Category Archives: Toán phổ thông

HAI ĐƯỜNG THẲNG VUÔNG GÓC

Ví dụ 1: Cho góc bẹt $A O B$ và tia $O M$ sao cho $\widehat{A O M}=60^{\circ}$. Vẽ tia $O N$ nằm trong góc $B O M$ sao cho $O N \perp O M$. Chứng tỏ rằng $\widehat{B O N}=\dfrac{1}{2} \widehat{A O M}$.

Tìm cách giải

Muốn so sánh hai góc $B O N$ và $A O M$ ta cần tính số đo của chúng.
Đã biết số đo của góc $A O M$ nên chỉ cần tính số đo của góc $B O N$.

Hướng dẫn giải

Hai góc $A O M$ và $B O M$ kề bù nên $\widehat{A O M}+\widehat{B O M}=180^{\circ}$
$\Rightarrow \widehat{B O M}=180^{\circ}-60^{\circ}=120^{\circ}$. Vì $O M \perp O N$ nên $\widehat{M O N}=90^{\circ}$.
Tia $O N$ nằm trong góc $B O M$ nên $\widehat{B O N}+\widehat{M O N}=\widehat{B O M}$
$\Rightarrow \widehat{B O N}=120^{\circ}-90^{\circ}=30^{\circ}$. Vì $30^{\circ}=\dfrac{1}{2} \cdot 60^{\circ}$ nên $\widehat{B O N}=\dfrac{1}{2} \widehat{A O M}$.

Ví dụ 2: Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O E, O F$ sao cho $\widehat{A O E}=\widehat{B O F}<90^{\circ}$. Vẽ tia phân giác $O M$ của góc $E O F$. Chứng tỏ rằng $O M \perp A B$.

Tìm cách giải

Để chứng tỏ $O M \perp A B$ ta cần chứng tỏ góc $A O M$ hoặc góc $B O M$ có số đo bằng $90^{\circ}$

Hướng dẫn giải

Ta có $\widehat{A O E}=\widehat{B O F} ; \widehat{M O E}=\widehat{M O F}$ (đề bài cho)
$$
\Rightarrow \widehat{A O E}+\widehat{M O E}=\widehat{B O F}+\widehat{M O F} \text {. }
$$

Tia $O E$ nằm giữa hai tia $O A, O M$; tia $O F$ nằm giũa hai tia $O B, O M$ nên từ (1) suy ra $\widehat{A O M}=\widehat{B O M}$. Mặt khác, $\widehat{A O M}+\widehat{B O M}=180^{\circ}$ (hai góc kề bù) nên $\widehat{A O M}=180^{\circ}: 2=90^{\circ}$, suy ra $O M \perp O A$. Do đó $O M \perp A B$.

Ví dụ 3: Cho góc tù $A O B$. Vẽ vào trong góc này các tia $O M, O N$ sao cho $O M \perp O A, O N \perp O B$. Vẽ tia $O K$ là tia phân giác của góc $M O N$. Chứng tỏ rằng tia $O K$ cũng là tia phân giác của góc $A O B$.

Tìm cách giải

Muốn chứng tỏ tia $O K$ là tia phân giác của góc $A O B$ ta cần chứng tỏ $\widehat{A O K}=\widehat{B O K}$. Muốn vậy cần chứng tỏ $\widehat{A O N}+\widehat{N O K}=\widehat{B O M}+\widehat{M O K}$.

Hướng dẫn giải

Ta có $O M \perp O A \Rightarrow \widehat{A O M}=90^{\circ} ; O N \perp O B \Rightarrow \widehat{B O N}=90^{\circ}$.
Tia $O N$ nằm giữa hai tia $O A, O M$ nên $\widehat{A O N}+\widehat{N O M}=\widehat{A O M}=90^{\circ}$;
Hinh2.6

Tia $O M$ nằm giữa hai tia $O B, O N$ nên $\widehat{B O M}+\widehat{M O N}=\widehat{B O N}=90^{\circ}$.
Suy ra $\widehat{A O N}=\widehat{B O M}$ (cùng phụ với $\widehat{M O N}$ ).
Tia $O K$ là tia phân giác của góc $M O N$ nên $\widehat{N O K}=\widehat{M O K}$.
Do đó $\widehat{A O N}+\widehat{N O K}=\widehat{B O M}+\widehat{M O K}$.
Vi tia $O N$ nằm giũ̃a hai tia $O A, O K$ và tia $O M$ nằm giữa hai tia $O B, O K$ nên từ (1) suy ra $\widehat{A O K}=\widehat{B O K}$. Mặt khác, tia $O K$ nằm giũa hai tia $O A, O B$ nên tia $O K$ cũng là tia phân giác của góc $A O B$.

Bài tập vận dụng

Bài 1. Cho hai đường thẳng $A B$ và $C D$ vuông góc với nhau tại $O$. Vẽ tia $O K$ là tia phân giác của góc $A O C$. Tính số đo góc $K O D$ và $K O B$.

Hướng dẫn giải

Vì $A B \perp C D$ nên $ \widehat{A O C}=90^{\circ}$

Vì tia $O K$ là tia phân giác của góc $A O C$ nên $\widehat{O_1}=\widehat{O_2}=45^{\circ}$.
Ta có $\widehat{K O D}+\widehat{O_1}=180^{\circ}$ (hai góc kề bù)
$$
\Rightarrow \widehat{K O D}=180^{\circ}-45^{\circ}=135^{\circ} \text {. }
$$
$\widehat{K O B}+\widehat{O_2}=180^{\circ}$ (hai góc kề bù)
$$
\Rightarrow \widehat{K O B}=180^{\circ}-45^{\circ}=135^{\circ} \text {. }
$$

Bài 2. Cho góc $A O B$ và tia $O C$ nằm trong góc đó sao cho $\widehat{A O C}=4 \widehat{B O C}$. Vẽ tia phân giác $O M$ của góc $A O C$. Tính số đo của góc $A O B$ nếu $O M \perp O B$.

Hướng dẫn giải

Tia $O M$ là tia phân giác của góc $A O C$ nên $\widehat{M O C}=\frac{1}{2} \widehat{A O C}$ mà $\widehat{A O C}=4 \widehat{B O C}$ nên $\widehat{M O C}=2 \widehat{B O C}$.

Nếu $O M \perp O B$ thì $\widehat{M O B}=90^{\circ}$.
Ta có $\widehat{M O C}+\widehat{B O C}=90^{\circ}$ do đó $2 \widehat{B O C}+\widehat{B O C}=90^{\circ} \Rightarrow \widehat{B O C}=30^{\circ}$.
Vậy $\widehat{A O C}=4.30^{\circ}=120^{\circ}$.

Bài 3. Cho góc tù $A O B, \widehat{A O B}=m^{\circ}$. Vẽ vào trong góc này các tia $O C, O D$ sao cho $O C \perp O A ; O D \perp O B$.
a) Chứng tỏ rằng $\widehat{A O D}=\widehat{B O C}$.
b) Tìm giá trị của $m$ để $\widehat{A O D}=\widehat{D O C}=\widehat{C O B}$.

Hướng dẫn giải

a) Ta có $O C \perp O A$ nên $\widehat{A O C}=90^{\circ}$; OD $\perp O B$ nên $\widehat{B O D}=90^{\circ}$.

Tia $O D$ nằm trong góc $A O B$ nên $\widehat{A O D}+\widehat{B O D}=\widehat{A O B}$.
$$
\Rightarrow \widehat{A O D}=\widehat{A O B}-\widehat{B O D}=m^{\circ}-90^{\circ}
$$

Tia $O C$ nằm trong góc $A O B$ nên $\widehat{A O C}+\widehat{B O C}=\widehat{A O B}$
$$
\Rightarrow \widehat{B O C}=\widehat{A O B}-\widehat{A O C}=m^{\circ}-90^{\circ}
$$
Từ (1) và (2), suy ra: $\widehat{A O D}=\widehat{B O C}\left(=m^{\circ}-90^{\circ}\right)$.
b) Tia $O C$ nằm giữa hai tia $O B$ và $O D$. Suy ra $\widehat{B O C}+\widehat{D O C}=\widehat{B O D}=90^{\circ}$.

Nếu $\widehat{B O C}=\widehat{D O C}$ thì $\widehat{D O C}=90^{\circ}: 2=45^{\circ}$.

Do đó, $\widehat{A O D}=\widehat{D O C}=\widehat{C O D} \Leftrightarrow \widehat{A O B}=3 \cdot \widehat{D O C}=3.45^{\circ}=135^{\circ} \Leftrightarrow m=135$

CHỨNG MINH HAI ĐƯỜNG THẲNG VUÔNG GÓC

Bài 4. Trong hình 2.7 có góc $M O N$ là góc bẹt, góc $A O C$ là góc vuông. Các tia $O M, O N$ lần lượt là các tia phân giác của các góc $A O B$ và $C O D$. Chứng tỏ rằng $O B \perp O D$.


Hướng dẫn giải

Vì $\widehat{M O N}$ là góc bẹt nên $\widehat{O_1}+\widehat{O_3}+\widehat{A O C}=180^{\circ}$
$$
\widehat{O_2}+\widehat{O_4}+\widehat{B O D}=180^{\circ}
$$

Mặt khác, $\widehat{O_1}=\widehat{O_2} ; \widehat{O_3}=\widehat{O_4}$ (đề bài cho) nên từ (1) và (2) suy ra $\widehat{A O C}=\widehat{B O D}$.
Vì $\widehat{A O C}=90^{\circ}$ nên $\widehat{B O D}=90^{\circ} \Rightarrow O B \perp O D$.

Bài 5. Cho góc nhọn $A O B$. Trên nửa mặt phẳng bờ $O A$ có chứa tia $O B$, vẽ tia $O C \perp O A$. Trên nửa mặt phẳng bờ $O B$ có chứa tia $O A$ vẽ tia $O D \perp O B$. Gọi $O M$ và $O N$ lần lượt là các tia phân giác của các góc $A O D$ và $B O C$. Chứng tỏ rằng $O M \perp O N$.


Hướng dẫn giải

Ta có $O C \perp O A \Rightarrow \widehat{A O C}=90^{\circ}$. $O D \perp O B \Rightarrow \widehat{B O D}=90^{\circ}$.
Tia $O B$ nằm giữa hai tia $O A, O C$.
Do đó $\widehat{A O B}+\widehat{B O C}=90^{\circ}$.
Tương tự, ta có $\widehat{A O B}+\widehat{A O D}=90^{\circ}$.
Từ (1) và (2) $\Rightarrow \widehat{B O C}=\widehat{A O D}$ (cùng phụ với $\widehat{A O B}$ ).
Tia $O M$ là tia phân giác của góc $A O D \Rightarrow \widehat{O_1}=\widehat{O_2}=\frac{\widehat{A O D}}{2}$.
Hinh 2.12

Tia $O N$ là tia phân giác của góc $B O C \Rightarrow \widehat{O_3}=\widehat{O_4}=\frac{\widehat{B O C}}{2}$.
Vi $\widehat{A O D}=\widehat{B O C}$ nên $\widehat{O_1}=\widehat{O_2}=\widehat{O_3}=\widehat{O_4}$.
Ta có $\widehat{A O B}+\widehat{B O C}=90^{\circ} \Rightarrow \widehat{A O B}+\widehat{O_3}+\widehat{O_4}=90^{\circ} \Rightarrow \widehat{A O B}+\widehat{O_3}+\widehat{O_2}=90^{\circ}$.
Do đó $\widehat{M O N}=90^{\circ} \Rightarrow O M \perp O N$.

Bài 6. Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O M$ và $O N$ sao cho $\widehat{A O M}=\widehat{B O N}=m^{\circ}(90<m<180)$. Vẽ tia phân giác $O C$ của góc $M O N$.
a) Chứng tỏ rằng $O C \perp A B$.
b) Xác định giá trị của $m$ để $O M \perp O N$.


Hướng dẫn giải

a) Ta có $\widehat{A O N}+\widehat{B O N}=180^{\circ} ; \widehat{B O M}+\widehat{A O M}=180^{\circ}$ (hai góc kề bù) mà $\widehat{A O M}=\widehat{B O N}$ (đề bài cho) nên $\widehat{A O N}=\widehat{B O M}$.

Mặt khác, tia $O C$ là tia phân giác của góc $M O N$ nên $\widehat{C O N}=\widehat{C O M}$.
Do đó $\widehat{A O N}+\widehat{C O N}=\widehat{B O M}+\widehat{C O M}$
Ta có tia $O N$ nằm giữa hai tia $O A, O C$; tia $O M$ nằm giữa hai tia $O B$, $O C$ nên từ (1) suy ra $\widehat{A O C}=\widehat{B O C}=180^{\circ}: 2=90^{\circ}$. Vậy $O C \perp A B$.
Hinh 2.13
b) Tia $O M$ nằm giữa hai tia $O B$ và $O N$ nên $\widehat{B O M}+\widehat{M O N}=\widehat{B O N}=m^{\circ}$

Mặt khác $\widehat{B O M}=180^{\circ}-\widehat{A O M}=180^{\circ}-m^{\circ}$
(2).

Từ (1) và (2) suy ra: $\left(180^{\circ}-m^{\circ}\right)+90^{\circ}=m^{\circ} \Rightarrow 2 m^{\circ}=270^{\circ} \Rightarrow m^{\circ}=135^{\circ}$.
Vậy $m=135$.

CHỨNG MINH MỘT TIA LÀ TIA PHÂN GIÁC, LÀ TIA ĐỐI

Bài 7. Cho góc $A O B$ có số đo bằng $120^{\circ}$. Vẽ tia phân giác $O M$ của góc đó. Trên nửa mặt phẳng bờ $O M$ có chứa tia $O A$, vẽ tia $O N \perp O M$. Trong góc $A O B$ vẽ tia $O C \perp O B$. Chứng tỏ rằng:
a) Tia $O C$ là tia phân giác của góc $A O M$;
b) Tia $O A$ là tia phân giác của góc $C O N$.


Hướng dẫn giải

a) Tia $O M$ là tia phân giác của góc $A O B$ nên $\widehat{A O M}=\widehat{B O M}=120^{\circ}: 2=60^{\circ}$.

Ta có $O C \perp O B \Rightarrow \widehat{B O C}=90^{\circ}$.
Tia $O M$ nằm giữa hai tia $O B, O C$ nên $\widehat{B O M}+\widehat{C O M}=\widehat{B O C}$ $\Rightarrow \widehat{C O M}=90^{\circ}-60^{\circ}=30^{\circ}$.
Tia $O C$ nằm giữa hai tia $O A, O B$ nên $\widehat{A O C}+\widehat{B O C}=\widehat{A O B}$
$\Rightarrow \widehat{A O C}=120^{\circ}-90^{\circ}=30^{\circ}$.

Vậy $\widehat{A O C}=\widehat{C O M}\left(=30^{\circ}\right)$.
Tia $O C$ nằm giữa hai tia $O A, O M$ nên từ (1) suy ra tia $O C$ là tia phân giác của góc $A O M$.
b) Ta có $O M \perp O N \Rightarrow \widehat{M O N}=90^{\circ}$.

Tia $O A$ nằm giữa hai tia $O N, O M$ nên $\widehat{A O N}+\widehat{A O M}=\widehat{M O N}$.
Suy ra $\widehat{A O N}=\widehat{M O N}-\widehat{A O M}=90^{\circ}-60^{\circ}=30^{\circ}$.
Vậy $\widehat{A O N}=\widehat{A O C}\left(=30^{\circ}\right)$
Tia $O A$ nằm giữa hai tia $O N, O C$ nên từ (2) suy ra tia $O A$ là tia phân giác của góc $C O N$.

Bài 8. Cho góc bẹt $A O B$, tia $O C \perp A B$. Vẽ tia $O M$ và $O N$ ở trong góc $B O C$ sao cho $\widehat{B O M}=\widehat{C O N}=\frac{1}{3} \widehat{B O C}$. Tìm trong hình vẽ các tia là tia phân giác của một góc.


Hướng dẫn giải

Ta có $O C \perp A B$ nên $\widehat{A O C}=\widehat{B O C}=90^{\circ}$
Tia $O C$ nằm giữa hai tia $O A, O B$.
Từ (1) và (2) suy ra tia $O C$ là tia phân giác của góc $A O B$.
Ta có $\widehat{B O M}=\widehat{C O N}=\frac{1}{3} \widehat{B O C}=30^{\circ}$.
Tia $O N$ nằm trong góc $B O C$ nên $\widehat{B O N}+\widehat{C O N}=\widehat{B O C}$.
Suy ra $\widehat{B O N}=90^{\circ}-30^{\circ}=60^{\circ}$.
Tia $O M$ nằm giữa hai tia $O B, O N$.
Do đó $\widehat{B O M}+\widehat{M O N}=\widehat{B O N} \Rightarrow \widehat{M O N}=60^{\circ}-30^{\circ}=30^{\circ}$.
Vậy $\widehat{B O M}=\widehat{M O N}=\widehat{C O N}=30^{\circ}$
Từ (3) và (4) suy ra tia $O M$ là tia phân giác của góc $B O N$.
Tia $O N$ nằm giữa hai tia $O M$ và $O C$
Từ (4) và (5) suy ra tia $O N$ là tia phân giác của góc $C O M$.
Tóm lại, các tia $O C, O M, O N$ lần lượt là các tia phân giác của các góc $A O B, B O N$ và $C O M$.

Bài 9. Cho hai tia $O M$ và $O N$ vuông góc với nhau, tia $O C$ nằm giữa hai tia đó. Vẽ các tia $O A$ và $O B$ sao cho tia $O M$ là

tia phân giác của góc $A O C$, tia $O N$ là tia phân giác của góc $B O C$. Chứng tỏ rằng hai tia $O A$, $O B$ đối nhau.

Hướng dẫn giải

Ta có $O M \perp O N \Rightarrow \widehat{M O N}=90^{\circ}$.
Tia $O M$ là tia phân giác của góc $A O C$ nên $\widehat{A O M}=\widehat{M O C}$.
Tia $O N$ là tia phân giác của góc $B O C$ nên $\widehat{B O N}=\widehat{N O C}$.
Xét tổng
$$
\widehat{A O C}+\widehat{B O C}=2 \widehat{M O C}+2 \widehat{N O C}=2(\widehat{M O C}+\widehat{N O C})=2 \widehat{M O N}=2.90^{\circ}=180^{\circ} \text {. }
$$

Hai góc kề $A O C$ và $B O C$ có tổng bằng $180^{\circ}$ nên hai tia $O A, O B$ đối nhau.

ĐƯỜNG TRUNG TRỰC – HAI GÓC CÓ CẠNH TƯƠNG ỨNG VUÔNG GÓC

Bài 10. Cho đoạn thẳng $A B=2 a$. Lấy các điểm $E$ và $F$ nằm giữa $A$ và $B$ sao cho $A E=B F$. Chứng tỏ rằng hai đoạn thẳng $A B$ và $E F$ cùng có chung một đường trung trực.

Hướng dẫn giải

  • Trường hợp $A E=B F<a$ :

Gọi $M$ là trung điểm của $A B$. Khi đó $M A=M B=a$.
Điểm $E$ nằm giữa hai điểm $A$ và $M$, điểm $F$ nằm giữa hai điểm $B$ và $M$.

Do đó $M E=M A-A E=a-A E ; M F=M B-B F=a-B F$.
Vì $A E=B F$ nên $M E=M F$. Vậy $M$ là trung điểm chung của hai đoạn thẳng $A B$ và $E F$. Qua $M$ vẽ $x y \perp A B$ thì $x y$ là đường trung trực chung của $A B$ và $E F$.

  • Trường hợp $A E=B F>a$ : Chứng minh tương tự.

Bài 11. Cho bốn điểm $M, N, P, Q$ nằm ngoài đường thẳng $x y$. Biết $M N \perp x y ; P Q \perp x y$ và $x y$ là đường trung trực của đoạn thẳng $N P$. Chứng tỏ rằng bốn điểm $M, N, P, Q$ thẳng hàng.

Hướng dẫn giải

Ta có $M N \perp x y ; N P \perp x y$ (vì $x y$ là đường trung trực của $N P$ ). Qua điểm $N$ chỉ vẽ được một đường thẳng vuông góc với $x y$, suy ra ba điểm $M, N, P$ thẳng hàng. (1)

Ta có $N P \perp x y ; P Q \perp x y$. Qua điểm $P$ chỉ vẽ được một đường thẳng vuông góc với $x y$, suy ra ba điểm $N, P, Q$ thẳng hàng. (2)

Từ (1) và (2) suy ra các điểm $M, N, P, Q$ thẳng hàng vì chúng cùng thuộc đường thẳng $N P$.

Bài 2.12. Hai góc gọi là có cạnh tương ứng vuông góc nếu đường thẳng chứa mỗi cạnh của góc này tương ứng vuông góc với đường thẳng chứa một cạnh của góc kia.

Xem hình $2.8(\mathrm{a}, \mathrm{b})$ rồi kể tên các góc nhọn (hoặc tù) có cạnh tương ứng vuông góc.


Hướng dẫn giải

Trên hình 2.8a) có $A H \perp O x, A K \perp O y$ nên các góc có cạnh tương ứng vuông góc là: góc $H A K$ và góc $x O y$; góc $H A t$ và góc $x O y$.
Trên hình 2.8 b ) có $A B \perp A C$ và $A H \perp B C$ nên các góc có cạnh tương ứng vuông góc là: góc $B A H$ và góc $C$; góc $C A H$ và góc $B$.

Suy luận phản chứng (phần 2)

Phép phản chứng trong toán học còn được gọi là phương pháp chứng minh bằng mâu thuẫn. Nếu ta muốn chứng minh kết luận của bài toán là đúng thì cần phải chứng minh điều ngược lại với giả thiết là sai. Sau đây ta xét một vài ví dụ áp dụng suy luận này, dành cho các bạn hs lớp 8, 9.

1/ Ví dụ:

Ví dụ 1. 

Chứng minh rằng $\sqrt{2}$ là một số vô tỷ.

Lời giải

Giả sử $\sqrt{2}$ là số hữu tỉ. Khi đó tồn tại $a,b\in \mathbb{N}^*$ sao cho $\sqrt{2}= \dfrac{a}{b}$ với $(a,b)=1$

Ta có: $(\sqrt{2})^2=\left(\dfrac{a}{b}\right)^{2}$ hay $a^{2}=2 b^{2}\quad (1)$

Suy ra a là số chẵn, ta có: $\mathrm{a}=2 \mathrm{c}$ với $c\in Z$

Thay $\mathrm{a}=2 \mathrm{c}$ vào (1) ta được: $(2 c)^{2}=2 b^{2}$ hay $b^{2}=2 c^{2}$

Do đó, b là số chẵn

Hai số a và $b$ đều số chẵn $\Rightarrow$ Mâu thuẫn với $(1)$

Vậy $\sqrt{2}$ là số vô tỉ.

Ví dụ 2. 

Chứng minh rằng tổng của một số hữu tỷ và một số vô tỷ là số vô tỷ.

Lời giải

Giả sử tổng của số hữu tỉ a vs số vô tỉ b là số hữu tỉ c, ta có: $\mathrm{b}=\mathrm{c}-\mathrm{a}$

Mà hiệu của 2 số hữu tỉ phải là số hữu tỉ nên $b$ là số hữu tỉ

$\Rightarrow$ Mâu thuẫn vs giả thiết

Vậy tổng của 1 số hữu tỉ với 1 số vô tỉ là 1 số vô tỉ.

Ví dụ 3. (Nguyên lý Dirichlet)

Có $nk + 1$ viên bi, bỏ vào trong $k$ cái hộp. Chứng minh rằng có ít nhất một hộp có ít nhất là là $n+1$ viên bi.

Lời giải

Giả sử tất cả các hộp đều chứa số bi không vượt quá $n$ viên, khi đó tổng số bi không vượt quá $nk$, mâu thuẫn. Vậy phải có một hộp chứa nhiều hơn $n$ viên bi $\Rightarrow$ đpcm.

2/ Bài tập

Bài 1. 

Cho 15 số phân biệt thỏa mãn tổng của 8 số bất kì lớn hơn tổng của 7 số còn lại. Chứng minh tất cả các số đã cho đều dương.

Lời giải

Gọi 15 số đã cho là $a_1<a_2<a_3<\cdots <a_{15}$. Ta chỉ cần chứng minh $a_1 > 0$.

Thật vậy, giả sử $a_1 \leq 0$, khi đó $$a_1 + a_2 + \cdots + a_8 \leq a_2 + a_3 + \cdots a_8 < a_9 + \cdots a_{15}$$ (mâu thuẫn).

Vậy điều giả sử là sai, hay  $0<a_1\Rightarrow 15$ số đã cho đều dương.

Bài 2. 

Từ 8 số nguyên dương không lớn hơn 20, chứng minh rằng có thể chọn ra 3 số $x, y, z$ là độ dài 3 cạnh của một tam giác.

Lời giải

Gọi 8 số nguyên dương không lớn hơn 20 là $a_{1}, a_{2}, a_{3}, \ldots, a_{8}$

$$ \text { với } 1 \leq a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq \ldots \ldots \leq a_{8} \leq 20 $$

Nhận thấy rằng với ba số nguyên dương $a, b, c$ thỏa mãn $a \geq b \geq c$ và $b+c>a$ thì khi đó $a, b, c$ là độ dài 3 cạnh tam giác.

Giả sử trong các số $a_{1}, a_{2}, a_{3}, a_{4}, \ldots . a_{8}$ không chọn được 3 số nào là độ dài 3 cạnh của tam giác thì ta có:

$$a 3 \geq a 1+a 2 \geq 1+1=2$$

$$a 4 \geq a 2+a 3 \geq 1+2=3$$

$$a 5 \geq a 3+a 4 \geq 2+3=5$$

$$a 6 \geq a 4+a 5 \geq 3+5=8$$

$$a 7 \geq a 5+a 6 \geq 5+8=13$$

$$a 8 \geq a 6+a 7 \geq 13+8=21$$

$\Rightarrow$ Trái với giả thiết

Vậy điều giả sử là sai

$\Rightarrow$ đpcm.

Bài 3. 

Cho tập $B = {1, 2, 3, …, 16}$. Người ta ghi các số của tập B thành một vòng tròn (mỗi số ghi một lần). Hỏi có cách ghi để tổng thỏa:

a/ Tổng của hai số kề nhau bất kì lớn hơn hoặc bằng 17 được không? Tại sao?

b/ Tổng của ba số kề nhau bất kì lớn hơn 24 được không? Tại sao?

Lời giải

a/ Giả sử tồn tại cách ghi thỏa mãn. Khi đó, gọi 2 số kề với 1 là a và b.

Theo giả thiết, ta có:

$\left\{\begin{array}{l} 1 + a \geqslant 17  \\1 + b \geqslant 17  \end{array} \right. \Rightarrow \left\{\begin{array}{l}  a \geqslant 16 \\ b \geqslant 16 \end{array} \right. \Rightarrow$ Mâu thuẫn.

Vậy không tồn tại cách ghi thỏa mãn.

b/ Giả sử tồn tại cách ghi thỏa mãn.

Khi đó, ta tách số 16 ra và chia 15 số còn lại thành 5 bộ 3 số kề nhau. Và tổng của 16 số này phải lớn hơn hoặc bằng: $16+5\cdot 25=141$

Mà $1+2+3+\cdots 16=136 \Rightarrow $ Mâu thuẫn

Vậy không tồn tại cách ghi thỏa mãn.

Bài 4. 

Có thể chia tập $X = \{1, 2, …, 2023\}$ thành hai tập rời nhau sao cho tổng các phần tử thuộc tập này bằng 2 lần tổng các phần tử thuộc tập kia?

Lời giải

Giả sử có thể chia tập $X$ thành hai tập rời nhau $A$ và $B$ sao cho tổng các phần tử thuộc A bằng 2 lần tổng các phần tử thuộc B.

Khi đó, tổng các phần tử của 2 tập hợp này phải chia hết cho 3.

Mà ta có: $1+2+3+\cdots +2023=\dfrac{2023\cdot 2024}{2}=1012\cdot 2023 \not \vdots \ 3 \Rightarrow$ Mâu thuẫn

Vậy không thể chia tập $X$ thành hai tập rời nhau $A$ và $B$ sao cho tổng các phần tử thuộc $A$ bằng 2 lần tổng các phần tử thuộc $B$.

Bài 5. 

Một bảng vuông $8 \times 8$ khuyết các ô vuông ở hai góc đối diện. Hỏi có thể phủ các ô của bảng vuông bằng các hình Domino $1 \times 2$ mà không có quân Domino nào chồng lên nhau được không? Tại sao?

Lời giải

Không có mô tả.

Giả sử có thể phủ các ô của bảng vuông bằng các hình Domino $1 \times 2$ mà không có quân Domino nào chồng lên nhau.

Mỗi quân Domino lát vào bàn cờ luôn chiếm một ô trắng và một ô đen. Do đó, để lát được phần còn lại của bàn cờ thì số ô trắng và số ô đen bằng nhau. Mà số ô màu trắng và số ô màu đen trong phần còn lại của bàn cờ không bằng nhau. Điều này mâu thuẫn.

Vậy không thể lát được phần còn lại của bàn cờ bằng các quân Domino.

TẬP HỢP – TẬP HỢP SỐ

Ví dụ 1.1. Số nguyên $A$ được tạo thành bằng các chữ viết liền nhau các số nguyên dương từ 1 đến 60 theo thứ tự từ nhỏ đến lớn: $A=123 \ldots 585960$.
(a) Hãy chỉ ra cách xóa 100 chữ số của $A$ sao cho số $A_1$ tạo bởi các chữ số còn lại là nhỏ nhất.
(b) Hãy chỉ ra cách xóa 100 chữ số của $A$ sao cho số $A_2$ tạo bởi các chữ số còn lại là lớn nhất.

Hướng dẫn giải

(a) Số $A$ có $9+2.51=111$ chữ số. Sau khi xóa 100 chữ số của $A$ ta còn 11 chữ số.
Ta có: $A=12 \ldots 10 \ldots 20 \ldots 30 \ldots 40 \ldots 50 \ldots 60$ có 6 chữ số 0 .
Để $A_1$ nhỏ nhất ta sẽ xóa sao cho $A_1$ có nhiều số 0 đứng đầu nhất.
Theo phân bố của các số 0 trong $A$ thì số $A_1$ có thể có tối đa 5 chữ số 0 đứng đầu. Còn lại 6 chữ số của $A_1$ sẽ được lấy từ dãy số sau: 51525354555657585960 .
Vậy số $A_1=00000123450$ là số nhỏ nhất cần tìm.
(b) Tương tự lập luận ở câu a)
Ta có: $A=1 \ldots 9 \ldots 19 \ldots 29 \ldots 39 \ldots 49 \ldots 5960$ có 6 chữ số 9 .
Để $A_2$ lớn nhất thì ta sẽ xóa sao cho $A_2$ có nhiều số 9 đứng đầu nhất.
Theo phân bố của các số 9 trong $A$ thì số $A_2$ có thể có tối đa 5 chữ số 9 đứng đầu. Còn lại 6 chữ số của $A_2$ sẽ được lấy từ dãy số sau: 51525354555657585960 .
Vậy số $A_2=99999785960$ là số lớn nhất cần tìm.

Ví dụ 1.2. Cho tập $A=\{1,2,3, \ldots, 9\}$.
(a) Hãy chỉ ra một cách chia tập $A$ thành 3 tập con rời nhau, có số phần tử bằng nhau và tổng các phần tử bằng nhau.
(b) Tìm tất cả cách chia trong câu a.

Hướng dẫn giải

(a) $A_1=\{1,5,9\}, A_2=\{2,6,7\}, A_3=\{3,4,8\}$ là một cách chia thỏa đề bài.
(b) Tổng các phần tử là $1+2+\cdots+9=45$ do đó mỗi tập hợp có tổng là 15 và có 3 phần tử.
Dễ thấy $1,2,3$ không cùng một tập hợp, vì nếu cùng thì phần tử còn lại sẽ lớn hơn hoặc bằng 10 (vô lý).
Giả sử $1 \in A_1, 2 \in A_2, 3 \in A_3$. hai phần tử còn lại của $A_1$ là $a, b$, ta có $a+b=14$, chỉ có thể là 6,8 hoặc 5,9.
Nếu $6,8 \in A_1$, thì hai phần tử thuộc $A_2$ tổng là 13, chỉ có thể là 4,9 .
Khi đó $5,7 \in A_3$. Ta có các kết quả $A_1=\{1,6,8\}, A_2=\{2,4,9\}, A_3=\{3,5,7\}$.
Nếu $5,9 \in A_1$, thì hai phần tử thuộc $A_2$ có tổng 13 là 6,7.
Khi đó $4,8 \in A_3$. Các kết quả là $A_1=\{1,5,9\}, A_2=\{2,6,7\}, A_3=\{3,4,8\}$.

Ví dụ 1.3. Biết rằng:
$$
A=\{1 ; a\}, B=\{a ; b ; 3\}, C=\{2 ; 4 ; c\}, D=\{a ; b ; 4\}, E=\{a ; b ; c ; e\}
$$
và biết $A \subset D ; B \subset E ; C \subset E ; D \subset E$. Tìm các phần tử $a, b, c, e$.

Hướng dẫn giải

Từ $A \subset D$, suy ra $b=1$.
Từ $B \subset E$, thì một trong hai số $c$ hoặc $e$ phải là $3(1)$.
Từ $D \subset E$ thì một trong hai số $c$ hoặc $e$ phải là $4(2)$.
Từ $C \subset E$ và (1),(2) thì $c, e$ không nhận giá trị 2 nên $a=2$ và $e=4$, suy ra $c=3$.
Vậy $a=2, b=1, c=3, e=4$.

Ví dụ 1.4. Tập hợp $M$ chứa 4 số nguyên phân biệt được gọi là tập liên kết nếu với mỗi $x \in M$ thì ít nhất một trong hai số $x-1, x+1$ thuộc $M$. Gọi $U_n$ là số tập con liên kết của tập $\{1,2, \ldots, n\}$.
(a) Tính $U_7$.
(b) Xác định giá trị nhỏ nhất của $n$ sao cho $U_n \geq 2019$.

Hướng dẫn giải

Gọi $a<b<c<d$ là 4 phần tử của một tập liên kết M.
Vì $a-1 \notin M $ nên $a+1 \in M$, suy ra $b=+1$. Vì $d-1 \in M$, suy ra $c=d-1$.
Như vậy một tập liên kết sẽ có dạng $\{a+1, d-1, d\}$, với $\{d-a>2\}$.
(a) Có 10 tập con liên kết của tập $\{1,2,3,4,5,6,7\}$ là
$$
\begin{aligned}
& \{1,2,3,4\},\{1,2,4,5\},\{1,2,5,6\},\{1,2,6,7\}, \
& \{2,3,4,5\},\{2,3,5,6\},\{2,3,6,7\}, \
& \{3,4,5,6\},\{3,4,6,7\},\{4,5,6,7\} .
\end{aligned}
$$
(b) Gọi $D=d-a+1$ là đường kính của tập $\{a, b=a+1, c=d-1, d\}$, hiển nhiên $3<D \leq$ $n-1+1=n$.
Với $D=4$ sẽ có $n-3$ tập liên kết, với $D=5$ sẽ có $n-4$ tập liên kết, …, với $D=n$ sẽ có đúng một tập liên kết. Do đó
$$
U_n=1+2+\ldots+(n-3)=\dfrac{(n-3)(n-2)}{2} .
$$
Do đó $U_n \geq 2019 \Leftrightarrow(n-3)(n-2) \geq 4038$. Như vậy giá trị nhỏ nhất của $n$ là $n=67$.

Ví dụ 1.5. Chứng minh rằng với mọi số dương $m$ thì $\dfrac{2 m}{m^2+5}$ không thể là số nguyên.

Hướng dẫn giải

Ta có $0<\dfrac{2 m}{m^2+5}<1$ nên $\dfrac{2 m}{m^2+5}$ không thể là số nguyên.

Ví dụ 1.6. (Đề tuyển sinh vào lớp 10 chuyên toán trường PTNK năm 2014) Cho 5 số tự nhiên phân biệt sao cho tổng của ba số bất kỳ trong chúng lớn hơn tổng của hai số còn lại.
(a) Chứng minh rằng tất cả 5 số đā cho đều không nhỏ hơn 5 .
(b) Tìm tất cả các bộ gồm 5 số thỏa mãn đề bài mà tồng của chúng nhỏ hơn 40 .

Hướng dẫn giải

(a) Gọi 5 số đó là $a, b, c, d, e$, do các số là phân biệt nên ta có thể giả sử $ad+e$, suy ra $a+b+c \geq d+e+1$. Suy ra $a \geq d+e+1-b-c$.
Mặt khác, do $b, c, d, e$ là số tự nhiên nên từ $d>c>b$ ta có $d \geq c+1 \geq b+2$, suy ra $d-b \geq 2$. $e>d>c$, suy ra $e-c \geq 2$.
Do đó $a \geq(d-b)+(e-c)+1 \geq 5$. Suy ra $b, c, d, e>5$.
Vậy các số đều không nhỏ hơn 5.
(b) Nếu $a \geq 6$, suy ra $b \geq 7, c \geq 8, d \geq 9, e \geq 10$, suy ra $a+b+c+d+e \geq 40$ ( vô lý),
suy ra $a<6$.
Theo câu a ta có $a=5$. Khi đó $b+c+5 \geq d+e+1$, suy ra $b+c \geq d+e-4$.
Mà $d-2 \geq b, e-2 \geq c$, suy ra $d+e-4 \geq b+c$. Do đó $b=d-2, c=e-2$.
Khi đó $a+b+c+d+e=5+2 b+2 c+4<40$. Suy ra $b+c<\dfrac{31}{2}$. Suy ra $b \geq 7$.
Từ đó ta có $b=6, b=7$.
Nếu $b=6$ ta có $d=8, c=8, e=10$. Ta có bộ $(5,6,7,8,9)$
Nếu $b=7, d=9, c=8, e=10$.
Ta có bộ $(5,7,8,9,10)$. Vậy có hai bộ số thỏa đề bài là $(5,6,7,8,9)$ và $(5,7,8,9,10)$.

Ví dụ 1.7. Trong một buôn của người dân tộc, cư dân có thể nói được tiếng dân tộc, có thể nói được tiếng Kinh hoặc nói được cả hai thứ tiếng. Kết quả của một đợt điều tra cơ bản cho biết:
Có 912 người nói tiếng dân tộc,
Có 653 người nói tiếng Kinh,
Có 435 người nói được cả hai thứ tiếng.
Hỏi buôn làng có bao nhiêu cư dân ?

Hướng dẫn giải

Gọi $A$ là tập các người các người nói tiếng dân tộc, ta có $|A|=912, B$ là tập các người nói tiếng Kinh, ta có $|B|=653$. Khi đó $|A \cap B|=435$.
$A \cup B$ là tập các người dân trong buông.
Ta có
$$
|A \cup B|=|A|+|B|-|A \cap B|=912+653-435=1130
$$

Bài 1.1. Viết các số từ 1 đến 9 vào một bảng vuông $3 \times 3$, mỗi số viết một lần, sao cho tồng số ở mỗi dòng, mỗi cột và hai đường chéo đều được số chia hết cho 9 .
(a) Chỉ ra một cách viết thỏa đề bài.
(b) Với cách viết thỏa đề bài thì ô chính giữa có thể là các số nào? Tại sao?

Hướng dẫn giải

(a)
(b) Giả sử ta có bảng sau thỏa đề bài

Ta có $a+e+k, c+e+g, d+e+f, b+e+h$ chia hết cho 9 .

$$
a+e+k+c+e+g+d+e+f+b+e+h=3 e+a+b+c+d+e+f+g+h+k=3 e+45
$$
nên $3 e+45$ chia hết cho 9 , do dó $e$ chia hết cho 3 , vậy $e \in\{3,6,9\}$.

Bài 1.2. Tích của $n$ số nguyên bằng 1 và tổng của chúng bằng 0 . Chứng minh rằng $n$ là một số chia hết cho 4 .

Hướng dẫn giải

Gọi $n$ số đó là $a_1, a_2, \cdots, a_n$. Ta có
$$
a_1+a_2+\cdots+a_n=0
$$

$$
a_1 \cdot a_2 \cdots a_n=1
$$
nên các số $a_i \in\{-1 ; 1\}$, mà tổng bằng 0 nên số các số 1 bằng số các số -1 , do đó $n$ chẵn, đặt $n=2 k$, khi đó
$$
1=a_1 \cdot a_2 \cdots a_n=(-1)^k
$$
Do đó $k$ cũng chẵn, suy ra $n$ chia hết cho 4.

Bài 1.3. Tập hợp $\mathrm{A}$ bao gồm các số tự nhiên thỏa các điều kiện sau:
(a) $1 \in A$;
(b) Nếu $n \in A$ thì $2 n+1 \in A$;
(c) Nếu $3 n+1 \in A$ thì $n \in A$;
Vậy 8 có thuộc $A$ không ?

Hướng dẫn giải

$\{1,3,7,15,31,63,127\} \in A$, và $\{42,85,171,343,114,229,76,25,8\} \in A$

Bài 1.4. Giả sử $x, y, z, t$ là bốn số khác nhau và là các phần tử của tập hợp
$$
A=\{1 ; 2 ; 3 ; 4\} .
$$
Tìm $x, y, z, t$ với các giả thiết:
Nếu $x \neq 1$ thì $z \neq 2$;
Nếu $t=2$ thì $y \neq 1$;
Nếu $y=2$ hoặc $y=3$ thì $x=1$;
Nếu $y \neq 3$ thì $z=4$;
Nếu $t \neq 1$ thì $y=1$.

Hướng dẫn giải

Bài 1.5. Một nhóm 6 học sinh làm bài kiểm tra môn toán được điểm là số tự nhiên từ 1 đến 10 . Hai bạn được gọi là bạn tốt nếu điểm trung bình của 2 bạn đó lớn điểm trung bình của 6 bạn.
(a) Có thể chia 6 bạn thành 3 cặp bạn tốt được không? Tại sao?
(b) Nếu số điểm của 6 bạn là khác nhau, chứng minh rằng có 2 bạn có số điểm hơn kém nhau là 1 .

Hướng dẫn giải

Gọi số điểm các bạn lằn lượt là $a_1, a_2, a_3, a_4, a_5, a_6$, và $a_i \in\{1,2,3,4,5,6,7,8,9,10\}$.
Đặt $s=a_1+a_2+a_3+a_4+a_5+a_6$
(a) Giả sử chia được thành 3 cặp bạn tốt, giả sử là các cặp $a_1, a_2 ; a_3, a_4$ và $a_5, a_6$ ta có
$$
\dfrac{a_1+a_2}{2}>\dfrac{s}{6}, \dfrac{a_3+a_4}{2}>\dfrac{s}{6}, \dfrac{a_5+a_6}{2}>\dfrac{s}{6}
$$
Suy ra
$$
\dfrac{a_1+a_2+a_3+a_4+a_5+a_6}{2}>\dfrac{s}{2}
$$

Điều này mâu thuẫn.
(b) Giả sử không có bạn nào hơn kém nhau là 1 , thì giả sử $a_1<a_2<a_3<a_4<a_5<a_6$ Suy ra $a_2 \geq 3, a_3 \geq 5, \cdots, a_6 \geq 11$, vô lí.

Bài 1.6. Trong kỳ thi tốt nghiệp THPT ở một trường, kết quả số thí sinh đạt danh hiệu xuất sắc nhu sau:
Về môn Toán: 48 thí sinh,
Về Toán hoặc Văn: 76 thí sinh,
Về Vật lí: 37 thí sinh,
Về Văn: 42 thí sinh,
Về Vật lí hoặc Văn: 66 thí sinh,
Về Toán hoặc Vật lí: 75 thí sinh,
Về cả ba môn: 4 thí sinh.
Vậy có bao nhiêu học sinh chỉ nhận được danh hiệu xuất sắc về:
(a) 1 môn ?
(b) 2 môn?
(c) Ít nhất 1 môn?

Hướng dẫn giải

Sử dụng biểu đồ Venn. Kí hiệu $A, B, C$ là tập hợp các học sinh đạt danh hiệu xuất sắc tương ứng với các môn Toán, Vật lí hoặc Văn. Các tập hợp này, theo giả thiết thì có 48,37 và 42 phần tử. Giao của ba tập hợp này có 3 phần tử. Kí hiệu qua $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ là số các thí sinh đạt danh hiệu xuất sắc.

Theo 1,2 hoặc 3 môn. Dựa vào biểu đồ Venn ta lập được các phương trình:
$$
\left\{\begin{array}{l}
a+x+y=44 \\\
b+x+z=33 \\\
a+b+x+y+z=71 \\\
a+c+x+y+z=72 \\\\
b+c+x+y+z=62
\end{array}\right.
$$
Ta có được một hệ 6 phương trình với 6 ần, nhưng diều mà ta cần biết không phải là các giá trị ẩn $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ mà là các tổng $\mathrm{a}+\mathrm{b}+\mathrm{c}, \mathrm{x}+\mathrm{y}+\mathrm{z}$.
Muốn vậy, ta cộng ba phương trình đầu của hệ và sau đó cộng ba phương trình sau của hệ với nhau và được:
$$
\left\{\begin{array}{l}
a+b+c+2(x+y+z)=115 \\\
2(a+b+c)+3(x+y+z)=205
\end{array}\right.
$$
Xem hệ này như là một hệ phương trình hai ẩn, ta tính được:

$$
\begin{aligned}
& a+b+c=65 \
& x+y+z=25
\end{aligned}
$$

Đáp số: 65 thí sinh đạt danh hiệu xuất sắc 1 môn, 25 thí sinh đạt danh hiệu xuất sắc 2 môn, 94 thí sinh đạt danh hiệu xuất sắc ít nhất 1 môn.

Bài 1.7. Một số $m$ được gọi là số ma thuật nếu tổng các chữ số của nó bằng tích các chữ số của nó. Ví dụ số 213 ta có $2+1+3=2 \times 1 \times 3$.
(a) Chứng minh rằng có số ma thuật có $1,2,3,4,5$ chữ số.
(b) Có số ma thuật có 6 chữ số hay không? Tại sao?
(c) Chứng minh rằng có số ma thuật có 2037 chữ số.

Hướng dẫn giải

(a) Các số ma thuật có $1,2,3,4,5$ chữ số là: $1,22,123,4211,52111$.
(b) Số ma thuật có 6 chữ số: 621111
(c) $22222222222111 \ldots .1,11$ chữ số 2 và 2025 chữ số 1 .

Bài 1.8. Có thể viết các số tự nhiên từ 1 đến 16 thành
(a) một đường thẳng
(b) một đường tròn
sao cho tồng hai số liên tiếp là bình phương của một số tự nhiên dược không? Tại sao

Hướng dẫn giải

(a) $8,1,15,10,6,3,13,12,4,5,11,14,2,7,9,16$.
(b) Giả sử tồn tại cách ghi thỏa đề bài, ta xét hai số kề bên số 8 , gọi là $a, b$ thì $8+a, 8+b$ đều là số chính phương, suy ra $a=b=1$, vô lí. Vậy không tồn tại cách ghi thỏa đề bài.

Bài 1.9. Cho $A$ là tập con của tập các số hữu tỷ dương thỏa mãn các điều kiện sau:
$1 \in A$
Nếu $x \in A$ thì $1+x \in A$
Nếu $x \in A$ thì $\dfrac{1}{x} \in A$

Hướng dẫn giải

(c) $\dfrac{13}{5}=2+\dfrac{3}{5}$.
Ta có $\dfrac{3}{5}=\dfrac{1}{1+\dfrac{2}{3}} \dfrac{3}{2} \in A \Rightarrow \dfrac{2}{3} \in A \Rightarrow \dfrac{5}{3}=1+\dfrac{2}{3} \in A$, do đó $\dfrac{3}{5} \in A$, hơn nữa $2 \in A$, suy ra $\dfrac{13}{5}=2+\dfrac{3}{5} \in A$.

Bài 1.10. Trên bảng có ghi các số tự nhiên từ 1 đến $n$. Cứ mỗi lần một học sinh xóa đi hai số và thay bằng tổng hoặc hiệu của hai số đó.
(a) Cho $n=8$ hỏi sau 7 lần có thể số trên bảng còn lại số 0 dược không?
(b) Câu hỏi tương tự với $n=9$.

Hướng dẫn giải

(a) Câu trả lời là thực hiện được, ta làm như sau:
$1,2,3,4,5,6,7,8$
$1,2,3,4,5,6,1$
$1,2,3,4,1,1$
$1,2,1,1,1$
$1,1,1,1$,
$1,1,0$
$0,0$
$0$
(b) Câu trả lời là không, vì mổi lần thay đổi thì tổng các số còn lại tính chẵn lẻ khồng đổi, tổng lúc đầu là $1+2+\cdots+9=45$ nên sau một số lần thay đổi thì số còn lại phải là số lẻ, không thể bằng 0 .

Bài 1.11. Có bao nhiêu cách viết số 1 thành tồng của 3 phân số mà mỗi phân số có tử số bằng 1 và mẫu số là một số tự nhiên? Tại sao?

Hướng dẫn giải

$$
1=\dfrac{1}{6}+\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}
$$

Bài 1.12. Chứng minh rằng giữa hai số hữu tỉ phân biệt luôn có một số hữu tỉ.

Hướng dẫn giải

Cho $a, b \in \mathbb{Q}, a<b$. Xét $c=\frac{a+b}{2}$ ta có $a<c<b$ và $c \in \mathbb{Q}$.

Bài 1.13. Gọi $S$ là tập hợp các số tự nhiên có thể viết thành tổng bình phương của hai số tự nhiên khác, ví dụ $5=1^2+2^2$ thì $5 \in S$. Chứng minh rằng nếu $x, y \in S$ thì $x y \in S$.

Hướng dẫn giải

Cho $a, b \in S$ ta có $a=x^2+y^2, b=z^2+t^2$, khi đó
$$
a b=\left(x^2+y^2\right)\left(z^2+t^2\right)=x^2 z^2+y^2 t^2+x^2 t^2+y^2 z^2=(x z+t y)^2+(x z-t y)^2
$$
Do đó $a b \in S$.

Bài 1.14. Cho $a, b$ là các số nguyên dương phân biệt, chứng minh rằng 1 không là nghiệm của phương trình $x^2-2(a+b) x+a b+2=0$.

Hướng dẫn giải

Giả sử 1 là nghiệm của phương trình ta có
$$
1^2-2(a+b) 1+a b+2=0 \Leftrightarrow a b-2 a-2 b+3=0 \Leftrightarrow(a-2)(b-2)=1
$$
Do $a, b$ là các số nguyên dương nên $a=1, b=1$ hoặc $a=3, b=3$ mâu thuẫn vì $a \neq b$.

Bài 1.15. Cho các số $a_1, a_2, \cdots, a_6$ thỏa $-\dfrac{1}{2} \leq a_i \leq \dfrac{1}{2}$ và tổng của 5 số bất kì là một số nguyên. Chứng minh rằng 6 số này bằng nhau.

Hướng dẫn giải

Đặt $S=a_1+a_2+\cdots a_6$, ta có $S \in \mathbb{Z}$
Ta có $S-a_i \in \mathbb{Z}$ với mọi $i$.
Giả sử có hai số $a_1 \neq a_2$ ta có $S-a_1-\left(S-a_2\right) \in \mathbb{Z} \Rightarrow a_2-a_1 \in \mathbb{Z}$, suy ra $a_1, a_2 \in\{\dfrac{1}{2},-\dfrac{1}{2}\}$, do $a_1 \neq a_2$ nên $a_1=\dfrac{1}{2}, a_2=-\dfrac{1}{2}$ hoặc $a_1=\dfrac{-1}{2}, a_2=\dfrac{1}{2}$.
Tương tự xét cặp số giữa $a_1$ với các số $a_3,a_4, a_5, a_6$ ta có cũng có các số còn lại thuộc $\{\dfrac{1}{2}, \dfrac{-1}{2}\}$, do đó tổng 5 số lúc này không thể là số nguyên.