Bài viết dành cho các em trung học cơ sở, các tính chất không được sử dụng trong các bài thi vào 10 mà không chứng minh lại.

Bài viết dành cho các em trung học cơ sở, các tính chất không được sử dụng trong các bài thi vào 10 mà không chứng minh lại.
Ví dụ 1: Cho góc bẹt $A O B$ và tia $O M$ sao cho $\widehat{A O M}=60^{\circ}$. Vẽ tia $O N$ nằm trong góc $B O M$ sao cho $O N \perp O M$. Chứng tỏ rằng $\widehat{B O N}=\dfrac{1}{2} \widehat{A O M}$.
Ví dụ 2: Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O E, O F$ sao cho $\widehat{A O E}=\widehat{B O F}<90^{\circ}$. Vẽ tia phân giác $O M$ của góc $E O F$. Chứng tỏ rằng $O M \perp A B$. Ví dụ 3: Cho góc tù $A O B$. Vẽ vào trong góc này các tia $O M, O N$ sao cho $O M \perp O A, O N \perp O B$. Vẽ tia $O K$ là tia phân giác của góc $M O N$. Chứng tỏ rằng tia $O K$ cũng là tia phân giác của góc $A O B$. Bài tập vận dụng Bài 1. Cho hai đường thẳng $A B$ và $C D$ vuông góc với nhau tại $O$. Vẽ tia $O K$ là tia phân giác của góc $A O C$. Tính số đo góc $K O D$ và $K O B$. Bài 2. Cho góc $A O B$ và tia $O C$ nằm trong góc đó sao cho $\widehat{A O C}=4 \widehat{B O C}$. Vẽ tia phân giác $O M$ của góc $A O C$. Tính số đo của góc $A O B$ nếu $O M \perp O B$. Bài 3. Cho góc tù $A O B, \widehat{A O B}=m^{\circ}$. Vẽ vào trong góc này các tia $O C, O D$ sao cho $O C \perp O A ; O D \perp O B$. Do đó, $\widehat{A O D}=\widehat{D O C}=\widehat{C O D} \Leftrightarrow \widehat{A O B}=3 \cdot \widehat{D O C}=3.45^{\circ}=135^{\circ} \Leftrightarrow m=135$ CHỨNG MINH HAI ĐƯỜNG THẲNG VUÔNG GÓC Bài 4. Trong hình 2.7 có góc $M O N$ là góc bẹt, góc $A O C$ là góc vuông. Các tia $O M, O N$ lần lượt là các tia phân giác của các góc $A O B$ và $C O D$. Chứng tỏ rằng $O B \perp O D$. Bài 5. Cho góc nhọn $A O B$. Trên nửa mặt phẳng bờ $O A$ có chứa tia $O B$, vẽ tia $O C \perp O A$. Trên nửa mặt phẳng bờ $O B$ có chứa tia $O A$ vẽ tia $O D \perp O B$. Gọi $O M$ và $O N$ lần lượt là các tia phân giác của các góc $A O D$ và $B O C$. Chứng tỏ rằng $O M \perp O N$. Bài 6. Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O M$ và $O N$ sao cho $\widehat{A O M}=\widehat{B O N}=m^{\circ}(90<m<180)$. Vẽ tia phân giác $O C$ của góc $M O N$. CHỨNG MINH MỘT TIA LÀ TIA PHÂN GIÁC, LÀ TIA ĐỐI Bài 7. Cho góc $A O B$ có số đo bằng $120^{\circ}$. Vẽ tia phân giác $O M$ của góc đó. Trên nửa mặt phẳng bờ $O M$ có chứa tia $O A$, vẽ tia $O N \perp O M$. Trong góc $A O B$ vẽ tia $O C \perp O B$. Chứng tỏ rằng: Bài 8. Cho góc bẹt $A O B$, tia $O C \perp A B$. Vẽ tia $O M$ và $O N$ ở trong góc $B O C$ sao cho $\widehat{B O M}=\widehat{C O N}=\frac{1}{3} \widehat{B O C}$. Tìm trong hình vẽ các tia là tia phân giác của một góc. Bài 9. Cho hai tia $O M$ và $O N$ vuông góc với nhau, tia $O C$ nằm giữa hai tia đó. Vẽ các tia $O A$ và $O B$ sao cho tia $O M$ là tia phân giác của góc $A O C$, tia $O N$ là tia phân giác của góc $B O C$. Chứng tỏ rằng hai tia $O A$, $O B$ đối nhau. ĐƯỜNG TRUNG TRỰC – HAI GÓC CÓ CẠNH TƯƠNG ỨNG VUÔNG GÓC Bài 10. Cho đoạn thẳng $A B=2 a$. Lấy các điểm $E$ và $F$ nằm giữa $A$ và $B$ sao cho $A E=B F$. Chứng tỏ rằng hai đoạn thẳng $A B$ và $E F$ cùng có chung một đường trung trực. Bài 11. Cho bốn điểm $M, N, P, Q$ nằm ngoài đường thẳng $x y$. Biết $M N \perp x y ; P Q \perp x y$ và $x y$ là đường trung trực của đoạn thẳng $N P$. Chứng tỏ rằng bốn điểm $M, N, P, Q$ thẳng hàng. Bài 2.12. Hai góc gọi là có cạnh tương ứng vuông góc nếu đường thẳng chứa mỗi cạnh của góc này tương ứng vuông góc với đường thẳng chứa một cạnh của góc kia. Xem hình $2.8(\mathrm{a}, \mathrm{b})$ rồi kể tên các góc nhọn (hoặc tù) có cạnh tương ứng vuông góc.
a) Chứng tỏ rằng $\widehat{A O D}=\widehat{B O C}$.
b) Tìm giá trị của $m$ để $\widehat{A O D}=\widehat{D O C}=\widehat{C O B}$.
a) Chứng tỏ rằng $O C \perp A B$.
b) Xác định giá trị của $m$ để $O M \perp O N$.
a) Tia $O C$ là tia phân giác của góc $A O M$;
b) Tia $O A$ là tia phân giác của góc $C O N$.
Ta có một số kí hiệu thường dùng.
Cho tam giác $A B C$, khi đó
Định lý Cosin trong tam giác
Định lý. Cho tam giác ABC
Khi đó ta có:
Chứng minh
Để chứng minh định lý ta có thể sử dụng định lý Pitago và tỉ số lượng giác của góc nhọn, hoặc có thể dùng tích vô hướng, ở đây tôi trình bày theo tích vô hướng.
$a^2=B C^2=(\overrightarrow{A C}-\overrightarrow{A B})^2$
$=\overrightarrow{A C}^2+\overrightarrow{A B}^2-2 \overrightarrow{A C} \cdot \overrightarrow{A B}$
$=A C^2+A B^2-2 A B \cdot A C \cos A $
$=b^2+c^2-2 b c \cdot \cos A$
Các hệ thức còn lại chứng minh tương tự.
Từ định lý trên ta dễ dàng suy ra hệ quả sau
Hệ quả.
Trong tam giác $A B C$
$$
\cos A=\frac{b^2+c^2-a^2}{2 b c} ; \cos B=\frac{a^2+c^2-b^2}{2 a c} ; \cos C=\frac{a^2+b^2-c^2}{2 a b}
$$
Từ đây suy ra tam giác $A B C$ có
$$
A<90^{\circ} \Leftrightarrow b^2+c^2>a^2
$$
và
$$
A>90^{\circ} \Leftrightarrow b^2+c^2<a^2
$$
Nhận xét:
Định lý Sin trong tam giác
Định lý.
Cho tam giác $A B C$, gọi $R$ là bán kính đường tròn ngoại tiếp tam giác $A B C$. Khi đó
$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$
Chứng minh. Vẽ đường kính $B D$, khi đó $\angle BDC = \angle BAC$ hoặc $\angle BDC = 180^\circ – \angle BAC$, suy ra:
$$
\sin B A C=\sin B D C=\frac{B C}{B D}=\frac{a}{2 R}
$$
suy ra
$$
\frac{a}{\sin A}=2 R
$$
Chứng minh tương tự ta cũng có
$$
\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$
Hệ quả
Nhận xét:
Công thức đường trung tuyến
Định lý. (Độ dài đường trung tuyến) Trong tam giác $A B C$, gọi $m_a, m_b, m_c$ lần lượt là độ dài các đường trung tuyến xuất phát từ $A, B, C$. Khi đó
Chứng minh. Ta có thể chứng minh định lý này bằng định lý Cosin, áp dụng định lý cosin cho hai tam giác $A M B, A M C$ ta có
$$
\cos A M B=\frac{A M^2+M B^2-A B^2}{2 A M \cdot M B}, \cos A M C=\frac{A M^2+M C^2-A C^2}{2 A M \cdot M C}
$$
Mà $\cos A M B+\cos A M C=0$ và $M B=M C=\frac{B C}{2}$
$$
\frac{A M^2+M B^2-A B^2}{2 A M \cdot B M}+\frac{A M^2+M C^2-A C^2}{2 A M \cdot M C}=0
$$
Từ đó ta có $2 A M^2=A B^2+A C^2-M B^2-M C^2$ hay $A M^2=\frac{1}{2}\left(A B^2+A C^2\right)-\frac{1}{4} B C^2$, ta có điều cần chứng minh.
Công thức tính diện tích tam giác
Định lý. Các công thức tính diện tích tam giác
Chứng minh dành cho bạn đọc.
Chứng minh các điểm thẳng hàng là một trong các dạng toán thường gặp trong các bài toán về vector, trong bài trình trình bày một số ví dụ, thông qua đó các em có thêm kinh nghiệm giải dạng toán này.
Tính chất 1. Cho $A, B, C$ là 3 điểm phân biệt.
a) $A, B, C$ thẳng hàng khi và chỉ khi $\overrightarrow{A B}, \overrightarrow{A C}$ cùng phương khi và chỉ khi tồn tại $k$ sao cho $\overrightarrow{A B}=k \cdot \overrightarrow{A C}$.
b) Giả sử $\overrightarrow{A B}=x \vec{a}+y \vec{b}$ và $\overrightarrow{A C}=x^{\prime} \vec{a}+y^{\prime} \vec{b}$. Khi đó $A, B, C$ thẳng hàng khi và chỉ khi tồn tại $k$ để $x=k x^{\prime}, y=k y^{\prime}$ hay $\frac{x}{x^{\prime}}=\frac{y}{y^{\prime}}$.
Tính chất 2. Cho 2 điểm $A, B$ phân biệt và điểm $O$ nằm ngoài đường thẳng $A B$. Khi đó điểm $M$ thuộc đường thẳng $A B$ khi và chỉ khi tồn tại các số $x, y$ thỏa $x+y=1$ và
$$
\overrightarrow{O M}=x \cdot \vec{a}+y \cdot \vec{b}
$$
Ví dụ 1. Cho tam giác $A B C$. Gọi $M$ là trung điểm $A B, N$ thỏa $\overrightarrow{N A}+2 \overrightarrow{N C}=\overrightarrow{0}$ và P là điểm đối xứng của B qua C.
a) Chứng minh $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$
b) Chứng minh $\overrightarrow{N M}=\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}$.
c) Chứng minh $M, N, P$ thẳng hàng.
Ví dụ 2. Cho tứ giác $A B C D$. Gọi $M, N$ thuộc cạnh $A D, B C$ sao cho $A M=2 M D, B N=2 N C$. Chứng minh rằng trung điểm các đoạn thẳng $A B, M N$ và $C D$ thẳng hàng.
Ví dụ 3. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$. M là điể thỏa $\overrightarrow{B M}=x \overrightarrow{B C}, x \in \mathbb{R}$.
a) Tinh $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Tinh $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$
c) Tìm $x$ để $A, I, M$ thẳng hàng.
Bài tập rèn luyện
Bài 1. Cho tam giác $\mathrm{ABC}$. Hai điểm $\mathrm{M}, \mathrm{N}$ được xác định bởi hệ thức: $\overrightarrow{B C}+\overrightarrow{M A}=\overrightarrow{0}, \overrightarrow{A B}-$ $\overrightarrow{N A}-3 \overrightarrow{A C}=\overrightarrow{0}$. Chứng minh $M N \parallel A C$.
Bài 2. Cho $3 \overrightarrow{O A}+2 \overrightarrow{O B}-5 \overrightarrow{O C}=\overrightarrow{0}$. Chứng minh $A, B, C$ thẳng hàng.
Bài 3. Cho tam giác $A B C$ có trung tuyến $A M$. Gọi $I$ là trung điểm $A M$ và $K$ là trung điểm AC sao $A K=\frac{1}{3} A C$.
a) Biểu diễn các vectơ $\overrightarrow{B I}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Chứng minh các điểm $B, I, K$ thẳng hàng.
Bài 4. Cho tam giác $A B C$ có trọng tâm $G$. Gọi $I, J$ là hai điểm xác định bởi $\overrightarrow{I A}=2 \overrightarrow{I B}, 3 \overrightarrow{J A}+$ $2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tính $\overrightarrow{I f}, \overrightarrow{I G}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Chứng minh $I, J, G$ thẳng hàng.
Bài 5. Cho tam giác $A B C$. Lấy các điểm $M, N, P$ thỏa mãn
$$
\overrightarrow{M A}+\overrightarrow{M B}=\overrightarrow{0}, 3 \overrightarrow{A N}-2 \overrightarrow{A C}=\overrightarrow{0}, \overrightarrow{P B}=2 \overrightarrow{P C}
$$
Chứng minh $M, N, P$ thẳng hàng.
Tính chất 1. Cho hai vectơ $\overrightarrow{a}, \overrightarrow{b}$ khác $\overrightarrow{0}$
a) Nếu $\overrightarrow{a}, \overrightarrow{b}$ cùng phương thì tồn tại số thực $k$ sao cho $\overrightarrow{a} = k \cdot \overrightarrow{b}$.
b) Nếu $\overrightarrow{a}, \overrightarrow{b}$ không cùng phương và $ x \cdot \overrightarrow{a}+y \cdot \overrightarrow{b} = \overrightarrow{0}$, suy ra $x = y = 0$.
Chứng minh.
a) Nếu $\vec{a}, \vec{b}$ cùng phương.
b) Giả sử $x \neq 0$, suy ra $\overrightarrow{a} = \dfrac{-y}{x} \cdot \overrightarrow{b}$ cùng phương $\overrightarrow{b}$, mâu thuẫn, do đó $x = 0$, dẫn đến $y = 0$.
Tính chất 2. Cho $\overrightarrow{a}, \overrightarrow{b}$ không cùng phương, khi đó với mọi vectơ $\overrightarrow{c}$ tồn tại duy nhất cặp số $(x;y)$ thỏa mãn $$\overrightarrow{c} = x \cdot \overrightarrow{a} + y \cdot \overrightarrow{b}$$
Chứng minh
Việc biểu diễn một vec tơ theo hai vec tơ không cùng phương có nhiều ứng dụng trong việc chứng minh vec tơ bằng nhau, cùng phương, dẫn đến các bài toán chứng minh thẳng hàng, tính toán độ dài, góc, …
Ví dụ 1. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$.
a) Tính $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Cho $\overrightarrow{BM} = x \cdot \overrightarrow{BC}$. Tính $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$
Lời giải.
a) Ta có $2 \overrightarrow{A I}=\overrightarrow{A B}+\overrightarrow{A D}=\overrightarrow{A B}+\frac{3}{4} \overrightarrow{A C} \Rightarrow \overrightarrow{A I}=\frac{1}{2} \overrightarrow{A B}+\frac{3}{8} \overrightarrow{A C}$.
b) Ta có $\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+x \overrightarrow{B C}=\overrightarrow{A B}+x(\overrightarrow{A C}-\overrightarrow{A B})=(1-x) \overrightarrow{A B}+x \overrightarrow{A C}$.
Ví dụ 2. Cho tam giác $A B C$ gọi $M$ là điểm thỏa $\overrightarrow{M A}+3 \overrightarrow{M B}=\overrightarrow{0}$.
Giả sử $\overrightarrow{C M}=x \cdot \overrightarrow{C A}+y \cdot \overrightarrow{C B}$. Tính $x, y$.
Lời giải.
Ta có $\overrightarrow{0}=\overrightarrow{M A}+3 \overrightarrow{M B}=\overrightarrow{C A}-\overrightarrow{C M}+3 \overrightarrow{C B}-3 \overrightarrow{C M}$
$ \Leftrightarrow 4 \overrightarrow{C M}=\overrightarrow{C A}+3 \overrightarrow{C B} \Leftrightarrow \overrightarrow{C M}=$
$\frac{1}{4} \overrightarrow{C A}+\frac{3}{4} \overrightarrow{C B}$.
Từ đó ta có $x=\frac{1}{4}, y=\frac{3}{4}$, do sự biểu diễn $\overrightarrow{C M}$ theo $\overrightarrow{A C}, \overrightarrow{C B}$ là duy nhất.
Ví dụ 3. Cho tam giác $A B C$ và các điểm $I$, J thỏa mãn $2 \overrightarrow{C I}+3 \overrightarrow{B I}=\overrightarrow{0}, 5 \overrightarrow{J B}-2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tinh $\overrightarrow{A I}, \overrightarrow{A J}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Gọi G là trọng tâm tam giác $A B C$. Tính $\overrightarrow{A G}$ theo $\overrightarrow{A I}, \overrightarrow{A J}$.
Lời giải
Ta có:
$2 \overrightarrow{C I}+3 \overrightarrow{B I}=\overrightarrow{0} \Leftrightarrow 2 \overrightarrow{C I}+3(\overrightarrow{B C}+\overrightarrow{C I})=\overrightarrow{0} $
$\Leftrightarrow 5 \overrightarrow{C I}+3 \overrightarrow{B C}=\overrightarrow{0} \Leftrightarrow \overrightarrow{C I}=\frac{3}{5} \overrightarrow{C B} $
$ 5 \overrightarrow{J B}-2 \overrightarrow{J C}=\overrightarrow{0} \Leftrightarrow 5 \overrightarrow{J B}-2(\overrightarrow{J B}+\overrightarrow{B C})=\overrightarrow{0} $
$\Leftrightarrow 3 \overrightarrow{J B}=2 \overrightarrow{B C} \Leftrightarrow \overrightarrow{B J}=-\frac{2}{3} \overrightarrow{B C}$
a) – Tính $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
Ta có:
$$
\overrightarrow{A I}=\overrightarrow{A C}+\overrightarrow{C I}=\overrightarrow{A C}+\frac{3}{5} \overrightarrow{C B}=\overrightarrow{A C}+\frac{3}{5}(\overrightarrow{A B}-\overrightarrow{A C})=\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}
$$
b) Tính $\overrightarrow{A G}$ theo $\overrightarrow{A I}, \overrightarrow{A J}$.
Đặt $\overrightarrow{A G}=x \overrightarrow{A I}+y \overrightarrow{A J}$.
$\overrightarrow{A G} =x\left(\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}\right)+y\left(\frac{5}{3} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}\right) $
$=\left(\frac{3 x}{5}+\frac{5 y}{3}\right) \overrightarrow{A B}+\left(\frac{2 x}{5}-\frac{2 y}{3}\right) \overrightarrow{A C}$
Mặt khác, $\overrightarrow{A G}=\frac{1}{3} \overrightarrow{A B}+\frac{1}{3} \overrightarrow{A C}$
$\Rightarrow \left\{\begin{array} { l }
{ \frac { 3 } { 5 } x + \frac { 5 } { 3 } y = \frac { 1 } { 3 } } \\\\
{ \frac { 2 } { 5 } x – \frac { 2 } { 3 } y = \frac { 1 } { 3 } }
\end{array} \right.$
$ \left \{\begin{array}{l}
x=\frac{35}{48} \\\\
y=-\frac{1}{16}
\end{array}\right. $
Vậy $\overrightarrow{A G}=\frac{35}{48} \overrightarrow{A I}-\frac{1}{16} \overrightarrow{A J}$
Bài tập rèn luyện
Bài 1. Cho tam giác $A B C$ và $M$ là trung điểm cạnh $B C ; N$ là điểm thuộc đoạn $A C$ sao cho $A N=2 N C$. Chứng minh rằng:
a) $\overrightarrow{A M}=\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})$.
b) $\overrightarrow{B N}=\frac{2}{3} \overrightarrow{A C}-\overrightarrow{A B}$
c) $\overrightarrow{M N}=\frac{1}{3} \overrightarrow{C A}-\frac{1}{2} \overrightarrow{C B}$.
Bài 2. Cho tam giác $A B C$ có $I$ là điểm đối xứng với $B$ qua $C, J$ là trung điểm $A C, K$ thuộc $A B$ thoả $A B=3 A K$.
a) Tính $\overrightarrow{B I}, \overrightarrow{B J}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Tính $\overrightarrow{I f}, \overrightarrow{I K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
Bài 3. Cho tam giác $A B C$. Lấy $M, N$ lần lượt là trung điểm $A B, A C$. $L$ là điểm thoả mãn $2 \overrightarrow{L A}+5 \overrightarrow{L B}+3 \overrightarrow{L C}=\overrightarrow{0}$
a) Tính $\overrightarrow{B M}, \overrightarrow{B M}, \overrightarrow{B L}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Tính $\overrightarrow{M N}, \overrightarrow{M L}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
Bài viết trình bày một số kĩ thuật tính toán hình học để chứng minh các bài toán hình học phẳng, các định lý được dùng chính là định lý Sin, Cosin, công thức diện tích, vectơ,..và một số tính chất, bổ đề đơn giản.
Một số kí hiệu thường dùng.
Trong tam giác $ABC$, đặt $BC = a, AC = b, AB = c, p = \dfrac{a+b+c}{2}, S = S_{ABC}$, $R$ là bán kính đường tròn ngoại tiếp, $r$ là bán kính đường tròn nội tiếp.
Sau đây là một số định lý quan trọng và đã có trong các phần khác, bạn đọc có thể tự chứng minh một cách dễ dàng.
Định lý 1. (Định lý Sin) Trong tam giác $ABC$ thì $$\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R$$
Định lý 2. (Định lý Cosin) Trong tam giác $ABC$ thì $a^2 =b^2 + c^2 – 2bc \cos A$ và các hệ thức tương tự.
Định lý 3. (Định lý Ceva dạng sin) Cho tam giác $ABC$, $P$ là điểm bất kì, khi đó $$\frac{\sin \left(A A_1 ; A B\right)}{\sin \left(A A_1 ; A C\right)} \cdot \frac{\sin \left(B B_1 ; B C\right)}{\sin \left(B B_1 ; B A\right)} \cdot \frac{\sin \left(C C_1 ; C A\right)}{\sin \left(C C_1 ; C B\right)}=-1$$
Một số tính chất và bổ đề cần dùng.
Tính chất 1. Nếu $\alpha$ là góc nhọn và $0^{\circ} \leq x, y \leq \alpha$ thỏa
$$
\frac{\sin x}{\sin (\alpha-x)}=\frac{\sin y}{\sin (\alpha-y)}
$$
thì $x=y$.
Tính chất 2. Cho tam giác $A B C$. Khi đó:
(a) $S_{A B C}=\frac{1}{2} A B \cdot A C \cdot \sin B A C$.
(b) $M$ là điểm trên cạnh $B C$, khi đó $\frac{B M}{C A M}=\frac{A B \cdot \sin M A B}{A C \cdot \sin M A C}$. $M$ là trung điểm $B C$ khi và chỉ khi $\frac{A B}{A C}=\frac{\sin M A C}{\sin M A B}$.
Tính chất 3. Cho tam giác $A B C$ cân tại $A, M$ là điểm thuộc cạnh $B C$. Khi đó:
$$
\frac{M B}{M C}=\frac{\sin M A B}{\sin M A C}
$$
Một số ví dụ áp dụng
Ví dụ 1. Cho tam giác $A B C$, đường tròn tâm $I$ nội tiếp tam giác $A B C$ tiếp xúc với $B C, A C, A B$ tại $D, E, F . D I$ cắt $E F$ tại $K$. Chứng minh $A K$ qua trung điểm của $B C$.
Hướng dẫn giải
Gọi $M$ là trung điểm $B C$, ta sẽ chứng minh tia $A K$ trùng tia $A M$. Từ 6.1.6 ta thấy rằng để chứng minh 2 tia này trùng nhau, ta chỉ cần chứng minh
$$
\dfrac{\sin B A K}{\sin C A K}=\dfrac{\sin B A M}{\sin C A M}(*)
$$
Ta có: $\dfrac{A B}{A C}=\dfrac{\sin C}{\sin B}=\dfrac{\sin K I E}{\sin K I F}=\dfrac{K E}{K F}=\dfrac{\sin K A E}{\sin K A F}$.
Mà $\dfrac{A B}{A C}=\dfrac{\sin M A B}{\sin M A C}$.
Từ (1) và (2) ta có $\dfrac{\sin K A E}{\sin K A F}=\dfrac{\sin M A E}{\sin M A F}$.
Ví dụ 2. Cho tam giác $A B C$ nhọn, tiếp tuyến tại $B, C$ của đường tròn ngoại tiếp tam giác cắt nhau tại $P$. Chứng minh rằng $\angle P A B=\angle C A M$ với $M$ là trung điểm $B C$.
Hướng dẫn giải.
Ta có $S_{A B M}=S_{A C M} \Leftrightarrow A B \cdot A M \sin B A M=A B \cdot A M \cdot \sin C A M \Rightarrow \dfrac{\sin B A M}{\sin C A M}=\dfrac{A C}{A B}$
(1) Ta có $\dfrac{S_{P A B}}{S_{P A C}}=\dfrac{A B \cdot A P \cdot \sin P A B}{A C \cdot A P \cdot \sin P A C}=\dfrac{A B \cdot \sin P A B}{A C \cdot \sin P A C}$.
Mà $\dfrac{S_{P A B}}{S_{P A C}}=\dfrac{A B \cdot P B \cdot \sin A B P}{A C \cdot P C \cdot \sin A C P}=\dfrac{A B}{A C} \cdot \dfrac{\sin A C B}{\sin A B C}=\dfrac{A B^2}{A C^2}$.
Từ (3) và (4) ta có $\dfrac{\sin P A B}{\sin P A C}=\dfrac{A B}{A C}=\dfrac{\sin C A M}{\sin B A M} \Rightarrow \angle P A B=\angle C A M$.
Ví dụ 3. (Đường thẳng Newton) Cho các tứ giác $A B C D$ ngoại tiếp đường tròn $(I)$. Gọi $E, F, G, H$ là tiếp điểm của $(I)$ với các cạnh $A B, B C, C D, D A ; M, N$ là trung điểm của $A C$ và $B D$.
(a) Chứng minh $A C, B D, E G, F H$ dồng quy.
(b) Chứng minh $I, M, N$ thẳng hàng và $\frac{I M}{I N}=\frac{B E+D H}{A E+C H}$.
Hướng dẫn giải.
Đặt $A E=A H=a, B E=B F=b, C F=C G=c, D G=D H=d$.
(a) Gọi $K$ là giao điểm của $E G$ và $A C$.
Ta có $\dfrac{A K}{A E}=\dfrac{\sin \angle A E K}{\sin A K E}$ và $\dfrac{C K}{C G}=\dfrac{\sin \angle C G K}{\sin \angle C K G}$.
Mà $\sin \angle A K E=\sin \angle C K G, \sin \angle A E K=\sin C G K$.
Do đó $\frac{A K}{C K}=\dfrac{A E}{C G}=\frac{a}{c}$.
Gọi $K^{\prime}$ là giao điểm của $H F$ và $A C$ ta cũng chứng minh được $\frac{A K^{\prime}}{C K^{\prime}}=\dfrac{a}{c}$. Do đó $K \equiv K^{\prime}$ hay $E G, H F, A C$ dồng quy.
Tương tự ta cũng có $B D, E G, H F$ dồng quy.
b) Ta có $A B \overrightarrow{I E}=b \overrightarrow{I A}+a \overrightarrow{I B}, B C \overrightarrow{I F}=b \overrightarrow{I C}+c \overrightarrow{I B}, C D \overrightarrow{I G}=c \overrightarrow{I D}+d \overrightarrow{I C}, A D \overrightarrow{I H}=d \overrightarrow{I A}+a \overrightarrow{I D}$.
Theo định lý con nhím ta có $A B \overrightarrow{I E}+B C \overrightarrow{I F}+C D \overrightarrow{I G}+A D \overrightarrow{I H}=\overrightarrow{0}$, suy ra $(a+c)(\overrightarrow{I B}+$ $\overrightarrow{I D})+(b+d)(\overrightarrow{I A}+\overrightarrow{I C})=\overrightarrow{0}$
Mà $\overrightarrow{I A}+\overrightarrow{I C}=2 \overrightarrow{I M}, \overrightarrow{I B}+\overrightarrow{I D}=2 \overrightarrow{I N}$.
Do đó $(a+c) \overrightarrow{I N}+(b+d) \overrightarrow{I M}=\overrightarrow{0}$, từ đó suy ra $I, M, N$ thẳng hàng và $\dfrac{I M}{I N}=\dfrac{b+d}{a+c}$.
Ví dụ 4. Cho tam giác $A B C$ nhọn có trực tâm $H$. Gọi $M$ là trung điểm $B C$, đường tròn tâm $M$ bán kính $M H$ cắt $B C$ tại $A_1, A_2$; các điểm $B_1, B_2, C_1, C_2$ được xác định tương tự. Chứng minh rằng 6 điểm $A_1, A_2, B_1, B_2, C_1, C_2$ cùng thuộc một đường tròn.
Hướng dẫn giải.
Ta dễ nhận ra rằng các điểm này cách đều tâm đường tròn ngoại tiếp tam giác $A B C$, vậy ta chỉ cần tính $O A_1$ sao cho không phụ thuộc vào vị trí của $A_1$, hay kết quả là một biểu thức đối xứng ta sẽ có điều cần chứng minh.
$O A_1^2=O M^2+M A_1^2=O M^2+M H^2$.
$M H^2=\dfrac{1}{2}\left(H B^2+H C^2\right)-\dfrac{1}{4} B C^2=2 O N^2+2 O P^2-\dfrac{1}{4} a^2=R^2\left(2 \cos ^2 B+2 \cos ^2 C-\sin ^2 A\right)$.
Khi đó
$$
O A_1^2=R^2\left(2 \cos ^2 B+2 \cos ^2 C+\cos ^2 A-\sin ^2 A\right)=R^2\left(2 \cos ^2 B+2 \cos ^2 C+2 \cos ^2 A-1\right)
$$
Tương tự cho các độ dài khác, từ đó ta có 6 điểm thuộc đường tròn tâm $O$.
Chú ý: Để ý vai trò như nhau của các đối tượng cần tính và cố gắng đưa về các yếu tố của hình gốc, cụ thể trong bài này là tam giác $ABC$.
Bài 5. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $B, C$ cắt nhau tại $L$. Gọi $X$ là điểm đối xứng của $A$ qua $B C$, tiếp tuyến tuyến tại $A$ cắt $L X$ tại $K$. Chứng minh $K$ thuộc đường thẳng Euler của tam giác $A B C$.
Hướng dẫn giải
Gọi giao điểm của $O K$ với $A X$ là $J$, ta sẽ chứng minh $J$ là trực tâm của $\triangle A B C$. Gọi giao điểm của $O L$ với $A K$ là $I$, theo định lý Thales ta có $\dfrac{J A}{O I}=\dfrac{K J}{K O}=\dfrac{J X}{O L} \Leftrightarrow \dfrac{J A}{J X}=\dfrac{O I}{O L}$.
Gọi $H$ là trực tâm của tam giác $A B C$ và $P$ là giao của $A H$ và $(O)$, do tính đối xứng thì $A P=H X$. Ta cần chứng minh $\dfrac{H A}{H X}=\dfrac{J A}{J X}$, tức là $\dfrac{A H}{A P}=\dfrac{O I}{O L}(1)$.
Từ đây chú ý thêm $\angle O I A=90^{\circ}-\angle O A H=\angle A C P=\alpha$, hướng giải quyết của ta đã sáng sủa hơn, ta có : $O I=\dfrac{O A}{\sin \alpha} ; O L=\dfrac{O C}{\cos \angle B A C} \Rightarrow \dfrac{O I}{O L}=\dfrac{\cos \angle B A C}{\sin \alpha}$
Ta có $A H=2 R \cos \angle B A C ; A P=2 R$. $\sin \alpha$, suy ra $\dfrac{A H}{A P}=\dfrac{\cos \angle B A C}{\sin \alpha}=\frac{O I}{O L}$. Suy ra $\dfrac{H A}{H X}=$ $\dfrac{J A}{J X}$; nghĩa là $H$ trùng $J$, suy ra $K$ thuộc đường thẳng Euler của tam giác $A B C$.
(Hết phần 1)
2. Tính chất
1) Hình chiếu của $\overrightarrow{a}$ trên $d$ là $\overrightarrow{0}$ khi và chỉ khi $\overrightarrow{a}$ cùng phương với $l$.
2) Nếu $\overrightarrow{a’}, \overrightarrow{b’}$ là hình chiếu của $\overrightarrow{a}, \overrightarrow{b}$ trên $d$ thì $\overrightarrow{a’} \pm \overrightarrow{b’}$ là hình chiếu của $\overrightarrow{a} \pm \overrightarrow{b}$ trên $d$.
3) Nếu $\overrightarrow{a’}$ là hình chiếu của $\overrightarrow{a}$ thì $k \cdot \overrightarrow{a’}$ là hình chiếu của $k \cdot \overrightarrow{a}$.
Phép chiếu bảo toán các phép toán cộng, trừ hai vectơ, tích một vectơ với một số, nhưng không bảo toàn tích vô hướng hai vectơ
3. Một số ví dụ áp dụng của phép chiếu vectơ
Ví dụ 1. Cho tam giác $ABC$, $M$ là trung điểm $BC$ và $G$ là trọng tâm tam giác $ABC$. Chứng minh
a) $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AM}$
b) $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
Lời giải.
a) Đặt $\overrightarrow{u} = \overrightarrow{AB} + \overrightarrow{AC} -2\overrightarrow{AM}$
Xét phép chiếu vectơ theo phương $AB$ trên đường thẳng $BC$ ta có
$\overrightarrow{AB} \mapsto \overrightarrow{0}, \overrightarrow{AC} \mapsto \overrightarrow{BC}, \overrightarrow{AM} \mapsto \overrightarrow{BM}$
Do đó $\overrightarrow{u}\mapsto \overrightarrow{BC} – 2\overrightarrow{BM} = \overrightarrow{0}$, suy ra $\overrightarrow{u} || AB$.
Chứng minh tương tự thì $\overrightarrow{u} ||AC$
Do đó $\overrightarrow{u} = \overrightarrow{0}$
b) Đặt $\overrightarrow{u} = \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$. Thực phép chiếu theo phương $GA$ trên đường thẳng $BC$, ta có:
$\overrightarrow{GA} \mapsto \overrightarrow{0}, \overrightarrow{GB} \mapsto \overrightarrow{MB}, \overrightarrow{GC} \mapsto \overrightarrow{MC}$. Khi đó $\overrightarrow{u} \mapsto \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$
Do đó $\overrightarrow{u}$ cùng phương $GA$.
Chứng minh tương tự $\overrightarrow{u}$ cùng phương $GB, GC$
Do đó $\overrightarrow{u} = \overrightarrow{0}$
Ví dụ 2. (Định lý Jacobi) Cho tam giác $ABC$, $M$ là điểm nằm trong tam giác, đặt $S_a = S_{MBC}, S_b = S_{MAC}, S_c = S_{MAC}$. Chứng minh rằng
$$S_a \cdot \overrightarrow{MA} + S_b \cdot \overrightarrow{MB} + S_c \cdot \overrightarrow{MC} = \overrightarrow{0}$$
Lời giải. $AM$ cắt $BC$ tại $D$. Đặt $S_a \cdot \overrightarrow{MA} + S_b \cdot \overrightarrow{MB} + S_c \cdot \overrightarrow{MC} = \overrightarrow{u}$
Thực hiện phép chiếu xuống $BC$ theo phương $MA$, ta có $\overrightarrow{MA} \mapsto \overrightarrow{0}, \overrightarrow{MB} \mapsto \overrightarrow{DB}, \overrightarrow{MC} \mapsto \overrightarrow{DC}$
Do đó $\overrightarrow{u} \mapsto S_b \cdot \overrightarrow{DC} + S_b \cdot \overrightarrow{DB}$. (1)
Ta có $\overrightarrow{DB} = \dfrac{-DB}{DC} \overrightarrow{DB}$ và $\dfrac{DB}{DC} = \dfrac{S_b}{S_c}$, suy ra $\overrightarrow{DB} = \dfrac{-S_b}{S_c} \overrightarrow{DB}$, từ đó $S_c \cdot \overrightarrow{DB} + S_b \cdot \overrightarrow{DC} = \overrightarrow{0}$.
Vậy $\overrightarrow{u} \mapsto \overrightarrow{0}$, và $\overrightarrow{u}$ cùng phương với $MA$, tương tự ta cũng có $\overrightarrow{u}$ cùng phương $MB, MC$. Do đó $\overrightarrow{u} = \overrightarrow{0}$.
Bài tập rèn luyện.
Bài 1. Cho đa giác đều $A_1A_2\cdot A_n$ có tâm $O$. Chứng minh rằng $$\overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \overrightarrow{0}$$
Bài 2. Cho tam giác $ABC$, dự các vec tơ $\overrightarrow{a}$ hướng là ngoài tam giác và có độ dài $BC$, các vec tơ $\overrightarrow{b}, \overrightarrow{c}$ được dựng tương tự. Chứng minh rằng $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$
Bài 3. Cho tam giác $ABC$ có $O$ là tâm ngoại tiếp, $H$ là trực tâm. Chứng minh rằng $$ \overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
Bài 1. Cho đường tròn tâm $O$ đường kính $A B$. $C$ là một điểm thuộc đường tròn. $d_1$ và $d_2$ lần lượt là tiếp tuyến tại $A$ và $B$ của $(O)$. Tiếp tuyến tại $C$ cắt $d_1, d_2$ lần lượt tại $D$ và $E$. $B C$ cắt $d_1$ tại $F$.
a) Chứng minh $d_1 | d_2$ và $D$ là trung điểm của $A F$.
b) Vẽ đường cao $C H$. Chứng minh rằng $A E, B D$ và $C H$ dồng quy tại trung điểm của $C H$.
c) Chứng minh $O F \perp A E$.
Lời giải.
a) $d_1$ là tiếp tuyến tại $A$ nên $O A \perp d_1, d_2$ là tiếp tuyến tại $B$ nên $d_2 \perp O B$, mà $O, A, B$ thẳng hàng, suy ra $d_1 / / d_2$.
Ta có $\angle A C B=90^{\circ}$, suy ra $\angle D C F+$ $\angle D C A=\angle D F C+\angle D A C=90^{\circ}$. (1)
Hơn nữa $D A=D C$ (t/c tiếp tuyến), tam giác $D A C$ cân tại $D$, suy ra $\angle D C A=$ $\angle D A C$. (2)
Từ (1) và (2) ta có $\angle D C F=\angle D F C$, tam giác $D C F$ cân tại $D$.
Vậy $D F=D C=D A$, hay $D$ là trung điểm của $A F$.
b) Gọi $I$ là giao điểm của $B D$ và $A E$. Ta có $A D / / B E$ nên $\frac{B I}{I D}=\frac{E B}{A D}(3)$.
Mặt khác do $A D=D C$ và $E B=E C$, suy ra $\frac{E B}{A D}=\frac{E C}{D C}$ (4).
Từ (3) và (4) ta có $\frac{B I}{I D}=\frac{E C}{D C}$, suy ra $I C / / A D$ (Thalet đảo).
Mà $A D \perp A B$ nên $C I \perp A B$, vậy $C, I, H$ thẳng hàng.
Do đó $A E, B E, C H$ đồng quy tại $I$.
Ta có $\frac{C I}{A D}=\frac{E I}{E A}, \frac{I H}{A D}=\frac{B I}{B D}$ và $\frac{E I}{E A}=$ $\frac{B I}{B D}$, nên $\frac{C I}{A D}=\frac{I H}{A D}$, suy ra $I C=I H$ hay
$I$ là trung điểm của $C H$.
c) Ta có $E B \cdot A D=E C \cdot C D=O C^2=R^2$, mà $A F=2 A D$ nên $E B \cdot A F=2 R^2$.
Suy ra $E B \cdot A F=A O \cdot A B$, suy ra $\frac{E B}{A B}=\frac{O A}{A F}$, do đó $\tan E A B=\tan A F O$, suy ra $\angle E A B=$ $\angle A F O$.
Mà $\angle E A B+\angle E A F=90^{\circ}$ nên $\angle E A B+$ $\angle A F O=90^{\circ}$. Do đó $O F \perp A E$.
Bài 2. Cho đường tròn tâm $O$ bán kính $R$. $A$ là một điểm nằm ngoài đường tròn, từ $A$ dựng các tiếp tuyến $A B, A C$ dến $(O)$ với $B, C$ là các tiếp điểm. Một cát tuyết qua $A$ cắt $(O)$ tại $D$ và $E$ trong đó $D$ nằm giữa $A$ và $E$.Gọi $H$ là giao điểm của $O A$ và $B C$.
a) Chứng minh $O H \cdot O A=R^2$.
b) Gọi $M$ là trung điểm của $D E$. Chứng minh 4 điểm $O, M, B, C$ cùng thuộc đường tròn.
c) Tiếp tuyến tại $D$ và $E$ của $(O)$ cắt nhau tại điểm $P$. Chứng minh $P, B, C$ thẳng hàng.
Lời giải.
a) Ta có $A B, A C$ là tiếp tuyến nên $A B=A C$, và $O B=O C=R$, suy ra $O A$ là trung trực của $B C$, suy ra $O A \perp B C$ tại $H$.
Tam giác $O A B$ có $\angle O B A=90^{\circ}$ (t/c tiệp tuyến) và $B H \perp O A$ nên $O H \cdot O A=O B^2=$ $R^2$.
b) $M$ là trung điểm $D E$, suy ra $O M \perp D E$.
Ta có $\angle O B A=\angle O M A=\angle O C A=90^{\circ}$, suy ra 5 diểm $O, M, B, A, C$ cùng thuộc đường tròn đường kính $O A$.
c) Ta chứng minh được $O P \perp D E$, suy ra $O, M, P$ thẳng hàng và $O M . O P=O D^2=$ $R^2$.
Suy ra $O M \cdot O P=O H \cdot O A$, suy ra $\frac{O M}{O H}=$ $\frac{O P}{O A}$.
Xét tam giác $O M A$ và tam giác $O H P$ có:
$\angle A O P$ chung $\frac{O M}{O H}=\frac{O P}{O A}$ $\angle O H P=\angle O M A=90^{\circ}$.
Ta có $B C, P H$ vuông góc với $O A$ tại $H$ nên $P, B, C$ thẳng hàng.
Bài 3. Cho tam giác $A B C$ vuông tại $A(A B<A C)$. Vẽ đường tròn tâm $O$ đường kính $A C$ cắt cạnh $B C$ tại $D$. Gọi $H$ và $K$ lần lượt là trung điểm của hai cạnh $A D$ và $C D$. Tia $O H$ cắt cạnh $A B$ tại $E$. Tia $O K$ cắt đường thẳng $E D$ tại $N$ và cắt đường tròn tâm $O$ tại $I$.
(a) Chứng minh $D E$ là tiếp tuyến của $(O)$.
(b) Chứng minh $O H D K$ là hình chữ nhật.
(c) Chứng minh tia $D I$ là tia phân giác của $\angle N D C$.
(d) Gọi $S$ là giao điểm của $O B$ với $A D$. Từ $S$ vẽ đường thẳng vuông góc với $A O$ và cắt tia $O H$ tại $Q$. Chứng minh 3 điểm $A, Q, N$ thẳng hàng.
Lời giải.
a) $OH$ là trung trực của $AD$, suy ra $EA = ED$. Từ đó $\triangle EDO = \triangle EAO (ccc)$, suy ra $\angle EDO = \angle EAO = 90^\circ$. Do đó $ED$ là tiếp tuyến của $(O)$.
b) Do $K$ là trung điểm $CD$ nên $OK \bot CD$, tứ giác $OHDK$ có $\angle D = \angle H = \angle K = 90^\circ$ nên là hình chữ nhật.
c) Ta có tam giác $ODI$ cân tại $O$ nên $\angle ODI = \angle OID$ (1)
Mà $\angle ODI = \angle ODK + \angle KDI, \angle OID = \angle OND + \angle NDI$ (2)
Và $\angle OND = \angle ODK$ (vì cùng phụ $\angle DON$) (3)
Từ (1), (2), (3) ta có $\angle KDI = \angle NDI$
d) Gọi $L$ là giao điểm $AQ$ và $OS$.
Trong tam giác $ASO$ có $AQ, SQ$ là các đường cao, nên $Q$ là trực tâm, suy ra $AQ \bot OS$ tại $L$. (4)
Ta có $OL \cdot OB = OA^2$
và $OK \cdot ON = OD^2 = OA^2$
Suy ra $\angle OK \cdot ON = OL \cdot OB$
Suy ra $\triangle OLN \backsim \triangle OKB$, suy ra $\angle OLN = \angle OKB = 90^\circ$ (5)
Từ (4), (5) ta có $A, L, N$ thẳng hàng, hay $A, Q, N$ thẳng hàng.
Bài 4. Cho đường tròn $(O ; R)$ và một điểm $S$ nằm ngoài đường tròn $(O)$. Vẽ hai tiếp tuyến $S B, S C$ đến $(O)$ với $B, C$ là hai tiếp điểm. Gọi $H$ là giao điểm của $S O$ với $B C$.
(a) Vẽ đường kính $B A$ của $(O)$. Chứng minh $A C || S O$ và $H B \cdot H C=H O \cdot H S$.
(b) Vẽ đường thẳng $d$ vuông góc vớ $A B$ tại $O$, đường thẳng $d$ cắt đường thẳng $A C$ tại $E$. Chứng minh $S E=R$.
(c) Vẽ $C K$ vuông góc với $A B$ tại $K$. Gọi $I$ là trung điểm của cạnh $C K$. Chứng minh 3 điểm $S, I, A$ thẳng hàng.
Lời giải.
a) Do $AB$ là đường kính của $(O)$ nên $\angle ACB = 90^\circ$. (1)
Ta có $SB = SC$ và $SO$ phân giác $\angle BSC$ nên $SO$ là trung trực của $BC$, do đó $OS \bot BC$ tại $H$.
Từ đó ta có $AC ||OS$ vì cùng vuông góc $BC$.
b) $\triangle AOE = \triangle OBS (gcg)$, suy ra $OE = BS$.
Tứ giác $OESB$ có $OE||BS$ (Cùng vuông góc $AB$), và $OE = BS$ nên $OESB$ là hình bình hành, hơn nữa có $\angle OBS= 90^\circ$ nên là hình chữ nhật, do đó $SE = OB = R$.
c) Ta có $OASE$ là hình bình hành, suy ra $AS$ cắt $OE$ tại trung điểm $T$ của mỗi đoạn.
$CK ||OE$
Gọi $I’$ là giao điểm của $AS$ và $CK$
Ta có $\dfrac{I’K}{OT} = \dfrac{AI’}{AT} = \dfrac{CI’}{ET}$
Mà $OT = ET$ nên $KI’ = CI’$, hay $I’ \equiv I$
Vậy $A, I, S$ thẳng hàng
Bài 5. Cho đường tròn $(O ; R)$ và điểm $M$ ở ngoài đường tròn $(O)$. Kẻ tiếp tuyến $M A, M B$ đến $(O)$ với $A, B$ là hai tiếp điểm. Đường thẳng $A B$ cắt $(O)$ tại $K$.
(a) Kẻ đường kính $A N$ của $(O), B H \perp A N$ tại $H$. Chứng $\operatorname{minh} M B \cdot B N=B H \cdot M O$.
(b) Đường thẳng $M O$ cắt đường tròn $(O)$ tại $C$ và $D(C$ nằm giữa $O$ và $M)$. Chứng minh $O K \cdot M K=C K \cdot D K$.
(c) $E$ đối xứng với $C$ qua $K$. Chứng minh $E$ là trực tâm của tam giác $A B D$.
(d) Chứng minh $\sin \angle M^{\circ} A B=\frac{C K}{A K}+\frac{C K}{A M}$
Lời giải.
a) Chứng minh tam giác $OMB$ và $NBH$ đồng dạng.
b) $OK \cdot MK = AK^2 = KC \cdot KD$
c) $ACBE$ là hình thoi, suy ra $BE||AC$, mà $AC \bot AD$ suy ra $BE \bot AD$
$DE \bot AB$
Do đó $E$ là trực tâm tam giác $ABD$.
d) $\angle CAK = \angle CAM$ (chứng minh ở bài trên)
Do đó $\dfrac{CK}{CM} = \dfrac{AK}{AM}$, suy ra $\dfrac{CK}{AK} = \dfrac{CM}{AM}$
Từ đó $VP = \dfrac{CK}{AK} + \dfrac{CK}{AM} = \dfrac{CM}{AM} + \dfrac{CK}{AM} = \dfrac{KM}{AM} = \sin MAB$
Bài 6. Cho hình vuông $A B C D$ cạnh $a, E$ là cung thuộc cung nhỏ $B D$ của đường tròn tâm tâm $A$ bán kính $a$. Tiếp tuyến tại $E$ cắt $C D$ tại $F$ và $B C$ tại $G$.
(a) Chứng minh chu vi tam giác $C F G$ bằng $2 a$.
(b) $A F, A G$ cắt $B D$ tại $I$ và $H$. Chứng minh $H E=$ $H B, I E=I D$
và $H I^2=D I^2+B H^2$
(c) Chứng minh $F H, G I$ và $A E$ đồng quy.
Lời giải.
a) $CD, CB, FG$ là tiếp tuyến của $(A;a)$
Suy ra $FE = FD, GE = GB$
$P_{CFG} = CF + FG + CG = CF + EF +EG+CG = CF+DF +GB+CG = CD+ CB = 2a$
b) $AF$ là trung trực $DE$, và $AG$ là trung trực $BE$
Suy ra $IE = ID, HB = HE$
$\triangle IEF = \triangle IDF \Rightarrow \angle IEF =\angle IDF = 45^\circ$
Tương tự cũng có $\angle HEG = 45^\circ$
Suy ra $\angle IEH = 90^\circ$
Áp dụng pitago cho tam giác $EIH$ ta có $IH^2 = IE^2 + HE^2 = ID^2 + HB^2$
c) Ta có $AF$ là phân giác $\angle DAE$, $AG$ là phân giác của $\angle BAE$
Suy ra $\angle FAG = \dfrac{1}{2} \angle BAD = 45^\circ$.
$\triangle AIH \backsim \triangle DIF (gg)$, suy ra $IA \cdot IF = ID \cdot IH$
Suy ra $\triangle IFH \backsim \triangle IDA \Rightarrow \angle IFH = \angle IDA = 45^\circ$
Suy $\angle AHF = 90^\circ$ hay $FH \bot AG$.
Chứng minh tương tự $GI \bot AF$.
Tam giác $FG$ có $AE, FH, GI$ là các đường cao nên đồng quy.
Bài 7. (Cuối khóa 1 – Star Education 2018) Cho đường tròn $(O ; R)$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ các tiếp tuyến $A B, A C$ dến $(O)$ ( $B, C$ là các tiếp điểm). $O A$ cắt $B C$ tại $H$.
a) Chứng minh $O H \cdot O A=R^2$ và 4 điểm $O, A, B, C$ cùng thuộc một đường tròn.
b) Đường tròn tâm $I$ đường kính $A B$ cắt $(O)$ tại điểm $D$ khác $B$. Chứng minh $I D$ là tiếp tuyến của $(O)$.
c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.
d) Tiếp tuyến tại $H$ của $(I)$ cắt $O B$ tại $M$; gọi $N$ là trung điểm $P M$, đường thẳng qua $P$ song song $B N$ cắt $A B$ tại $K$. Chứng minh $H K, A M$ và $B D$ đồng quy.
Lời giải.
a)
Xét $\triangle A B O$ vuông tại $B$ có:
$B H$ là đường cao $\Rightarrow O H \cdot O A=O B^2=R^2$ (Hệ thức lượng)
Ta có: $\triangle A B O$ vuông tại $B \Rightarrow A, B, O$ thuộc đường tròn đường kính $A O$. (1)
Lại có $\triangle A C O$ vuông tại $C \Rightarrow A, C, O$ thuộc đường tròn đường kính $A O$. (2)
Từ (1) và (2) suy ra $A, B, O, C$ thuộc đường tròn đường kính $A O$.
b)
Ta có: $\triangle A B D$ nội tiếp đường tròn đường kính $A B \Rightarrow \triangle A B D$ vuông tại $D$
Mà $I$ là trung điểm cạnh huyền $A B \Rightarrow I B=I D$
Ta có: $I B=I D, O B=O D$ nên $I O$ là trung trực của $B D$ $\Rightarrow \angle I B O=\angle I D O=90^{\circ}$ nên $I D$ là tiếp tuyến của $(O)$.
c) Tiếp tuyến tại $H$ và tại $A$ của $(I)$ cắt nhau tại $P$. Chứng minh $B, D, P$ thẳng hàng.
Gọi $E=I P \cap A H$ và $F=I O \cap B D$.
Sử dụng tính chất hai tiếp tuyến cắt nhau và hệ thức lượng, ta chứng minh được
$$
I E \cdot I P=I A^2=I D^2=I F \cdot I O \Rightarrow \frac{I F}{I P}=\frac{I E}{I O}
$$
Từ đó, chứng minh được $\triangle I F P \backsim \triangle I E O$ (c.g.c)
$$
\Rightarrow \angle I E O=\angle I F P=90^{\circ} \text {. }
$$
Ta có: $B D$ đi qua $F$ và vuông góc $I O, F P$ đi qua $F$ và vuông góc $I O$ nên hai đường thẳng này trùng nhau. $\Rightarrow B, D, P$ thẳng hàng.
d)
Chứng minh $I H$ là đường trung bình của $\triangle A B C \Rightarrow I H || A C$. Mà $I H \perp P M$ và $A C \perp O C$.
Suy ra: $H M || O C$. Lại có $H$ là trung điểm $B C$ nên $M$ là trung điểm $O B$.
Gọi $Q$ là giao điểm của $P K$ và $B O$.
Ta có: $B N || P Q$ và $N$ là trung điểm của $P M$ nên suy ra $B$ là trung điểm của $Q M$.
Gọi $J=B P \cap A M$.
Ta có :
$ B Q ||A P \Rightarrow \frac{B K}{K A}=\frac{B Q}{P A}=\frac{B M}{P A} . $
$B M || A P \Rightarrow \frac{B M}{P A}=\frac{B J}{J P}$
Suy ra: $\frac{B K}{K A}=\frac{B J}{J P}$ nên $K J || A P$. Chứng minh tương tự $J H ||A P$. Từ đó ta có $K, J, H$ thẳng hàng.
Vậy $H K, B P, A M$ dồng quy tại $J$.
Bài tập luyện tập.
Bài 6. Cho tam giác $A B C$ nhọn. Các đường cao $A D, B E$ và $C F$ cắt nhau tại $H$. Gọi $M, N$ lần lượt là trung điểm của $B C$ và $A H$.
(a) Chứng minh $N E, N F$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $B C E$.
(b) Chứng minh 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn.
(c) Gọi $G$ là giao điểm của $A D$ và $E F$. Chứng minh $N G \cdot N D=N A^2$.
Bài 7. Cho nửa đường tròn tâm $O$ đường kính $A B=2 R$. Trên tiếp tuyến tại $A$ của $(O)$ lấy điểm $C$ sao cho $A C=A B$. Từ $C$ vẽ tiếp tuyến $C D$ dến $(O)$ cắt tiếp tuyến tại $B$ ở điểm E.
(a) Tính $B E$.
(b) Đường cao $D F$ của tam giác $A B D$ cắt $B C$ tại $G$. Chứng minh rằng $A, G, E$ thẳng hàng.
(c) Gọi $H$ là giao điểm của $O C$ và $A D$. Tính $\angle D H B$.
(d) Gọi $I$ là giao điểm của $B C$ và $(O)$. Tứ giác $I D B H$ là hình gì? Tại sao?
Bài 8. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O) . M$ là trung điểm $B C$. Từ $A$ dựng các tiếp tuyến đến đường tròn $(O ; O M)$ cắt $B C$ tại $D$ và $E$ sao cho $D$ và $C$ khác phía đối với $M ; E, B$ khác phía đối với $M$. Chứng minh rằng các tam giác $A D C$ và $A B E$ cân.
Bài 9. Cho tam giác $A B C$ vuông tại $A, A B=a, B C=2 a$. Đường cao $A H$. Từ $B, C$ vẽ các tiếp tuyến $B D, C E$ dến đường tròn tâm $A$ bán kính $A H$.
(a) Tính $A H$ và số đo $\angle A B C$.
(b) Chứng minh $D, A, E$ thẳng hàng.
(c) Chứng minh $E D$ là tiếp tuyến của đường tròn đường kính $B C$.
(d) Chứng minh $D C, B E$ và $A H$ dồng quy.
Bài 10. Cho hình vuông $A B C D$ cạnh $2 a$, tâm $O$. Đường tròn tâm $O$ bán kính $a$ tiếp xúc với $A B$ và $B C$ tại $E$ và $F$. Gọi $P$ là một điểm trên cung nhỏ $E F$. Tiếp tuyến tại $P$ cắt $A B, B C$ tại $M$ và $N$. Đặt $M B=c, B N=y$.
(a) Chứng minh rằng $x+y+\sqrt{x^2+y^2}=2 a$.
(b) Chứng minh rằng $A M \cdot C N=2 a^2$.
(c) Gọi $K$ là trung điểm của $A D$. Chứng minh rằng $M K |$ $D N$.
Có nhiều bạn hỏi về việc học chuyên toán ở phổ thông, nhân lúc rảnh rỗi mình cũng có một chút chia sẻ cho các bạn có nhu cầu, xem như đây là một vài kinh nghiệm của mình trong việc học và dạy chuyên.
Trong phần này mình nói về môn hình học của cấp 3.
Nếu bạn nào cấp 2 chưa học chuyên toán, mà lên cấp 3 muốn học chuyên toán để tham gia các kì thi học sinh giỏi thì thực sự khó khăn trong việc bắt đầu từ giai đoạn này vì còn nhiều thứ để học, lời khuyên chân thành trong trường hợp này là các bạn có thể bỏ qua mảng chuyên toán và học tốt các phần toán trong chương trình chung, để tất cả đam mê, năng lượng của mình vào việc nghiên cứu toán học ở các cấp học cao hơn, học trò mình có những bạn cấp 3 chỉ học chuyên anh, hoặc không học chuyên toán, nhưng sau vẫn đang làm toán rất tốt ở bậc tiến sĩ. Còn nếu không thi học sinh giỏi mà chỉ học để tạo tiền đề học lên cao thì bỏ qua phần hình chuyên này.
Còn các bạn đã có nền tảng chuyên toán ở cấp 2, muốn học tiếp lên để thi học sinh giỏi thì phần hình học khá quan trọng trong các đề chuyên toán, có thể đọc tiếp ở các dòng sau.
Trong chương trình chính thức chung cho mọi đối tượng có các phần sau: Vectơ, hệ thức lượng, lượng giác, phương pháp tọa độ trong mặt phẳng- các đường conic (lớp 10) và mảng hình học không gian từ 11 lên 12. Nhìn chung phần này cũng rất đa dạng và cung cấp nhiều cách tiếp cận, chủ yếu là tính toán và biến đổi đại số, lượng giác nhằm giải quyết một bài toán hình học, hỗ trợ cho giải các bài toán thi học sinh giỏi. Cố gắng học chắc các phần này vì nó dù sao cũng là phần chung cho mọi học sinh phổ thông phải học. (Khi mình học phổ thông thì phần này học khá kĩ vì lúc đó không biết đề thi học sinh giỏi cho thi cái gì, !)
Ngoài các phần trên thì trong Tài liệu giáo khoa chuyên toán có giới thiệu thêm một số chuyên đề nhằm giải quyết các bài toán hình học phẳng: phương tích trục đẳng phương, hàng điểm điều hòa, cực và đối cực, các phép biến hình như: tịnh tiến, quay, vị tự, vị tự quay, nghịch đảo. Để giải một bài toán hình học trong các đề học sinh giỏi có thể có nhiều các tiếp cận, nhưng lời khuyên là hãy nắm thật chắc và vận dụng thành thạo các công cụ, thử chứng minh lại hết các tính chất, định lý trong từng chuyên đề. Ngoài ra để giải bài toán hình học phẳng còn phải biết thêm một vài tính chất, định lý quen thuộc. (Tất cả những thứ này mình đều không được biết trước khi thấy đề thi, do đó mà đã bỏ lỡ chúng trong thời gian học phổ thông, mãi tới đại học mới biết hàng điểm điều hòa là gì !)
Có một điều trong việc học chuyên đó là tính hệ thống, học một cách bài bản và có hệ thống các chuyên đề, theo một thứ tự phù hợp (như liệt kê trên) sẽ có lợi trong việc tư duy, tránh việc dùng “dao giết trâu để mổ gà”, vì đôi khi những bài toán khó bắt đầu từ các ý tưởng rất tự nhiên và đơn giản.
Về mặt kĩ thuật thì có các kĩ thuật cần rèn luyện nhiều như: biến đổi góc, biến đổi và so sánh các độ dài, tỉ lệ, việc phát hiện các yếu tố như tứ giác nội tiếp hay hàng điểm điều hòa, hay một tính chất nào đó quen thuộc, đôi khi là chìa khóa để giải bài toán đó.
Về mặt trình bày hình khá đơn giản, những kiến thức trong Tài liệu giáo khoa chuyên toán chắc chắn sẽ được công nhận, những tính chất nào mới quá, hoặc không phổ biến, nên chứng minh lại rõ ràng, nếu muốn đạt điểm tối đa.
Mình đã chứng kiến nhiều em lúc đầu kém hình, ngại làm hình học nhưng khi quyết tâm thì tiến bộ rất nhanh và thành công trong các kì thi học sinh giỏi.
Chú ý: Một số chuyên đề mình nêu cũng đã có trên website này, các bạn có thể tham khảo.
Học toán như luyện công, hãy rèn luyện nội lực thật tốt trước khi học những chiêu thức cao siêu, không khéo tẩu hỏa nhập ma.
Tài liệu tham khảo: