. Do $(a, b)=1$, ta sẽ chứng minh $z$ có thể tách thành $z=r s$ sao cho $a: r$ và $b: s$.
*Đặt $r=(a, z)$ và $s=(b, z)$.
- Theo định nghĩa $a: r, b: s$. Nhưng $(a, b)=1$, nên $(r, s)=1$.
- Tương tự z:r,s. Kết hợp với điều chứng minh ở trên, ta có $z$ :rs.
- Mặt khác, đặt $a=k r, b=l s$ và $z=q(r s)$, ta có $k l r s: q r s$, nên $k l: q$. Ta cũng có $(a, z)=r$, nên $(k, q s)=1$.
Như vậy $k l: q$ và $(k, q)=1$. Chứng minh tương tự, ta có $(l, q)=1$. Từ đó $q=1$, và $z=r s$.
Tóm tắt lại, ta có $a=k r, b=l s$ và $z=r s$.
*Thế vào $a+b=\dfrac{d a b}{z}$, ta có
$$
k r+l s=d k l
$$
Để ý $(a, b)=1$ nên $(k, l s)=1$. Mặt khác, $l s=d k l-k r: k$, cho nên $k=1$. Chứng minh tương tự, ta có $l=1$, nên $a b=r s=z$, và $a+b=\dfrac{d a b}{z}=d$. Từ đó $x+y=d(a+b)=d^2$ là một số chính phương.
Ví dụ 3.10. Giải phương trình nghiệm nguyên sau (theo các biến $x, y, n, m$ ) với $m, n \geq 0$.
$$
x^n+y^n=2^m
$$
Đặt $d=(x, y)>0$ và $x=d u, y=d v$, ta có $u, v$ nguyên tố cùng nhau và $d^n\left(u^n+v^n\right)=2^m$. Như vậy $d=2^e\left(0 \leq e \leq \frac{m}{n}\right)$. Đặt $k=2^{m-n e}$, ta xét phương trình sau (với $u, v$ nguyên tố cùng nhau).
$$
u^n+v^n=2^k
$$
(a) Nếu $n$ chẵn
(a) Nếu $n=0$ : phương trình gốc trở thành $2^m=2$, nên $m=1$. Ta nhận bộ nghiệm $(x, y, 0,1)$ với mọi $x, y \neq 0$.
(b) Nếu $n \geq 2$ :
i. Nếu $k=0$ : ta có $u^n+v^n=1$. Nhưng $n$ chẵn, nên phương trình chỉ có 4 nghiệm $(0, \pm 1)$ và $( \pm 1,0)$. Ta nhận bộ
$$
(x, y, m, n)=\left( \pm 2^e, 0, n e, n\right),\left(0, \pm 2^e, n e, n\right) \quad(n \text { chẵn })
$$
ii. Nếu $k \geq 1$ : ta có $u^n+v^n$ chẵn. Kết hợp với $u, v$ nguyên tố cùng nhau, ta được $u, v$ cùng lẻ. Xét modulo 4, ta có $2^k=u^n+v^n \equiv 1+1 \equiv 2(\bmod 4)$. Nói cách khác $k=1$ và $u^n+v^n=2$, hay $u, v= \pm 1$. Ta nhận bộ
$$
(x, y, m, n)=\left( \pm 2^e, \pm 2^e, n e+1, n\right) \quad(n \text { chẵn })
$$
(b) Nếu $n$ lẻ: ta có $2^k=(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)$, nên $u+v=2^s$ với $s \geq 0$.
(a) Nếu $n=1$ : ta có $u+v=2^k$, nên ta nhận các bộ sau
$$
(x, y, m, n)=\left(u, 2^m-u, m, 1\right) \quad(u \text { nguyên bất kỳ })
$$
(b) Nếu $n \geq 3$ :
i. Nếu $k=0$ : ta có $u^n+v^n=1$. Nhưng $u^n+v^n=(u+v)\left(u^{n-1}-u^{n-2} v+\cdots-u v^{n-2}+v^{n-1}\right)$, cho nên $u+v= \pm 1$.
*Với $v=1-u$, ta xét phương trình sau
$$
u^n-(u-1)^n=1
$$
Ta có $u=0,1$ là nghiệm, cho nên ta nhận các bộ sau
$$
(x, y, m, n)=\left(2^e, 0, n e, n\right),\left(0,2^e, n e, n\right) \quad(n \text { lẻ })
$$
Nếu $u \geq 2$, ta chứng minh
$$
u^n-(u-1)^n>1
$$
với mọi $n \geq 2$ bằng quy nạp. Khi $n=2$, ta có $u^2-(u-1)^2=2 u-1 \geq 3>1$. Giả sử bất đẳng thức đúng với $n$, ta chứng minh nó đúng với $n+1$
$$
\begin{aligned}
u^{n+1}-(u-1)^{n+1} & =u^n+(u-1) u^n-(u-1)^{n+1} \
& =u^n+(u-1)\left[u^n-(u-1)^n\right] \
& \geq 2^n+(2-1) \cdot 1>1
\end{aligned}
$$
Nếu $u \leq-1$, ta cũng chứng minh $u^n-(u-1)^n=(1-u)^n-(-u)^n>1$ với mọi $n \geq 2$ bằng quy nạp. Khi $n=2$, ta có $(1-u)^n-(-u)^n=-2 u+1>1$. Giả sử bất đẳng thức đúng với $n$, ta chứng minh nó đúng với $n+1$
$$
\begin{aligned}
(1-u)^{n+1}-(-u)^{n+1} & =(1+w)^{n+1}-w^{n+1} \quad(\text { đặt } w=-u \geq 1) \
& =w(w+1)^n+(w+1)^n-w^{n+1} \
& =(w+1)^n+w\left[(w+1)^n-w^n\right] \
& \geq 2^n+1 \cdot 1>1
\end{aligned}
$$
*Với $v=-1-u$, ta xét phương trình sau
$$
u^n-(u+1)^n=1 \Leftrightarrow(u+1)^n-u^n=-1
$$
Dùng những bất đẳng thức ta đã chứng minh ở trên, cộng với trường hợp $u=0,1$ không thỏa, ta kết luận trường hợp này vô nghiệm.
ii. Nếu $k \geq 1$ : ta có $u^n+v^n$ chẵn, và $u, v$ nguyên tố cùng nhau, nên $u, v$ cùng lẻ. Như vậy
$$
u^{n-1}-u^{n-2} v+\cdots-v^{n-1} \equiv \underbrace{1+1+\cdots+1}_{n \text { số } 1} \equiv n \equiv 1 \quad(\bmod 2)
$$
Kết hợp với $(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)=2^k$, ta phải có
Kết hợp với $(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)=2^k$, ta phải có
$$
\left\{\begin{array}{l}
u+v=2^k \quad(k \geq 1) \\\
u^{n-1}-u^{n-2} v+\cdots+v^{n-1}=1
\end{array}\right.
$$
Để ý $u^n+v^n=2^k=u+v$, ta sẽ chứng minh
$\left(u^n-v^n\right)(u-v) \geq 0$ với mọi $u, v$ và $n$ lẻ bằng quy nạp lên $n$. Trường hợp $n=1$ chính là $(u-v)^2 \geq 0$, còn $n=3$ là $\left(u^3-v^3\right)(u-v)=(u-v)^2\left(u^2+u v+v^2\right) \geq 0$.
Giả sử nó đúng với $n-2$ và $n$, ta chứng minh nó cũng đúng với $n+2$
$$
\begin{aligned}
\left(u^{n+2}-v^{n+2}\right)(u-v)= & \left(u^{n+2}-u^2 v^n+u^2 v^n-u^n v^2+u^n v^2-v^{n+2}\right)(u-v) \
= & u^2\left(u^n-v^n\right)(u-v)+u^2 v^2\left(u^{n-2}-v^{n-2}\right)(u-v) \
& +v^2\left(u^n-v^n\right)(u-v) \geq 0
\end{aligned}
$$
- $2\left(u^n+v^n\right) \geq\left(u^2+v^2\right)\left(u^{n-2}+v^{n-2}\right)$ với mọi $u, v$ và $n \geq 3$ lẻ. Thật vậy, bất đẳng thức tương đương với
$$
u^n+v^n-u^2 v^{n-2}-v^2 u^{n-2} \geq 0 \Leftrightarrow\left(u^{n-2}-v^{n-2}\right)(u-v) \geq 0
$$
Đúng theo bất đẳng thức ta đã chứng minh ở trên.
Áp dụng vào bài toán, ta có $u+v=u^n+v^n \geq \frac{u^2+v^2}{2} \cdot\left(u^{n-2}+v^{n-2}\right) \geq\left(\frac{u^2+v^2}{2}\right)^2$. $\left(u^{n-4}+v^{n-4}\right) \geq \cdots\left(\frac{u^2+v^2}{2}\right)^{(n-1) / 2}(u+v)$. Nhưng $u+v=2^k \geq 2^1>1$, nên
$$
\left(\frac{u^2+v^2}{2}\right)^{(n-1) / 2} \leq 1 \Leftrightarrow u^2+v^2 \leq 2
$$
Xét các giá trị $u, v=0, \pm 1$ thỏa mãn điều kiện trên, ta được các cặp $(u, v)=$ $(0,0),( \pm 1,0),(0, \pm 1),( \pm 1, \pm 1)$. Thử vào $u+v=u^n+v^n=2^k$ (với $2^k \geq 2^1=2$ ), ta chỉ có đúng $u=v=1$ và $k=1$ thỏa. Ta nhận các bộ
$$
(x, y, m, n)=\left(2^e, 2^e, n e+1, n\right) \quad(n \geq 3 \text { lẻ })
$$
Tổng hợp các trường hợp lại, ta kết luận các nghiệm $(x, y, m, n)$ như sau
(a) $\left(2^e, 0, n e, n\right),\left(0,2^e, n e, n\right)$, và $\left(2^e, 2^e, n e+1, n\right)(e, n \geq 0)$.
(b) $\left(-2^e, 0, n e, n\right),\left(0,-2^e, n e, n\right)$, và $\left( \pm 2^e, \pm 2^e, n e+1, n\right)(e, n \geq 0, n$ chẵ $)$.
(c) $\left(u, 2^m-u, m, 1\right)(u \in \mathbb{Z}, m \geq 0)$
Ví dụ 3.11. Tìm tất cả các số nguyên dương $x, y, z$ sao cho
$$
16 x y z=d(x+y+z)^2
$$
với $d$ là ước chung của $x, y, z$
Đặt $x=d a, y=d b, z=d c$, ta có $(a, b, c)=1$. Phương trình tương đương với $16 a b c=(a+b+c)^2$.
*Gọi $p^{2 k+1}$ là một ước của $a, p$ nguyên tố. Ta sẽ chứng minh $p^{2 k+2}$ cũng là ước của $a$.
(a) Nếu $p=2$ : đặt $a=2^{2 k+1} u$, ta có
$$
2^{2 k+5} u b c=\left(2^{2 k+1} u+b+c\right)^2
$$
Nếu $b$ chẵn thì $c$ cũng phải chẵn (và ngược lại), nhưng điều này mâu thuẫn với $a, b, c$ nguyên tố cùng nhau. Như vậy $b, c$ phải lẻ. Đê ý vế trái là bội của $2^{2 k+5}$ (mũ lẻ), nên $Q^2: 2^{2 k+5}(Q=$ $2^{2 k+1} u+b+c$. Nói cách khác, $Q: 2^{k+3}$ hay $Q=2^{k+3} R$. Từ đó
$$
2^{2 k+5} u b c=Q^2=2^{2 k+6} R^2
$$
nên $2^{2 k+5} u b c: 2^{2 k+6}$. Nhưng $b, c$ lẻ, nên ta có $u: 2$. Như vậy $a=2^{2 k+1} u: 2^{2 k+2}$.
(b) Nếu $p>2$ : lập luận tương tự như trên, ta đặt $Q=a+b+c$ và $a=p^{2 k+1} u$. Phương trình tương đương với
$$
Q^2=16 p^{2 k+1} u b c: p^{2 k+1}
$$
hay $Q: p^{k+2}$. Ta có $16 p^{2 k+1} u b c=Q^2: p^{2 k+2}$. Nhưng $p>2$, nên $u b c: p$.
Giả sử, không mất tính tổng quát b:p. Khi đó $(a+b+c)^2=16 a b c: p$, nên $a+b+c: p$. Nhưng $a: p$, nên c:p. Ta có điều vô lý do $a, b, c$ nguyên tố cùng nhau. Như vậy $u: p$, nên $a=p^{2 k+1} u: p^{2 k+2}$.
Như vậy nếu $a=p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ là phân tích thừa số nguyên tố, các số mũ $\alpha_i$ phải chẵn (nếu $\alpha_i$ lẻ thì $p_i^{\alpha_i+1}$ cũng là ước của $a$, vô lý). Cùng với $a>0$, ta kết luận $a$ là số chính phương. Chứng minh tương tự, $b, c$ cũng chính phương.
*Đặt tiếp $a=u^2, b=v^2, c=w^2(u, v, w>0)$, ta có phương trình
$$
16 u^2 v^2 w^2=\left(u^2+v^2+w^2\right)^2 \Leftrightarrow u^2+v^2+w^2=4 u v w
$$
Do $a, b, c$ nguyên tố cùng nhau, $u, v, w$ cũng phải nguyên tố cùng nhau. Mặt khác, xét modulo 4 cho cả 2 vế, ta có $u^2+v^2+w^2 \equiv 0,1,2,3(\bmod 4)$, với $u^2+v^2+w^2 \equiv 0(\bmod 4)$ khi và chỉ khi $u^2, v^2, w^2 \equiv 0 (\text{b mod 4} )$. Như vậy $u, v, w$ đều chẵn, vô lý.
Ta kết luận phương trình vô nghiệm.