Bài viết dành cho các em trung học cơ sở, các tính chất không được sử dụng trong các bài thi vào 10 mà không chứng minh lại.

Bài viết dành cho các em trung học cơ sở, các tính chất không được sử dụng trong các bài thi vào 10 mà không chứng minh lại.
Ví dụ 1: Cho góc bẹt $A O B$ và tia $O M$ sao cho $\widehat{A O M}=60^{\circ}$. Vẽ tia $O N$ nằm trong góc $B O M$ sao cho $O N \perp O M$. Chứng tỏ rằng $\widehat{B O N}=\dfrac{1}{2} \widehat{A O M}$.
Ví dụ 2: Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O E, O F$ sao cho $\widehat{A O E}=\widehat{B O F}<90^{\circ}$. Vẽ tia phân giác $O M$ của góc $E O F$. Chứng tỏ rằng $O M \perp A B$. Ví dụ 3: Cho góc tù $A O B$. Vẽ vào trong góc này các tia $O M, O N$ sao cho $O M \perp O A, O N \perp O B$. Vẽ tia $O K$ là tia phân giác của góc $M O N$. Chứng tỏ rằng tia $O K$ cũng là tia phân giác của góc $A O B$. Bài tập vận dụng Bài 1. Cho hai đường thẳng $A B$ và $C D$ vuông góc với nhau tại $O$. Vẽ tia $O K$ là tia phân giác của góc $A O C$. Tính số đo góc $K O D$ và $K O B$. Bài 2. Cho góc $A O B$ và tia $O C$ nằm trong góc đó sao cho $\widehat{A O C}=4 \widehat{B O C}$. Vẽ tia phân giác $O M$ của góc $A O C$. Tính số đo của góc $A O B$ nếu $O M \perp O B$. Bài 3. Cho góc tù $A O B, \widehat{A O B}=m^{\circ}$. Vẽ vào trong góc này các tia $O C, O D$ sao cho $O C \perp O A ; O D \perp O B$. Do đó, $\widehat{A O D}=\widehat{D O C}=\widehat{C O D} \Leftrightarrow \widehat{A O B}=3 \cdot \widehat{D O C}=3.45^{\circ}=135^{\circ} \Leftrightarrow m=135$ CHỨNG MINH HAI ĐƯỜNG THẲNG VUÔNG GÓC Bài 4. Trong hình 2.7 có góc $M O N$ là góc bẹt, góc $A O C$ là góc vuông. Các tia $O M, O N$ lần lượt là các tia phân giác của các góc $A O B$ và $C O D$. Chứng tỏ rằng $O B \perp O D$. Bài 5. Cho góc nhọn $A O B$. Trên nửa mặt phẳng bờ $O A$ có chứa tia $O B$, vẽ tia $O C \perp O A$. Trên nửa mặt phẳng bờ $O B$ có chứa tia $O A$ vẽ tia $O D \perp O B$. Gọi $O M$ và $O N$ lần lượt là các tia phân giác của các góc $A O D$ và $B O C$. Chứng tỏ rằng $O M \perp O N$. Bài 6. Cho góc bẹt $A O B$. Trên cùng một nửa mặt phẳng bờ $A B$ vẽ các tia $O M$ và $O N$ sao cho $\widehat{A O M}=\widehat{B O N}=m^{\circ}(90<m<180)$. Vẽ tia phân giác $O C$ của góc $M O N$. CHỨNG MINH MỘT TIA LÀ TIA PHÂN GIÁC, LÀ TIA ĐỐI Bài 7. Cho góc $A O B$ có số đo bằng $120^{\circ}$. Vẽ tia phân giác $O M$ của góc đó. Trên nửa mặt phẳng bờ $O M$ có chứa tia $O A$, vẽ tia $O N \perp O M$. Trong góc $A O B$ vẽ tia $O C \perp O B$. Chứng tỏ rằng: Bài 8. Cho góc bẹt $A O B$, tia $O C \perp A B$. Vẽ tia $O M$ và $O N$ ở trong góc $B O C$ sao cho $\widehat{B O M}=\widehat{C O N}=\frac{1}{3} \widehat{B O C}$. Tìm trong hình vẽ các tia là tia phân giác của một góc. Bài 9. Cho hai tia $O M$ và $O N$ vuông góc với nhau, tia $O C$ nằm giữa hai tia đó. Vẽ các tia $O A$ và $O B$ sao cho tia $O M$ là tia phân giác của góc $A O C$, tia $O N$ là tia phân giác của góc $B O C$. Chứng tỏ rằng hai tia $O A$, $O B$ đối nhau. ĐƯỜNG TRUNG TRỰC – HAI GÓC CÓ CẠNH TƯƠNG ỨNG VUÔNG GÓC Bài 10. Cho đoạn thẳng $A B=2 a$. Lấy các điểm $E$ và $F$ nằm giữa $A$ và $B$ sao cho $A E=B F$. Chứng tỏ rằng hai đoạn thẳng $A B$ và $E F$ cùng có chung một đường trung trực. Bài 11. Cho bốn điểm $M, N, P, Q$ nằm ngoài đường thẳng $x y$. Biết $M N \perp x y ; P Q \perp x y$ và $x y$ là đường trung trực của đoạn thẳng $N P$. Chứng tỏ rằng bốn điểm $M, N, P, Q$ thẳng hàng. Bài 2.12. Hai góc gọi là có cạnh tương ứng vuông góc nếu đường thẳng chứa mỗi cạnh của góc này tương ứng vuông góc với đường thẳng chứa một cạnh của góc kia. Xem hình $2.8(\mathrm{a}, \mathrm{b})$ rồi kể tên các góc nhọn (hoặc tù) có cạnh tương ứng vuông góc.
a) Chứng tỏ rằng $\widehat{A O D}=\widehat{B O C}$.
b) Tìm giá trị của $m$ để $\widehat{A O D}=\widehat{D O C}=\widehat{C O B}$.
a) Chứng tỏ rằng $O C \perp A B$.
b) Xác định giá trị của $m$ để $O M \perp O N$.
a) Tia $O C$ là tia phân giác của góc $A O M$;
b) Tia $O A$ là tia phân giác của góc $C O N$.
Ta có một số kí hiệu thường dùng.
Cho tam giác $A B C$, khi đó
Định lý Cosin trong tam giác
Định lý. Cho tam giác ABC
Khi đó ta có:
Chứng minh
Để chứng minh định lý ta có thể sử dụng định lý Pitago và tỉ số lượng giác của góc nhọn, hoặc có thể dùng tích vô hướng, ở đây tôi trình bày theo tích vô hướng.
$a^2=B C^2=(\overrightarrow{A C}-\overrightarrow{A B})^2$
$=\overrightarrow{A C}^2+\overrightarrow{A B}^2-2 \overrightarrow{A C} \cdot \overrightarrow{A B}$
$=A C^2+A B^2-2 A B \cdot A C \cos A $
$=b^2+c^2-2 b c \cdot \cos A$
Các hệ thức còn lại chứng minh tương tự.
Từ định lý trên ta dễ dàng suy ra hệ quả sau
Hệ quả.
Trong tam giác $A B C$
$$
\cos A=\frac{b^2+c^2-a^2}{2 b c} ; \cos B=\frac{a^2+c^2-b^2}{2 a c} ; \cos C=\frac{a^2+b^2-c^2}{2 a b}
$$
Từ đây suy ra tam giác $A B C$ có
$$
A<90^{\circ} \Leftrightarrow b^2+c^2>a^2
$$
và
$$
A>90^{\circ} \Leftrightarrow b^2+c^2<a^2
$$
Nhận xét:
Định lý Sin trong tam giác
Định lý.
Cho tam giác $A B C$, gọi $R$ là bán kính đường tròn ngoại tiếp tam giác $A B C$. Khi đó
$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$
Chứng minh. Vẽ đường kính $B D$, khi đó $\angle BDC = \angle BAC$ hoặc $\angle BDC = 180^\circ – \angle BAC$, suy ra:
$$
\sin B A C=\sin B D C=\frac{B C}{B D}=\frac{a}{2 R}
$$
suy ra
$$
\frac{a}{\sin A}=2 R
$$
Chứng minh tương tự ta cũng có
$$
\frac{b}{\sin B}=\frac{c}{\sin C}=2 R
$$
Hệ quả
Nhận xét:
Công thức đường trung tuyến
Định lý. (Độ dài đường trung tuyến) Trong tam giác $A B C$, gọi $m_a, m_b, m_c$ lần lượt là độ dài các đường trung tuyến xuất phát từ $A, B, C$. Khi đó
Chứng minh. Ta có thể chứng minh định lý này bằng định lý Cosin, áp dụng định lý cosin cho hai tam giác $A M B, A M C$ ta có
$$
\cos A M B=\frac{A M^2+M B^2-A B^2}{2 A M \cdot M B}, \cos A M C=\frac{A M^2+M C^2-A C^2}{2 A M \cdot M C}
$$
Mà $\cos A M B+\cos A M C=0$ và $M B=M C=\frac{B C}{2}$
$$
\frac{A M^2+M B^2-A B^2}{2 A M \cdot B M}+\frac{A M^2+M C^2-A C^2}{2 A M \cdot M C}=0
$$
Từ đó ta có $2 A M^2=A B^2+A C^2-M B^2-M C^2$ hay $A M^2=\frac{1}{2}\left(A B^2+A C^2\right)-\frac{1}{4} B C^2$, ta có điều cần chứng minh.
Công thức tính diện tích tam giác
Định lý. Các công thức tính diện tích tam giác
Chứng minh dành cho bạn đọc.
A. MỘT SỐ CHÚ Ý KHI GIẢI PHƯƠNG TRÌNH DẠNG LŨY THỪA
Nhận xét: Để giải phương trình nghiệm nguyên dạng lũy thừa ta chú ý một số phương pháp thường sử dụng
Do sử dụng nhiều đồng dư, do đó ta chú ý một số tính chất về đồng dư sau Tính chất 3.2. Cho $a$ là một số nguyên tùy ý. Khi đó
(a) $a^2 \equiv 0,1(b\mod 3)$;
(b) $a^2 \equiv 0,1(b\mod 4)$
(c) $a^2 \equiv 0,1,4 (b\mod 8)$;
(d) $a^2 \equiv 0,1,4 (b\mod 5)$;
(e) $a^3 \equiv-1,0,1 (b\mod 7)$
(f) $a^3 \equiv-1,0,1(b\mod 9)$.
Tính chất 3.3. Cho $p$ là một số nguyên tố và $a, b, c, n$ là các số nguyên dương. Ta có
(a) $a^n \vdots p \Leftrightarrow a \vdots p$;
(b) Nếu $a b=p^n$ thì $\left\{\begin{array}{l}a=p^k \\\ b=p^{n-k}\end{array} \quad\right.$ với $k \in \mathbb{N}$ thỏa $0 \leq k \leq n$;
(c) Nếu a b=c^n và (a, b)=1 thì $a=s^n \text { và } b=r^n$ với $s, r \in \mathbb{N}$.
B MỘT SỐ VÍ DỤ Ví dụ 3.30. Giải phương trình nghiệm nguyên $x^5+2023 x=5^y+2$. Ví dụ 3.31. Tìm các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$. Ví dụ 3.32. Tìm các số nguyên dương $x$ và $y$ sao cho Ví dụ 3.33. Tìm tất cả các số nguyên tố $p$ sao cho luôn tồn tại các số nguyên dương $n, x, y$ thỏa mãn Ví dụ 3.34. Tìm nghiệm tự nhiên của phương trình Ví dụ 3.35. Cho $M=a^2+3 a+1$ với $a$ là số nguyên dương. Ví dụ 3.37. Cho phương trình $2^x+5^y=k^2$ ( $x, y, k$ là các số nguyên dương). Ví dụ 3.38. Cho $k$ là số nguyên dương và $a=3 k^2+3 k+1$. Bài 3.13. Tìm nghiệm nguyên dương của phương trình Bài 3.14. Tìm tập nghiệm nguyên dương của phương trình Bài 3.15. Tìm các số nguyên dương $x, y, z>1$ thỏa mãn Bài 3.16. Tìm nghiệm tự nhiên của phương trình $5^x-3^y=2$. Bài 3.17. Tìm nghiệm nguyên dương của phương trình Bài 3.18. Cho các số nguyên dương $m, n \geq 2$. Tìm nghiệm nguyên dương của phương trình Bài 3.19. Cho $p$ là một số nguyên tố và $a, n$ là các số nguyên dương. Chứng minh rằng nếu $2^p+3^p=$ $a^n$ thì $n=1$. Bài 3.20. Chứng minh rằng tích của ba số nguyên liên tiếp không thể là lũy thừa với số mũ lớn hơn 1 của một số nguyên. Bài 3.21. Cho phương trình $3 x^2-y^2=23^n$ với $n$ là số tự nhiên. Bài 3.22.
Ví dụ 3.29. Tìm các số nguyên $x, y$ thỏa mān $x^3+1=4 y^2$.
$$
9^x-7^x=2^y .
$$
$$
p^n=x^3+y^3 .
$$
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$
(a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
(b) Tìm các giá trị của $a$ để $M$ là lũy thừa của 5 .
(a) Chứng minh rằng phương trình trên vô nghiệm khi $y$ chẵn.
(b) Tìm $k$ để phương trình có nghiệm.
(Đề thi tuyển sinh vào lớp 10 chuyên toán PTNK 2022)
(a) Chứng minh rằng $2 a$ và $a^2$ là tổng của ba số chính phương.
(b) Chứng minh rằng nếu $a$ là uớc của số nguyên $b$ và $b$ bằng tổng của ba số chính phương thì bất kì lũy thừa với số mũ nguyên dương nào của $b$ cũng là tổng của ba số chính phương.
C. CÁC BÀI TẬP RÈN LUYỆN
$$
x^3+x^2+x+1=2011^y .
$$
$$
8^x+15^y=17^z .
$$
$$
(x+1)^y-x^z=1 .
$$
$$
2^x \cdot 3^y+5^z=7^t .
$$
$$
x^n+y^n=3^m .
$$
(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.
(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.
(a) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+4 m=0$ thì cũng tồn tại các số nguyên $a^{\prime}, b^{\prime}, c^{\prime}$ sao cho $a^{\prime}+b^{\prime}+c^{\prime}=0$ và $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime}+m=0$.
(b) Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+2^k=0$.
(Đề thi tuyển sinh lớp 10 chuyên Toán PTNK 2015)
Bài viết của thầy Nguyễn Vĩnh Khang – Giáo viên Star Education
Các tính chất của ước chung
Nhận xét: Nếu ta đặt $(x, y)=d$, thì $x^{\prime}=\dfrac{x}{d}$ và $y^{\prime}=\dfrac{y}{d}$ nguyên tố cùng nhau. Từ đó lợi dụng các tính chất liên quan đến số nguyên tố cùng nhau như (được sử dụng thẳng, không cần chứng minh)
Tính chất 3.1. Giả sử $a, b, c, n$ là các số nguyên dương, chứng minh những tính chất sau
(a) $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$
(b) $\operatorname{gcd}(a c, b c)=\operatorname{gcd}(a, b) c$
(c) Nếu $\operatorname{gcd}(a, b)=1$, ta có $\operatorname{gcd}(a b, c)=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)$
(d) $\operatorname{gcd}\left(a^n, b^n\right)=\operatorname{gcd}(a, b)^n$.
Chứng minh.
Phần 1: gọi $d=\operatorname{gcd}(a, b, c)$ ta có $d$ là ước của $a, b$, nên $\operatorname{gcd}(a, b)$ : $d$. Nhưng $c: d$, nên ta được một chiều
$$
\operatorname{gcd}(\operatorname{gcd}(a, b), c) \vdots d=\operatorname{gcd}(a, b, c)
$$
Để chứng minh chiều còn lại, gọi $d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)$. Tương tự như trên ta có $d$ là ước của $\operatorname{gcd}(a, b)$, nên $d$ cũng là ước của $a, b$. Nhưng $d$ là ước của $a, b, c$, nên
$$
\operatorname{gcd}(a, b, c) \vdots d=\operatorname{gcd}(\operatorname{gcd}(a, b), c)
$$
Kết hợp (1.1) và (1.2), ta có đpcm.
Phần 2: nếu $d=(a c, b c)$, ta có $d: c$ do $c$ là ước chung của $a c, b c$. Đặt $d=k c$, ta có $(a c, b c)=k c$, và $a c, b c: k c$. Nói cách khác $a, b: k$, nên $(a, b): k$, và
$$
c(a, b) \vdots k c=(a c, b c)
$$
Mặt khác, đặt $k=(a, b)$, ta có $a, b: k$, nên $a c, b c: k c$. Theo định nghīa, $(a c, b c) \vdots k c=(a, b) c$. Kết hợp với (2.1) ta có đpem $\operatorname{gcd}(a c, b c)=\operatorname{gcd}(a, b) c$.
Phần 3: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo tính chất 2 , ta được
$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(\dfrac{a}{k}, \dfrac{c}{k}\right)=1 \\
\operatorname{gcd}\left(\dfrac{b}{l}, \dfrac{c}{l}\right)=1
\end{array}\right.
$$
Mặt khác $a: k, b: l$, nhưng $a, b$ lại nguyên tố cùng nhau, nên $k, l$ cūng vậy. Kết hợp với $c: k, l$, ta có $c: k, l$. Để ý rằng $\dfrac{c}{k l}$ là ước của $\dfrac{c}{k}$ và $\dfrac{c}{l}$, nên
$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(\dfrac{a}{k}, \dfrac{c}{k l}\right)=1 \\
\operatorname{gcd}\left(\dfrac{b}{l}, \dfrac{c}{k l}\right)=1
\end{array}\right.
$$
Ta chứng minh $\operatorname{gcd}(a b, c)=1$ nếu $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(a, c)=1$. Thật vậy, giả sử ngược lại, tức $\operatorname{gcd}(a b, c) \neq 1$. Khi đó tồn tại $p$ là ước nguyên tố chung của $a b, c$. Nhưng $a b: p$ thì ta phải có $a: p$ hoặc $b: p$, nên $\operatorname{gcd}(a, c): p$ hoặc $\operatorname{gcd}(b, c)$ : $($ cả 2 đều mâu thuẫn với giả thiết).
Áp dụng quan sát trên cho (3.1), ta được
$$
\operatorname{gcd}\left(\dfrac{a b}{k k}, \dfrac{c}{k l}\right)=1 \Leftrightarrow \operatorname{gcd}(a b, c)=k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)
$$
Phần 4: ta chứng minh $\operatorname{gcd}\left(a^n, b^n\right)=1$ nếu $\operatorname{gcd}(a, b)=1$. Thật vậy, giả sử $\operatorname{gcd}\left(a^n, b^n\right) \neq 1$, khi đó $a^n, b^n$ phải có một ước nguyên tố chung $p$. Sử dụng tính chất nếu $x y: p$ thì $x: p$ hoặc $y: p$. Từ đó $a, b: p$, vô lý.
Đặt $d=\operatorname{gcd}(a, b)$, ta có $\operatorname{gcd}\left(\dfrac{a}{d}, \dfrac{b}{d}\right)=1$, nên
$$
\operatorname{gcd}\left(\left(\dfrac{a}{d}\right)^n,\left(\dfrac{b}{d}\right)^n\right)=1
$$
Nhân $d^n$ cho cả 2 vế, và dùng tính chất 2 , ta được
$$
\operatorname{gcd}(a, b)^n=d^n=d^n \operatorname{gcd}\left(\left(\dfrac{a}{d}\right)^n,\left(\dfrac{b}{d}\right)^n\right)=\operatorname{gcd}\left(a^n, b^n\right)
$$
Hệ quả 3.1
Giả sử $a, b, c, n$ là các số nguyên dương, chứng minh những tính chất sau
(a) Nếu $a b: c$ và $(a, b)=1$, tồn tại $k, l$ sao cho $k l=c$, và $a: k, b \vdots l$.
(b) Nếu $a b=c^n$ và $(a, b)=1(n \geq 2)$, tồn tại $k, l$ sao cho $k l=c$ và $a=k^n, b=l^n$.
Chứng minh.
Phần 1: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo bài tập trước, ta có $k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)=$ $\operatorname{gcd}(a b, c)=c$, và $a: k, b: l$ theo định nghĩa.
Phần 2: gọi $k=\operatorname{gcd}(a, c), l=\operatorname{gcd}(b, c)$, theo bài tập trước, ta có $k l=\operatorname{gcd}(a, c) \operatorname{gcd}(b, c)=\operatorname{gcd}(a b, c)=$ c. Mặt khác
$$
k^n=\operatorname{gcd}\left(a^n, c^n\right)=\operatorname{gcd}\left(a^n, a b\right)=a \operatorname{gcd}\left(a^{n-1}, b\right)=a
$$
, ở đây $\operatorname{gcd}\left(a^{n-1}, b\right)=1$ do nếu tồn tại $p$ là ước nguyên tố chung cho $a^{n-1}, b$, ta phải có $p$ là ước chung của $a, b$ (vô lý). Chứng minh tương tự, ta cũng có $l^n=b$. Ta có đpcm.
B. MỘT SỐ VÍ DỤ ÁP DỤNG
Ví dụ 3.1 (Junior Balkan Mathematical Olympiad 2001).
Tìm ước chung lớn nhất của $A_0, A_1, A_2, \ldots, A_{1999}$, với $A_n=2^{3 n}+3^{6 n+2}+5^{6 n+2}$.
Do $A_0=35=5 \cdot 7$, nên ước chung lớn nhất, gọi là $d$, phải là 1 trong 4 số ${1,5,7,35}$. Do $A_1=$ $2^3+3^8+5^8 \equiv 8+(-2)^8 \equiv 4(\bmod 5)$ nên $d \neq 5,35$. Mặt khác, theo định lý Fermat, ta có $3^6 \equiv 5^6$ $(\bmod 7)$, nên
$$
A_n \equiv 8^n+\left(3^6\right)^n \cdot 9+\left(5^6\right)^n \cdot 25 \equiv 1+9+25 \equiv 0 \quad(\bmod 7)
$$
Ta kết luận $d=7$.
Ví dụ 3.2. Chứng minh rằng nếu $d>0$ không phải là số chính phương, thì $\sqrt{d}$ là số vô tỷ.
Để ý rằng $d=1^2 \cdot d$ nên $d$ luôn có thể viết thành dạng $d=x^2 y$ (với $x, y>0$ ). Chọn $x$ lớn nhất có thể, và để ý $y \neq 1$. Nếu $y$ có ước chính phương $z^2$ ngoài 1 , thì $d=x^{\prime 2} y^{\prime}$, với $x^{\prime}=x z>x$ và $y^{\prime}=\dfrac{y}{z}$, vô lý. Như vậy $y$ là tích các số nguyên tố khác nhau (do nếu $p$ là ước nguyên tố của $y$, thì $\dfrac{y}{p}$ không thể nào chia hết cho $p$ được).
Giả sử $\sqrt{d}=\dfrac{a}{b}$ là một số hữu tỷ, với $a, b$ nguyên dương nguyên tố cùng nhau. Ta có $$ a^2=b^2 d=(b x)^2 \cdot y $$ nên $a^2: y$. Nhưng $y$ chỉ là tích các số nguyên tố khác nhau, nên $a: y$. Thế $a=c y$ vào (*), ta được
$$
c^2 y^2=(b x)^2 y \Leftrightarrow b^2 x^2=c^2 y
$$
Để ý $c^2 y: b^2$, nhưng $(c, b)=1$ (do $(a, b)=1$ ), nên $y: b^2$. Ta đã chọn sao cho $y$ không thể nào có ước chính phương nào ngoài 1 , nên $b=1$ ! Từ đó ta có $\sqrt{d}=a$, hay $d=a^2$, vô lý.
Gọi $d>0$ là một ước chung của $a^m+b^n, a^m-b^n$. Khi đó $\left\{\begin{array}{I}2 a^m=\left(a^m+b^n\right)+\left(a^m-b^n\right) \vdots d \\\ 2 b^n=\left(a^m+b^n\right)-\left(a^m-b^n\right) \vdots d\end{array}\right.$.
Để ý rằng $a, b$ khác tính chẵn lẻ, nên $a^m+b^n$ và $a^m-b^n$ luôn lẻ. Nhưng $d$ là một ước chung, nên $d$ lẻ. Như vậy $a^m, b^n: d$.
Nếu $d \neq 1$, gọi $p$ là một ước nguyên tố của $d$ (có thể $d=p$ ). Khi đó $a^m, b^n: p$, nên ta cũng có $a, b: p$. Điều này mâu thuẫn với giả thiết $a, b$ nguyên tố cùng nhau, nên $d=1$. Nhưng $d$ bất kỳ, nên $a^m+b^n, a^m-b^n$ chỉ có ước chung (dương) là 1 . Hay nói cách khác, $a^m+b^n, a^m-b^n$ nguyên tố cùng nhau.
Ví dụ 3.4. Cho 2 số hữu tỷ $\dfrac{a}{b}, \dfrac{c}{d}$ viết ở dạng tối giản (tức $(a, b)=(c, d)=1$ ) sao cho $d\frac{a}{b}+\dfrac{c}{d}$ là một số nguyên. Chứng minh rằng $|b|=|d|$.
Ta có $\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{a d+b c}{b d}$ là một số nguyên, nên $a d+b c: b$, hay $a d: b$. Nhưng $a, b$ nguyên tố cùng nhau, nên $d: b$.
Chứng minh tương tự với $a d+b c: d$, ta có $b: d$. Như vậy $|b|=|d|$.
Ví dụ 3.5 (Spanish Mathematical Olympiad 1996).
Giả sử $a, b$ là các số nguyên dương sao cho $\dfrac{a+1}{b}+\dfrac{b+1}{a}$ là số nguyên. Nếu $d$ là ước chung lớn nhất của $a, b$
(a) Chứng minh rằng $a+b \geq d^2$.
(b) Tìm một cặp $(a, b)$ mà $a+b=d^2$.
(a) Đặt $a=d a^{\prime}, b=d b^{\prime}$, ta có
$$
\dfrac{a+1}{b}+\dfrac{b+1}{a}=\dfrac{d^2\left(a^{\prime 2}+b^{\prime 2}\right)+d\left(a^{\prime}+b^{\prime}\right)}{d^2 a^{\prime} b^{\prime}} \in \mathbb{Z}
$$
nên $\dfrac{d^2\left(a^{\prime 2}+b^{\prime 2}\right)+d\left(a^{\prime}+b^{\prime}\right)}{d^2}=a^{\prime 2}+b^{\prime 2}+\dfrac{a^{\prime}+b^{\prime}}{d}$ cūng là số nguyên. Như vậy $a^{\prime}+b^{\prime}: d$. Nhưng $a, b$ nguyên dương, nên $a^{\prime}+b^{\prime} \geq d$, hay $a+b=d\left(a^{\prime}+b^{\prime}\right) \geq d^2$.
(b) $a=3, b=6$, thì $\dfrac{a+1}{b}+\dfrac{b+1}{a}=3$ và $a+b=9=\operatorname{gcd}(a, b)^2$.
Ví dụ 3.6 (Romanian Mathematical Olympiad 2003).
Cho $n$ là một số chẵn nguyên dương. Tìm tất cả các số nguyên dương $a, b$ sao cho $a^n+b^n: a+b$.
Do $n$ chẵn ta có $a^n-b^n: a^2-b^2: a+b$. Như vậy
$$
\left\{\begin{array}{l}
2 a^n=\left(a^n+b^n\right)+\left(a^n-b^n\right) \vdots a+b \\\
2 b^n=\left(a^n+b^n\right)-\left(a^n-b^n\right) \vdots a+b
\end{array}\right.
$$
Gọi $d=(a, b)$, và $a=d u, b=d v$, ta có $u, v$ nguyên tố cùng nhau và $\operatorname{gcd}(a, b)=2 d^n \operatorname{gcd}\left(u^n, v^n\right)=$ $2 d^n: d(u+v)$. Nói cách khác, $2 d^{n-1}: u+v$.
Để cho ra tất cả giá trị $a, b$ có thể, ta bắt đầu với 2 số $u, v$ nguyên dương và nguyên tố cùng nhau. Tiếp theo chọn $d$ bất kỳ sao cho $2 d^{n-1}: u+v(d$ luôn tồn tại do ta có thể chọn $d=u+v)$. Khi đó $a=d u, b=d v$ thỏa mãn đề bài.
Thật vậy, từ $a^n+b^n=d^n\left(u^n+v^n\right)$, ta chia làm 2 trường hợp
(a) Nếu $u, v$ đều lẻ: ta có $u^n+v^n$ chẵn, nên $a^n+b^n: 2 d^n: d(u+v)=a+b$.
(b) Nếu, không mất tính tổng quát, $u$ chẵn, $v$ lẻ: do $2 d^{n-1}: u+v$, và $u+v$ lẻ, nên $d^{n-1}: u+v$. Từ đó $a^n+b^n: d^n: d(u+v)=a+b$.
Ta kết luận $a=d u, b=d v$, với $u, v$ nguyên tố cùng nhau sao cho $u+v$ là ước của $2 d^{n-1}$.
Ví dụ 3.7 (India Mathematical Olympiad 1998).
Tìm tất cả các bộ số nguyên dương $(x, y, n)$ sao cho
$$
\operatorname{gcd}(x, n+1)=1 \text { và } x^n+1=y^{n+1} .
$$
Do $x>0$, nên $y^{n+1}=x^n+1>1$. Ta có
$$
x^n=y^{n+1}-1=(y-1)\left(y^n+y^{n-1}+\cdots+y+1\right)
$$
Do $y-1>1$, ta phải có $y-1: p$ với $p$ là một ước nguyên tố nào đó của $x$. Từ đó
$$
y^n+y^{n-1}+\cdots+y+1 \equiv \underbrace{1+1+\cdots+1}_{n \text { số } 1} \equiv n+1 \quad(\bmod p)
$$
Như vậy $p$ là ước chung của $x$ và $n+1$, vô lý.
Ví dụ 3.8 (Bulgarian Mathematical Olympiad 2001).
Tìm tất cả các bộ $(a, b, c)$ nguyên dương sao cho $a^3+b^3+c^3$ chia hết cho $a^2 b, b^2 c$, và $c^2 a$.
Đầu tiên để ý rằng nếu $d$ là ước chung của $a, b$, ta có $a^3+b^3+c^3: a^2 b: d^3$, nên $c: d$. Như vậy nếu ta đặt $d=(a, b, c)$, và $a=d u, b=d v, c=d w, u, v$ phải nguyên tố cùng nhau. Chứng minh tương tự, ta có $u, v, w$ đôi một nguyên tố cùng nhau.
Do $a^3+b^3+c^3: a^2 b$, ta có
$$
d^3\left(u^3+v^3+w^3\right): d^3 u^2 v \Leftrightarrow u^3+v^3+w^3: u^2 v
$$
Từ đó, $u^3+v^3+w^3: u^2$, và $v^3+w^3: u^2$. Chứng minh tương tự, ta cūng có $u^3+v^3+w^3: v^2, w^2$, và $w^3+u^3: v^2, u^3+v^3: w^2$. Nhưng $u, v, w$ nguyên tố cùng nhau đôi một, nên
$$
\left\{\begin{array}{l}
u^3+v^3+w^3: u^2 v^2 w^2 \\\
v^3+w^3: u^2 \\\
w^3+u^3: v^2 \\\
u^3+v^3: w^2
\end{array}\right.
$$
Không mất tính tổng quát, giả sử $u \leq v \leq w$. Do $a, b, c$ nguyên dương, $u, v, w$ cũng nguyên dương, và $u^2 v^2 w^2 \leq u^3+v^3+w^3 \leq 3 w^3$. Nói cách khác, $w \geq \dfrac{u^2 v^2}{3}$. Mặt khác, $u^3+v^3: w^2$, nên ta được
$$
u^3+v^3 \geq w^2 \geq \dfrac{u^4 v^4}{9} (*)
$$
Nhưng $u \leq v$, nên $2 v^3 \geq u^3+v^3 \geq \frac{u^4 v^4}{9}$, hay $u^4 v \leq 18$. Ta suy ra $u=1$ hoặc $u=2$. Nhưng $u=2$ thì $v \geq 2$, nên $32 \leq u^4 v \leq 18$, vô lý.
*Như vậy $u=1$. Nếu $v=1$ thì 2 : $w^2$, cho nên $w=1$. Ta có bộ $(a, b, c)=(d, d, d)$ thỏa mãn. Nếu $v \geq 2$, ta phải có $w>v$, hay $w \geq v+1 \geq 3$ do $v, w$ nguyên tố cùng nhau. Nhưng $u^3+v^3+w^3: u^2 v^2 w^2$, nên ta có
$$
1+v^3+w^3: v^2 w^2 \Rightarrow v^2 w^2 \leq 1+v^3+w^3 \leq 1+(w-1)^3+w^3<2 w^3
$$
Chia $w^2$ cho cả 2 vế, ta được $v^2<2 w$, hay $w>\frac{v^2}{2}$. Mặt khác, ta có $v^3+u^3: w^2$, nên
$$
v^3+1 \geq w^2>\frac{v^4}{4} \Leftrightarrow 4>v^3(v-4)
$$
Vậy $v \leq 4$. Nhưng $v \geq 2$, ta xét các trường hợp sau
(a) $v=4$ : khi đó $u^3+v^3=65: w^2$, nên $w=1$ (vô lý do $v \leq w$ ).
(b) $v=3$ : khi đó $u^3+v^3=28: w^2$, nên $w \in{1,2}$ (cũng vô lý như trên).
(c) $v=2$ : khi đó $u^3+v^3=9: w^2$, nên $w=3$ (do $w \geq v$ ).
Kiểm tra lại, ta nhận $(a, b, c)=(d, 2 d, 3 d)$ và các hoán vị của nó. Ta kết luận
$$
\begin{aligned}
& (a, b, c)=(k, k, k),(k, 2 k, 3 k),(k, 3 k, 2 k), \
& \quad(2 k, k, 3 k),(2 k, 3 k, k),(3 k, k, 2 k),(3 k, 2 k, k) \quad k \geq 1
\end{aligned}
$$
Ví dụ 3.9. Cho các số nguyên dương $x, y, z$ sao cho $\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}$. Giả sử $x, y, z$ nguyên tố cùng nhau (tức $(x, y, z)=1$ ), chứng minh rằng $x+y$ là một số chính phương.
Viết lại phương trình thành $x+y=\dfrac{x y}{z}$. Đặt $d=(x, y)$, và $x=d a, y=d b$, ta có $(d, z)=1$ (do $(x, y, z)=1)$ và $(a, b)=1$. Thêm nữa
$$
a+b=\dfrac{d a b}{z}
$$
Ta có $d a b: z$, và $(d, z)=1$, nên $a b: z$. Do $(a, b)=1$, ta sẽ chứng minh $z$ có thể tách thành $z=r s$ sao cho $a: r$ và $b: s$.
*Đặt $r=(a, z)$ và $s=(b, z)$.
Như vậy $k l: q$ và $(k, q)=1$. Chứng minh tương tự, ta có $(l, q)=1$. Từ đó $q=1$, và $z=r s$.
Tóm tắt lại, ta có $a=k r, b=l s$ và $z=r s$.
*Thế vào $a+b=\dfrac{d a b}{z}$, ta có
$$
k r+l s=d k l
$$
Để ý $(a, b)=1$ nên $(k, l s)=1$. Mặt khác, $l s=d k l-k r: k$, cho nên $k=1$. Chứng minh tương tự, ta có $l=1$, nên $a b=r s=z$, và $a+b=\dfrac{d a b}{z}=d$. Từ đó $x+y=d(a+b)=d^2$ là một số chính phương.
Ví dụ 3.10. Giải phương trình nghiệm nguyên sau (theo các biến $x, y, n, m$ ) với $m, n \geq 0$.
$$
x^n+y^n=2^m
$$
Đặt $d=(x, y)>0$ và $x=d u, y=d v$, ta có $u, v$ nguyên tố cùng nhau và $d^n\left(u^n+v^n\right)=2^m$. Như vậy $d=2^e\left(0 \leq e \leq \frac{m}{n}\right)$. Đặt $k=2^{m-n e}$, ta xét phương trình sau (với $u, v$ nguyên tố cùng nhau).
$$
u^n+v^n=2^k
$$
(a) Nếu $n$ chẵn
(a) Nếu $n=0$ : phương trình gốc trở thành $2^m=2$, nên $m=1$. Ta nhận bộ nghiệm $(x, y, 0,1)$ với mọi $x, y \neq 0$.
(b) Nếu $n \geq 2$ :
i. Nếu $k=0$ : ta có $u^n+v^n=1$. Nhưng $n$ chẵn, nên phương trình chỉ có 4 nghiệm $(0, \pm 1)$ và $( \pm 1,0)$. Ta nhận bộ
$$
(x, y, m, n)=\left( \pm 2^e, 0, n e, n\right),\left(0, \pm 2^e, n e, n\right) \quad(n \text { chẵn })
$$
ii. Nếu $k \geq 1$ : ta có $u^n+v^n$ chẵn. Kết hợp với $u, v$ nguyên tố cùng nhau, ta được $u, v$ cùng lẻ. Xét modulo 4, ta có $2^k=u^n+v^n \equiv 1+1 \equiv 2(\bmod 4)$. Nói cách khác $k=1$ và $u^n+v^n=2$, hay $u, v= \pm 1$. Ta nhận bộ
$$
(x, y, m, n)=\left( \pm 2^e, \pm 2^e, n e+1, n\right) \quad(n \text { chẵn })
$$
(b) Nếu $n$ lẻ: ta có $2^k=(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)$, nên $u+v=2^s$ với $s \geq 0$.
(a) Nếu $n=1$ : ta có $u+v=2^k$, nên ta nhận các bộ sau
$$
(x, y, m, n)=\left(u, 2^m-u, m, 1\right) \quad(u \text { nguyên bất kỳ })
$$
(b) Nếu $n \geq 3$ :
i. Nếu $k=0$ : ta có $u^n+v^n=1$. Nhưng $u^n+v^n=(u+v)\left(u^{n-1}-u^{n-2} v+\cdots-u v^{n-2}+v^{n-1}\right)$, cho nên $u+v= \pm 1$.
*Với $v=1-u$, ta xét phương trình sau
$$
u^n-(u-1)^n=1
$$
Ta có $u=0,1$ là nghiệm, cho nên ta nhận các bộ sau
$$
(x, y, m, n)=\left(2^e, 0, n e, n\right),\left(0,2^e, n e, n\right) \quad(n \text { lẻ })
$$
Nếu $u \geq 2$, ta chứng minh
$$
u^n-(u-1)^n>1
$$
với mọi $n \geq 2$ bằng quy nạp. Khi $n=2$, ta có $u^2-(u-1)^2=2 u-1 \geq 3>1$. Giả sử bất đẳng thức đúng với $n$, ta chứng minh nó đúng với $n+1$
$$
\begin{aligned}
u^{n+1}-(u-1)^{n+1} & =u^n+(u-1) u^n-(u-1)^{n+1} \
& =u^n+(u-1)\left[u^n-(u-1)^n\right] \
& \geq 2^n+(2-1) \cdot 1>1
\end{aligned}
$$
Nếu $u \leq-1$, ta cũng chứng minh $u^n-(u-1)^n=(1-u)^n-(-u)^n>1$ với mọi $n \geq 2$ bằng quy nạp. Khi $n=2$, ta có $(1-u)^n-(-u)^n=-2 u+1>1$. Giả sử bất đẳng thức đúng với $n$, ta chứng minh nó đúng với $n+1$
$$
\begin{aligned}
(1-u)^{n+1}-(-u)^{n+1} & =(1+w)^{n+1}-w^{n+1} \quad(\text { đặt } w=-u \geq 1) \
& =w(w+1)^n+(w+1)^n-w^{n+1} \
& =(w+1)^n+w\left[(w+1)^n-w^n\right] \
& \geq 2^n+1 \cdot 1>1
\end{aligned}
$$
*Với $v=-1-u$, ta xét phương trình sau
$$
u^n-(u+1)^n=1 \Leftrightarrow(u+1)^n-u^n=-1
$$
Dùng những bất đẳng thức ta đã chứng minh ở trên, cộng với trường hợp $u=0,1$ không thỏa, ta kết luận trường hợp này vô nghiệm.
ii. Nếu $k \geq 1$ : ta có $u^n+v^n$ chẵn, và $u, v$ nguyên tố cùng nhau, nên $u, v$ cùng lẻ. Như vậy
$$
u^{n-1}-u^{n-2} v+\cdots-v^{n-1} \equiv \underbrace{1+1+\cdots+1}_{n \text { số } 1} \equiv n \equiv 1 \quad(\bmod 2)
$$
Kết hợp với $(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)=2^k$, ta phải có
Kết hợp với $(u+v)\left(u^{n-1}-u^{n-2} v+\cdots+v^{n-1}\right)=2^k$, ta phải có
$$
\left\{\begin{array}{l}
u+v=2^k \quad(k \geq 1) \\\
u^{n-1}-u^{n-2} v+\cdots+v^{n-1}=1
\end{array}\right.
$$
Để ý $u^n+v^n=2^k=u+v$, ta sẽ chứng minh
$\left(u^n-v^n\right)(u-v) \geq 0$ với mọi $u, v$ và $n$ lẻ bằng quy nạp lên $n$. Trường hợp $n=1$ chính là $(u-v)^2 \geq 0$, còn $n=3$ là $\left(u^3-v^3\right)(u-v)=(u-v)^2\left(u^2+u v+v^2\right) \geq 0$.
Giả sử nó đúng với $n-2$ và $n$, ta chứng minh nó cũng đúng với $n+2$
$$
\begin{aligned}
\left(u^{n+2}-v^{n+2}\right)(u-v)= & \left(u^{n+2}-u^2 v^n+u^2 v^n-u^n v^2+u^n v^2-v^{n+2}\right)(u-v) \
= & u^2\left(u^n-v^n\right)(u-v)+u^2 v^2\left(u^{n-2}-v^{n-2}\right)(u-v) \
& +v^2\left(u^n-v^n\right)(u-v) \geq 0
\end{aligned}
$$
Đúng theo bất đẳng thức ta đã chứng minh ở trên.
Áp dụng vào bài toán, ta có $u+v=u^n+v^n \geq \frac{u^2+v^2}{2} \cdot\left(u^{n-2}+v^{n-2}\right) \geq\left(\frac{u^2+v^2}{2}\right)^2$. $\left(u^{n-4}+v^{n-4}\right) \geq \cdots\left(\frac{u^2+v^2}{2}\right)^{(n-1) / 2}(u+v)$. Nhưng $u+v=2^k \geq 2^1>1$, nên
$$
\left(\frac{u^2+v^2}{2}\right)^{(n-1) / 2} \leq 1 \Leftrightarrow u^2+v^2 \leq 2
$$
Xét các giá trị $u, v=0, \pm 1$ thỏa mãn điều kiện trên, ta được các cặp $(u, v)=$ $(0,0),( \pm 1,0),(0, \pm 1),( \pm 1, \pm 1)$. Thử vào $u+v=u^n+v^n=2^k$ (với $2^k \geq 2^1=2$ ), ta chỉ có đúng $u=v=1$ và $k=1$ thỏa. Ta nhận các bộ
$$
(x, y, m, n)=\left(2^e, 2^e, n e+1, n\right) \quad(n \geq 3 \text { lẻ })
$$
Tổng hợp các trường hợp lại, ta kết luận các nghiệm $(x, y, m, n)$ như sau
(a) $\left(2^e, 0, n e, n\right),\left(0,2^e, n e, n\right)$, và $\left(2^e, 2^e, n e+1, n\right)(e, n \geq 0)$.
(b) $\left(-2^e, 0, n e, n\right),\left(0,-2^e, n e, n\right)$, và $\left( \pm 2^e, \pm 2^e, n e+1, n\right)(e, n \geq 0, n$ chẵ $)$.
(c) $\left(u, 2^m-u, m, 1\right)(u \in \mathbb{Z}, m \geq 0)$
Ví dụ 3.11. Tìm tất cả các số nguyên dương $x, y, z$ sao cho
$$
16 x y z=d(x+y+z)^2
$$
với $d$ là ước chung của $x, y, z$
Đặt $x=d a, y=d b, z=d c$, ta có $(a, b, c)=1$. Phương trình tương đương với $16 a b c=(a+b+c)^2$.
*Gọi $p^{2 k+1}$ là một ước của $a, p$ nguyên tố. Ta sẽ chứng minh $p^{2 k+2}$ cũng là ước của $a$.
(a) Nếu $p=2$ : đặt $a=2^{2 k+1} u$, ta có
$$
2^{2 k+5} u b c=\left(2^{2 k+1} u+b+c\right)^2
$$
Nếu $b$ chẵn thì $c$ cũng phải chẵn (và ngược lại), nhưng điều này mâu thuẫn với $a, b, c$ nguyên tố cùng nhau. Như vậy $b, c$ phải lẻ. Đê ý vế trái là bội của $2^{2 k+5}$ (mũ lẻ), nên $Q^2: 2^{2 k+5}(Q=$ $2^{2 k+1} u+b+c$. Nói cách khác, $Q: 2^{k+3}$ hay $Q=2^{k+3} R$. Từ đó
$$
2^{2 k+5} u b c=Q^2=2^{2 k+6} R^2
$$
nên $2^{2 k+5} u b c: 2^{2 k+6}$. Nhưng $b, c$ lẻ, nên ta có $u: 2$. Như vậy $a=2^{2 k+1} u: 2^{2 k+2}$.
(b) Nếu $p>2$ : lập luận tương tự như trên, ta đặt $Q=a+b+c$ và $a=p^{2 k+1} u$. Phương trình tương đương với
$$
Q^2=16 p^{2 k+1} u b c: p^{2 k+1}
$$
hay $Q: p^{k+2}$. Ta có $16 p^{2 k+1} u b c=Q^2: p^{2 k+2}$. Nhưng $p>2$, nên $u b c: p$.
Giả sử, không mất tính tổng quát b:p. Khi đó $(a+b+c)^2=16 a b c: p$, nên $a+b+c: p$. Nhưng $a: p$, nên c:p. Ta có điều vô lý do $a, b, c$ nguyên tố cùng nhau. Như vậy $u: p$, nên $a=p^{2 k+1} u: p^{2 k+2}$.
Như vậy nếu $a=p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$ là phân tích thừa số nguyên tố, các số mũ $\alpha_i$ phải chẵn (nếu $\alpha_i$ lẻ thì $p_i^{\alpha_i+1}$ cũng là ước của $a$, vô lý). Cùng với $a>0$, ta kết luận $a$ là số chính phương. Chứng minh tương tự, $b, c$ cũng chính phương.
*Đặt tiếp $a=u^2, b=v^2, c=w^2(u, v, w>0)$, ta có phương trình
$$
16 u^2 v^2 w^2=\left(u^2+v^2+w^2\right)^2 \Leftrightarrow u^2+v^2+w^2=4 u v w
$$
Do $a, b, c$ nguyên tố cùng nhau, $u, v, w$ cũng phải nguyên tố cùng nhau. Mặt khác, xét modulo 4 cho cả 2 vế, ta có $u^2+v^2+w^2 \equiv 0,1,2,3(\bmod 4)$, với $u^2+v^2+w^2 \equiv 0(\bmod 4)$ khi và chỉ khi $u^2, v^2, w^2 \equiv 0 (\text{b mod 4} )$. Như vậy $u, v, w$ đều chẵn, vô lý.
Ta kết luận phương trình vô nghiệm.
Trong các kì thi tuyển sinh vào 10 có dạng toán liên quan đến hàm số, chủ yếu là hàm bậc hai dạng $y = ax^2$ (1) và đường thẳng $y = mx + n$ (2)Trong bài viết này chủ yếu xét các bài toán tương giao giữa đồ thị hàm số (1) và (2).
Nếu hàm số $y =ax^2$ có đồ thị là parabol $(P)$ và hàm số $y = mx + n$ có đồ thị là đường thẳng $d$, thì phương trình hoành độ giao điểm của $(P)$ và $(d)$ là
$$ax^2 = mx + n \Leftrightarrow ax^2 – m x – n =0 (*)$$
$(*)$ là một phương trình bậc hai, nên có 3 trường hợp xảy ra:
Ta xét một vài ví dụ sau:
Bài 1. (Thi vào lớp 10 trường PTNK năm 2018) Gọi $(P),(d)$ lần lượt là đồ thị của các hàm số $y=x^2$ và $y=2 m x+3$.
a) Chứng minh đường thẳng $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ và tính $y_1+y_2$ theo $m$.
b) Tìm $m$ sao cho $y_1-4 y_2=x_1-4 x_2+3 x_1 x_2$.
Lời giải bài 1.
a) Phương trình hoành độ giao điểm của $(P)$ và $(d)$ là:
$$
x^2=2 m x+3 \Leftrightarrow x^2-2 m x-3=0 \quad(1)
$$
Xét phương trình (1), ta có: $\Delta^{\prime}=m^2+3>0$ với mọi $m \in \mathbb{R}$
Suy ra phương trình (1) luôn có hai nghiệm phân biệt $x_1, x_2$ với mọi $m$ hay $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
Theo định lý Viete, ta có: $\left\{\begin{array}{l}x_1+x_2=2 m \\\ x_1 x_2=-3\end{array}\right.$
Khi đó $y_1=2 m x_1+3, y_2=2 m x_2+3$
$y_1+y_2=2 m x_1+3+2 m x_2+3=2 m\left(x_1+x_2\right)+6=4 m^2+6$
b) Ta có:
$y_1-4 y_2=x_1-4 x_2+3 x_1 x_2 $
$\Leftrightarrow 2 m x_1+3-8 m x_2-12=x_1-4 x_2-9 $
$ \Leftrightarrow 2 m\left(x_1-4 x_2\right)=x_1-4 x_2 $
$ \Leftrightarrow\left(x_1-4 x_2\right)(2 m-1)=0 $
$ \Leftrightarrow\left[\begin{array}{l}
x_1=4 x_2 \\\
m=\frac{1}{2} \quad(n)
\end{array}\right. $
Với $x_1=4 x_2 $ lại có $x_1 x_2=-3 \Rightarrow 4 x_2^2=-3 $ (vô lý)
Vậy $m=\frac{1}{2} $
Bài 2. (Đề thi vào 10 trường PTNK năm 2019) Cho $(P),(d)$ lần lượt là đồ thị hàm số $y=x^2$ và $y=2 x+m$.
a) Tìm $m$ sao cho $(P)$ cắt $(d)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
b) Tìm $m$ sao cho $\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5$.
Lời giải bài 2.
a) Phương trình hoành độ giao điểm của $(P)$ và $(d)$
$$
x^2=2 x+m \Leftrightarrow x^2-2 x-m=0 \quad(1)
$$
$(P)$ cắt $(d)$ tại 2 điểm phân biệt $A, B \Leftrightarrow (1)$ có 2 nghiệm phân biệt
$\Leftrightarrow \Delta^{\prime}>0 \Leftrightarrow 1+m>0 $
$ \Leftrightarrow m>-1(*)$
Vậy $m>-1$ thì $(P)$ cắt $(d)$ tại hai điểm phân biệt.
b) Với điều kiện $(*)$ theo Viete ta có: $S=x_1+x_2=2, P=x_1 \cdot x_2=-m$
Ta có: $A\left(x_1 ; y_1\right) \in(d) \Leftrightarrow y_1=2 x_1+m ; B\left(x_2 ; y_2\right) \in(d) \Leftrightarrow y_2=2 x_2+m$
Ta có: $\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5 $
$\Leftrightarrow\left(x_1-x_2\right)^2+\left(2 x_1-2 x_2\right)^2=5$
$\Leftrightarrow\left(x_1-x_2\right)^2+4\left(x_1-x_2\right)^2=5 $
$\Leftrightarrow\left(x_1-x_2\right)^2=1 \Leftrightarrow\left(x_1+x_2\right)^2-4 x_1 x_2=1$
$\Leftrightarrow 4+4 m=1 \Leftrightarrow m=\frac{-3}{4} $ thỏa (*)
Vậy $m = \dfrac{-3}{4}$.
Bài 3. Đồ thị của hàm số $f(x)=a x^2$ và $g(x)=-a x+b(a ; b$ là các số thực), điểm chung thứ nhất có hoành độ bằng 1 và tung độ điểm chung thứ 2 là 8 . Tìm hoành độ của điểm chung thứ hai của hai đồ thị và tính $a, b$.
Lời giải bài 3.
Bài 4. (TS chuyên Đăk Lăk 2020 – 2021) Trong mặt phẳng $O x y$, cho parabol $(P): y=x^2$ và đường thẳng $(d): y=2(m+1) x+3$ với $m$ là tham số. Tìm tất cả các giá trị của tham số $m$ để đường thẳng $(d)$ cắt parabol tại hai điểm phân biệt có hoành độ $x_1, x_2$ thoả mãn điều kiện $x_1^2-2 m x_1+2 x_2-x_1 x_2=2$.
Lời giải bài 4.
Bài 5. (TS chuyên Khánh Hoà 2020 – 2021) Trên mặt phẳng toạ độ $O x y$, cho parabol $(P)$ có phương trình $y=2 x^2$ và đường thẳng $(d): y=-2 m x+m+1$ với $m$ là tham số.
a) Chứng minh đường thẳng $(d)$ luôn cắt Parabol $(P)$ tại hai điểm phân biệt.
b) Gọi $x_1, x_2$ lần lượt là hoành độ giao điểm của đường thẳng $(d)$ và parabol $(P)$, tìm $m$ thoả mãn đẳng thức $\frac{1}{\left(2 x_1-1\right)^2}+\frac{1}{\left(2 x_2-1\right)^2}=66$.
Lời giải bài 5 .
a) Phương trình hoành độ giao điểm của $d$ và $P$ là
$$
2 x^2+2 m x-m-1=0
$$
$\Delta^{\prime}=m^2-2(-m-1)=(m+1)^2+1>0$ với mọi $m$, do đó $d$ cắt $P$ tại hai điểm phân biệt với mọi $m$.
b) Theo định lý Viete ta có $x_1+x_2=-m, x_1 x_2=\frac{-m-1}{2}$.
Suy ra $x_1^2+x_2^2=\left(x_1+x_2\right)^2-2 x_1 x_2=m^2+m+1$
Ta có $66=\frac{1}{\left(2 x_1-1\right)^2}+\frac{1}{\left(2 x_2-1\right)^2}=\frac{\left(2 x_1-1\right)^2+\left(2 x_2-1\right)^2}{\left(2 x_1-1\right)^2\left(2 x_2-1\right)^2}=\frac{4\left(x_1^2+x_2^2\right)-4\left(x_1+x_2\right)+2}{\left(4 x_1 x_2-2\left(x_1+x_2\right)+1\right)^2}$
$$
=\frac{4\left(m^2+m+1\right)-4(-m)+2}{(-2 m-2-2(-m)+1)^2}=\frac{4 m^2+8 m+6}{1}
$$
Giải ra được $m=-5, m=3$.
Bài 6. (TS chuyên Thái Bình 2020 – 2021) Trong mặt phẳng toạ độ $O x y$, cho parabol $(P): y=\frac{x^2}{2}$ và hai đường thẳng $\left(d_1\right): y=5 x+2,\left(d_2\right): y=\left(m^2+1\right) x+m$ với $m$ là tham số.
a) Tìm $m$ để $\left(d_1\right)$ song song với $\left(d_2\right)$.
b) Tìm $m$ để $\left(d_2\right)$ cắt parabol $(P)$ tại hai điểm phân biệt có hoành độ $x_1, x_2$ sao cho $Q=x_1+x_2-4 x_1 x_2$ đạt giá trị nhỏ nhất.
Lời giải bài 6 .
a) Điều kiện để $d_1 || d_2$ là $m^2+1=5, m \neq 2$, giải ra được $m=-2$.
b) Phương trình hoành độ giao điểm của $d_2$ và $P$ là
$$
\frac{x^2}{2}=\left(m^2+1\right) x+m \Leftrightarrow x^2-2\left(m^2+1\right) x-2 m=0
$$
Điều kiện $\Delta^{\prime}=\left(m^2+1\right)^2-(-2 m)>0 \Leftrightarrow m^4+2 m^2+1+2 m>0 \Leftrightarrow m^4+m^2+(m+1)^2>0$ (Đúng với mọi $m)$
Theo định lý Viete ta có $x_1+x_2=2\left(m^2+1\right), x_1 x_2=-2 m$
Ta có $P=x_1+x_2-4 x_1 x_2=$ $2\left(m^2+1\right)-4(-2 m)=2\left(m^2+1+4 m\right)=2(m+2)^2-6 \geq-6$, đẳng thức xảy ra khi $m=-2$.
Bài 8. Trong mặt phẳng tọa độ $O x y$, cho parabol $(P): y=x^2$ và đường thẳng $(d): y=2 x-m-2$. Tìm tất cả các giá trị của tham số $m$ để $(d)$ cắt $(P)$ tại hai điểm phân biệt lần lượt có hoành độ $x_1, x_2$ thỏa mãn $x_1^2+1=2 x_2$.
Lời giải bài 8 .
Ta có $x_1^2=2 x_1-m-2$, suy ra $x_1^2+1=2 x_2 \Leftrightarrow 2 x_1-m-2+1=2 x^2 \Leftrightarrow 2\left(x_1-x_2\right)=m+1$ Kết hợp với Viete ta có $x_1=\frac{m+5}{4}, x_2=\frac{3-m}{4}$
Khi đó $x_1 x_2=m+2 \Leftrightarrow \frac{m+5}{4} \frac{3-m}{4}=m+2 \Leftrightarrow m=-1(l), m=-17(n)$.
Bài 9. Cho $(P): y=x^2$ và đường thẳng $(d): y=(m+2) x-2 m$.
a) Tìm $m$ để $d$ cắt $(P)$ tại hai điểm phân biệt $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$.
b) Tìm $m$ để $x_1+2 y_2=7$.
Lời giải bài 9 .
a) Phương trình hoành độ giao điểm
$\quad x^2-(m+2) x+2 m=0 $
$\Delta=(m+2)^2-8 m=(m-2)^2>0 \Leftrightarrow m \neq 2 .$
b) Khi đó phương trình có nghiệm $x=2, x=m$.
3
Bài 10. Trong mặt phẳng tọa độ $O x y$, cho parabol $(P)$ có phương trình $y=x^2$ và đường thẳng $(d)$ có phương trình $y=2 m x-m^2-m-2$ (với $m$ là tham số).
a) Tìm tọa độ điểm $M$ thuộc $(P)$ biết điểm $M$ có hoành độ bằng -3 .
b) Tìm điều kiện của $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai điểm phân biệt. Gọi $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ là hai giao điểm của đường thẳng $(d)$ và parabol $(P)$, xác định $m$ để $x_1 y_2+x_2 y_1=2 m^3+6$.
Lời giải bài 10.
b) Tìm điều kiện của $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai đie biệt. Gọi $A\left(x_1 ; y_1\right), B\left(x_2 ; y_2\right)$ là hai giao điểm của đường thẳng $(d)$ và $(P)$, xác định $m$ để $x_1 y_2+x_2 y_1=2 m^3+6$. Ta có phương trình hoành độ giao điểm của $(d)$ và $(P)$ là
$ x^2=2 m x-m^2-m-2 \Leftrightarrow x^2-2 m x+m^2+m+2=0(1) $
$ \Delta^{\prime}=(-m)^2-\left(m^2+m+2\right)=-m-2$
$(d)$ cắt parabol $(P)$ tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm phân biệt $\Leftrightarrow \Delta^{\prime}>$ $0 \Leftrightarrow-m-2>0 \Leftrightarrow m<-2(*)$
$ \text { Ta có } x_1+x_2=2 m, x_1 x_2=m^2+m+2 $
$x_1 y_2+x_2 y_1=x_1 \cdot x_2^2+x_2 \cdot x_1^2=x_1 \cdot x_2\left(x_1+x_2\right)=2$ $m\left(m^2+m+2\right) $
$=2 m^3+2 m^2+4 m $
$2 m^3+2 m^2+4 m=2 m^3+6 \Leftrightarrow 2 m^2+4 m-6=0 $
$\Leftrightarrow\left[\begin{array}{l}
m=1 \\\
m=-3
\end{array}\right.$
Đối chiếu (*) vậy $m=-3$.
Trong chương trình hình học chuyên toán dành cho lớp 9, có nhiều bài toán liên quan đến các đường cao và trực tâm tam giác, hôm nay chúng ta sẽ tìm hiểu một số tính chất và bài tập như thế.
Bài 1. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, các đường cao $AD, BE, CF$ cắt nhau tại $H$. $M$ là trung điểm của $BC$. Vẽ đường kính $AK$.
a) Chứng minh $H, M, K$ thẳng hàng;
b) Chứng minh $AH = 2 \cdot OM$.
c) Gọi $G$ là trọng tâm tam giác $ABC$. Chứng minh $H, G, O$ thẳng hàng và $GH = 2 \cdot OG$.
Bài 2. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$. Các đường cao $A D, B E, C F$ cắt nhau tại $H$. $A O$ căt $E F$ tại $K$ và $(O)$ tại $L$.
a) Chứng minh $\angle B A H=\angle C A O$ và $\angle A O \perp E F$.
b) $C F, B E$ cắt $(O)$ tại $Q, P$. Chứng minh $A P=A Q=A H$.
c) Tính $\angle A$ nếu $B, H, O, C$ cùng thuộc một đường tròn. Khi đó tính $\angle O H C$.
Bài 3. Cho tam giác $A B C$, các đường cao $A D, B E, C F$ cắt nhau tại trực tâm tam giác là $H$. Gọi $M$ là trung điểm $B C$ và $P$ là hình chiếu vuông góc của $H$ trên $A M$. Chứng minh rằng
(a) Các tứ giác $B F P M, C E P M$ nội tiếp.
(b) Tứ giác $B H P C$ nội tiếp.
(c) $B C$ là tiếp tuyến chung của đường tròn ngoại tiếp tam giác $A P B, A P C$.
Bài 4. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$. Các đường cao $B E, C F$ cắt nhau tại $H$. Gọi $M$ là trung điểm $A H$.
a) Chứng minh $M E D F$ nội tiếp.
b) $M E, M F$ là tiếp tuyến của đường tròn đường kính $B C$.
c) Gọi $K$ là giao điểm $A D$ và $E F ; T$ là giao điểm của $M B$ và đường tròn đường kính $B C$. Chứng minh rằng $T, K, C$ thẳng hàng và $K$ là trực tâm tam giác $M B C$.
Bài 5. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O)$. Các đường cao $B E, C F$ cắt nhau tại $H$. Gọi $M$ là trung điểm $B C$.Đường tròn đường kính $A H$ cắt $(O)$ tại $P$ khác $A$. $A P$ cắt $B C$ tại $K$.
a) Chứng minh các tứ giác $K B F P, K C E P$ nội tiếp.
b) Chứng minh $K, E, F$ thẳng hàng.
c) Chứng minh $H$ là trực tam giác $A K M$.
Bài 6. Cho tam giác $A B C$, các đường cao $B E, C F$. Các điểm $P \in B E, Q \in C F$ sao cho $\angle P A B=$ $\angle Q A C=90^{\circ}$. Chứng minh rằng đường thẳng qua $A$ vuông góc $P Q$ đi qua trung điểm $B C$.
Bài 7. Cho tam giác $A B C$ nội tiếp đường tròn tâm $O$ có trực tâm $H$. Đường trung trực $A H$ cắt $A B, A C$ tại $Q, P$. Chứng minh $O A$ là phân giác $\angle P O Q$.
Bài 8. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$, các đường cao $B D, B E, C F$ cắt nhau tại $H$. $A D$ cắt $(O)$ tại $K . K F$ cắt $(O)$ tại $P$.
a) Chứng minh $F H \cdot F C=F P \cdot F K$.
b) $C P$ cắt $D E$ tại $L$. Chứng minh $H L P F$ nội tiếp.
c) Chứng minh $C P$ qua trung điểm của $E F$.
Bài 9. Cho tam giác $A B C$ có các đường cao $B D, C E$ cắt nhau tại $H$. Gọi $K$ là hình chiếu vuông góc của $H$ trên $D E . M$ là trung điểm của $B C, L$ là giao điểm của $A M$ và $D E$. Chứng minh 4 điểm $B, C, L, K$ cùng thuộc một đường tròn.
Bài 10. Cho tam giác $A B C$ nhọn, $M$ trên cạnh $B C$. Trên các cạnh $A B, A C$ lấy điểm $D, E$ sao cho $M D=M B, M E=M C$. Gọi $H$ là trực tâm tam giác $M D E$. Chứng minh rằng 4 diểm $A, D, H, E$ cùng thuộc một đường tròn.
Bài tập rèn luyện
Bài 1. (Chuyên Tiền Giang) Cho tam giác nhọn $A B C$ có $A B<A C$ và nội tiếp đường tròn tâm $O$. Đường tròn tâm $K$ đường kính $B C$ cắt các cạnh $A B, A C$ lần lượt tại $E, F$. Gọi $H$ là giao điểm của $B F$ và $C E$.
a) Chứng minh tam giác $A E F$ và tam giác $A C B$ dồng dạng.
b) Gọi $A^{\prime}$ là điểm đối xứng của $A$ qua $O$. Chứng minh $A A^{\prime}$ vuông góc với $E F$.
c) Từ $A$ dựng các tiếp tuyến $A M, A N$ dến đường tròn $(K)$ với $M, N$ là các tiếp điểm. Chứng minh ba điểm $M, H, N$ thẳng hàng.
Bài 2. (Chuyên Thái Nguyên) Cho tam giác nhọn $A B C$ nội tiếp đường tròn $(O), A B<A C$, các đường cao $B D, C E$ cắt nhau tại $H$ ( $D$ thuộc $A C, E$ thuộc $A B$ ). Gọi $M$ là trung điểm của $B C$, tia $M H$ cắt đường tròn $(O)$ tại $N$.
a) Chứng minh rằng năm điểm $A, D, E, H, N$ cùng nằm trên một đường tròn.
b) Lấy điểm $P$ trên đoạn $B C$ sao cho $\widehat{B H P}=\widehat{C H M}, Q$ là hình chiếu vuông góc của $A$ trên đường thẳng $H P$. Chứng minh rằng tứ giác $D E N Q$ là hình thang cân.
c) Chứng minh rằng đường tròn ngoại tiếp tam giác $M P Q$ tiếp xúc với đường tròn $(O)$.
Bài 3. (Lê Quý Đôn – Bình Định ) Cho tam giác $A B C(A B<A C)$ có các góc đều nhọn, các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ và $A D$ lần lượt tại $K$ và I. Qua $F$ kẻ đường thẳng song song với $A C$ cắt $A K, A D$ lần lượt tại $M$ và $N$. Gọi $O$ là trung điểm $B C$. Chứng minh
a) $D A$ là phân giác của $\widehat{F D E}$.
b) F là trung điểm của $M N$.
c) $O D \cdot O K=O E^2$ và $B D \cdot D C=O D \cdot D K$.
Bài 4. (Chuyên TPHCM – 2018) Cho tam giác $A B C(A B<A C)$ vuông tại $A$ có đường cao $A H$. Gọi $E, F$ lần lượt là hình chiếu của $H$ lên $A B, A C$.
a) Chứng minh rằng $B E \sqrt{C H}+C F \sqrt{B H}=A H \sqrt{B C}$.
b) Gọi $D$ là điểm đối xứng của $B$ qua $H$ và gọi $O$ là trung điểm của $B C$. Đường thẳng đi qua $D$ và vuông góc với $B C$ cắt $A C$ tại $K$. Chứng minh rằng $B K$ vuông góc với $A O$.
Bài 5. (PTNK) Cho tam giác $A B C$ nhọn. Một đường tròn qua $B, C$ cắt các cạnh $A B, A C$ lần lượt tại $E$ và $F ; B F$ cắt $C E$ tại $D$. Lấy điểm $K$ sao cho tứ giác $D B K C$ là hình bình hành.
a) Chứng minh rằng $\triangle K B C$ dồng dạng với $\triangle D F E, \triangle A K C$ dồng dạng với $\triangle A D E$.
b) Hạ $D M$ vuông góc với $A B, D N$ vuông góc với $A C$. Chứng minh rằng $M N$ vuông góc với $A K$.
c) Gọi $I$ là trung điểm $A D, J$ là trung điểm $M N$. Chứng minh đường thẳng $I J$ đi qua trung điểm của cạnh $B C$.
d) Đường thẳng $I J$ cắt đường tròn ngoại tiếp tam giác $I M N$ tại $T$ (khác $I$ ). Chứng minh rằng $A D$ tiếp xúc với đường tròn ngoại tiếp tam giác $D T J$.
Bài toán 1. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và $P$ là điểm thuộc cung $AC$ không chứa $B$. Gọi $D, E, F$ lần lượt là hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$.
a) Chứng minh các tứ giác $PCDE, PDBF$ nội tiếp.
b) Chứng minh $D, P, E$ thẳng hàng.
c) Chứng minh tam giác $PDE$ và $PBA$ đồng dạng; tam giác $PFE$ và $PBC$ đồng dạng.
Lời giải.
a) Tứ giác $PCDE$ có $\angle PDC = \angle PEC = 90^\circ $ nên là tứ giác nội tiếp.
Tứ giác $PDFB $ có $\angle PDB + \angle PFB = 90^\circ + 90^\circ = 180^\circ$ nên là tứ giác nội tiếp.
b) Ta có $\angle PFE = \angle PAE$ vì $PFAE$ nội tiếp
Mà $\angle PAE = \angle PBC = \angle PFD$;
Do đó $\angle PFE = \angle PFD$, suy ra $F, E, D$ thẳng hàng.
c) Xét tam giác $PDE$ và $PBA$ có $\angle PDE = \angle PCA = \angle PBA, \angle PED = 180^\circ – \angle PCB = \angle PAB$, do đó $\triangle PDE \backsim \triangle PBA$.
Chú ý: Cho tam giác $ABC$ và $P$ là một điểm bất kì thuộc đường tròn ngoại tiếp tam giác, khi đó hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$ cùng thuộc một đường thẳng. Đường thẳng này được gọi là đường thẳng Simson của điểm $P$ đối với tam giác $ABC$.
Sau đây ta xem một số bài toán liên quan đến đường thẳng simson
Bài 1. Cho tam giác $A B C$ nhọn nội tiếp đường tròn $(O), P$ là điểm thay đổi trên cung $B C$ không chứa $A$. Gọi $D, E$ là hình chiếu vuông góc của $A$ trên $P B, P C$.
a) Tìm vị trí của $P$ để $A D \cdot P B+A E \cdot P C$ lớn nhất.
b) Chứng minh rằng $D E$ đi qua một điểm cố định. Tìm vị trí của $P$ để $D E$ lớn nhất.
Bài 2. Cho tam giác $A B C$, nội tiếp đường tròn $(O), P$ là điểm thuộc cung $A C$, gọi $D, E$ là hình chiếu vuông góc của $P$ trên $B C, A C$.
a) $D E$ cắt $A B$ tại $F$. Chứng minh $P F \perp A B$.
b) Gọi $M, N$ lần lượt là trung điểm $A B, D E$. Tính $\angle P N M$.
Bài 3. Cho tam giác $A B C$ các đường cao $A D, B E, C F$. Gọi $M, N, P, Q$ lần lượt là hình chiếu vuông góc của $D$ trên $A B, A C, B E, C F$. Chứng minh $M, N, P, Q$ thẳng hàng.
Bài 4. Cho tam giác $A B C$ nội tiếp đường tròn $(O), P Q$ là đường kính của $(O)$.
a) Chứng minh rằng đường thẳng simson của $P, Q$ ứng với tam giác $A B C$ thì vuông góc nhau tại $I$.
b) Chứng minh $I$ thuộc đường tròn Euler của tam giác $ABC$.
Bài 5. (IMO 2007) Xét 5 diểm $A, B, C, D, E$, sao cho $A B C D$ là hình bình hành và $B, C, D, E$ cùng thuộc một đuoòng tròn. Gọi $d$ là đuoòng thẳng qua $\mathrm{A}$, giả sủ $d$ cắt đoạn $B C$ tại $F$ và $B C$ tại $G$. Giả sủ $E F=E G=E C$, chúng minh rằng $\mathrm{d}$ là phân giác của $\angle D A B$.
Bài 6. Cho tứ giác $A B C D$ nội tiếp. Gọi $d_a$ là đường thẳng simson của tam giác $B C D$ ứng với điểm $A$; các đường thẳng $d_b, d_c, d_d$ xác định tương tự. Chứng minh rằng $d_a, d_b, d_c, d_d$ đồng quy.
Chứng minh các điểm thẳng hàng là một trong các dạng toán thường gặp trong các bài toán về vector, trong bài trình trình bày một số ví dụ, thông qua đó các em có thêm kinh nghiệm giải dạng toán này.
Tính chất 1. Cho $A, B, C$ là 3 điểm phân biệt.
a) $A, B, C$ thẳng hàng khi và chỉ khi $\overrightarrow{A B}, \overrightarrow{A C}$ cùng phương khi và chỉ khi tồn tại $k$ sao cho $\overrightarrow{A B}=k \cdot \overrightarrow{A C}$.
b) Giả sử $\overrightarrow{A B}=x \vec{a}+y \vec{b}$ và $\overrightarrow{A C}=x^{\prime} \vec{a}+y^{\prime} \vec{b}$. Khi đó $A, B, C$ thẳng hàng khi và chỉ khi tồn tại $k$ để $x=k x^{\prime}, y=k y^{\prime}$ hay $\frac{x}{x^{\prime}}=\frac{y}{y^{\prime}}$.
Tính chất 2. Cho 2 điểm $A, B$ phân biệt và điểm $O$ nằm ngoài đường thẳng $A B$. Khi đó điểm $M$ thuộc đường thẳng $A B$ khi và chỉ khi tồn tại các số $x, y$ thỏa $x+y=1$ và
$$
\overrightarrow{O M}=x \cdot \vec{a}+y \cdot \vec{b}
$$
Ví dụ 1. Cho tam giác $A B C$. Gọi $M$ là trung điểm $A B, N$ thỏa $\overrightarrow{N A}+2 \overrightarrow{N C}=\overrightarrow{0}$ và P là điểm đối xứng của B qua C.
a) Chứng minh $\overrightarrow{A N}=\frac{2}{3} \overrightarrow{A C}$
b) Chứng minh $\overrightarrow{N M}=\frac{1}{2} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}$.
c) Chứng minh $M, N, P$ thẳng hàng.
Ví dụ 2. Cho tứ giác $A B C D$. Gọi $M, N$ thuộc cạnh $A D, B C$ sao cho $A M=2 M D, B N=2 N C$. Chứng minh rằng trung điểm các đoạn thẳng $A B, M N$ và $C D$ thẳng hàng.
Ví dụ 3. Cho tam giác $A B C$ và điểm $D$ thỏa mãn $\overrightarrow{A D}=\frac{3}{4} \overrightarrow{A C}$, I là trung điểm của $B D$. M là điể thỏa $\overrightarrow{B M}=x \overrightarrow{B C}, x \in \mathbb{R}$.
a) Tinh $\overrightarrow{A I}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Tinh $\overrightarrow{A M}$ theo $x$ và $\overrightarrow{A B}, \overrightarrow{A C}$
c) Tìm $x$ để $A, I, M$ thẳng hàng.
Bài tập rèn luyện
Bài 1. Cho tam giác $\mathrm{ABC}$. Hai điểm $\mathrm{M}, \mathrm{N}$ được xác định bởi hệ thức: $\overrightarrow{B C}+\overrightarrow{M A}=\overrightarrow{0}, \overrightarrow{A B}-$ $\overrightarrow{N A}-3 \overrightarrow{A C}=\overrightarrow{0}$. Chứng minh $M N \parallel A C$.
Bài 2. Cho $3 \overrightarrow{O A}+2 \overrightarrow{O B}-5 \overrightarrow{O C}=\overrightarrow{0}$. Chứng minh $A, B, C$ thẳng hàng.
Bài 3. Cho tam giác $A B C$ có trung tuyến $A M$. Gọi $I$ là trung điểm $A M$ và $K$ là trung điểm AC sao $A K=\frac{1}{3} A C$.
a) Biểu diễn các vectơ $\overrightarrow{B I}, \overrightarrow{B K}$ theo $\overrightarrow{B A}, \overrightarrow{B C}$.
b) Chứng minh các điểm $B, I, K$ thẳng hàng.
Bài 4. Cho tam giác $A B C$ có trọng tâm $G$. Gọi $I, J$ là hai điểm xác định bởi $\overrightarrow{I A}=2 \overrightarrow{I B}, 3 \overrightarrow{J A}+$ $2 \overrightarrow{J C}=\overrightarrow{0}$.
a) Tính $\overrightarrow{I f}, \overrightarrow{I G}$ theo $\overrightarrow{A B}, \overrightarrow{A C}$.
b) Chứng minh $I, J, G$ thẳng hàng.
Bài 5. Cho tam giác $A B C$. Lấy các điểm $M, N, P$ thỏa mãn
$$
\overrightarrow{M A}+\overrightarrow{M B}=\overrightarrow{0}, 3 \overrightarrow{A N}-2 \overrightarrow{A C}=\overrightarrow{0}, \overrightarrow{P B}=2 \overrightarrow{P C}
$$
Chứng minh $M, N, P$ thẳng hàng.