Category Archives: Đề thi

Đề thi và đáp án chọn đội dự tuyển 10 trường PTNK năm 2023

Bài 1. Cho ba số thực $a, b, c>0$ thỏa mãn $a+b+c=3$.
(a) Chứng minh rằng $(a b+b c+c a)(a b c+1) \geq 6 a b c$.
(b) Tìm số nguyên dương k lớn nhất sao cho $a b c\left(a^k+b^k+c^k\right) \leq 3$.

Bài 2 .Với mỗi số thực $x,[x]$ gọi là phần nguyên của $x$ – là số nguyên lớn nhất không vượt quá $x$ và ${x}:=x-[x]$ gọi là phần lẻ của $x$.
Cho $p$ là số nguyên tố lẻ, chứng minh rằng với mọi số nguyên dương $k$ nhỏ hơn $p$ thì tổng $$S=\left\{\frac{k}{p}\right\}+\left\{\frac{2 k}{p}\right\}+\left\{\frac{3 k}{p}\right\}+\ldots+\left\{\frac{(p-1) k}{p}\right\}$$ không đổi. Tính S.

Bài 3. Cho tam giác $A B C$ nôi tiếp đường tròn $(\omega)$, tiếp tuyến của $(\omega)$ tai $\mathrm{B}$ là $d_1$, tai $\mathrm{C}$ là $d_2$. I là điểm thuôc trung trự $\mathrm{BC}$, đường tròn tâm $\mathrm{I}$ bán kính $\mathrm{IB}$ cắt các canh $\mathrm{AB}, \mathrm{AC}$ tại $\mathrm{D}, \mathrm{E}$. $\mathrm{CD}$ cắt $d_1$ tai $\mathrm{F}, \mathrm{BE}$ cắt $d_2$ tai $\mathrm{G}$ sao cho $\mathrm{F}, \mathrm{G}$ cùng phía $\mathrm{A}$ so với $\mathrm{BC}$. Đường tròn ngoai tiếp tam giác $\mathrm{BDF}$ cắt $\mathrm{BE}$ tại $\mathrm{K}$, đường tròn ngoại tiếp tam giác CEG cắt $\mathrm{CD}$ tại L.
(a) Khi $\mathrm{I}$ thuộc $\mathrm{BC}$, gọi $\mathrm{P}$ là giao điểm của $\mathrm{FK}$ và $\mathrm{GL}$. Chứng minh $\mathrm{AP}$ đi qua tâm của $(\omega)$.
(b) Khi I khác phía $\mathrm{A}$ đối với $\mathrm{BC}, \mathrm{DE}$ cắt $d_1$ tại $\mathrm{R}, d_2$ tại $\mathrm{S}$. Đường tròn ngoại tiếp tam giác ISR cắt $\mathrm{BC}$ tại $\mathrm{X}, \mathrm{Y}$. Chứng minh $B X=C Y$.

Bài 4 Tìm số nguyên dương $s$ lớn nhất thỏa mãn tính chất sau: Với mọi bộ số nguyên dương nhỏ hơn hay bằng 10 (không nhất thiết phân biệt) có tồng bằng $s$ ta luôn có thể chia thành hai nhóm mà tổng các số thuộc mỗi nhóm nhỏ hơn hay bằng 70 .

Lời giải

Bài 1.

(a) Đặt $a=\min {a, b, c}$, suy ra $a \leq 1$.
Khi đó $(a-1)^3 \leq 1 \Rightarrow a^3-3 a^2+3 a-1 \leq 0 \Rightarrow \frac{1}{a}+a(3-a) \geq 3$, suy ra $\frac{1}{a}+a b+a c \geq 3$, hơn nữa
$$
\frac{1}{b}+\frac{1}{c}+b c \geq 3 \sqrt[3]{\frac{1}{b} \frac{1}{c} b c}=3
$$
Từ đó $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a b+b c+a c \geq 6$. hay $(a b+b c+c a)(a b c+1) \geq 6 a b c$.
(b) Cho $a=2, b=c=\frac{1}{2}$, suy ra $k<3$, ta chứng minh $k=2$ thì bất đẳng thức thỏa với mọi $a, b, c$ thỏa điều kiện, thật vậy

$a b c\left(a^2+b^2+c^2\right) =\frac{1}{3} \cdot a b c(a+b+c)\left(a^2+b^2+c^2\right) $
$\leq \frac{1}{9} \cdot(a b+b c+c a)^2 \cdot\left(a^2+b^2+c^2\right) $
$=\frac{1}{9} \cdot(a b+b c+c a)(a b+b c+c a)\left(a^2+b^2+c^2\right) $
$ \leq \frac{1}{9} \cdot \frac{1}{27} \cdot\left(a^2+b^2+c^2+2(a b+b c+c a)\right)^3 $
$ =\frac{1}{9} \cdot \frac{1}{27} \cdot 3^6=3$

Bài 2.

Với $p$ nguyên tố lẻ thì $(k, p)=1$ với mọi $0<k<p$. Ta chứng minh $p-1$ số $k, 2 k, \cdots,(p-1) k$ là hệ thặng dư thu gọn của $p$, thật vậy, giả sử $i k \equiv j k($ $\bmod p)$ với $i, j<p$ thì $k(i-j) \equiv 0(\bmod p)$, suy ra $i=j$.
Khi đó $S=\left\{\frac{k}{p}\right\}+\left\{\frac{2 k}{p}\right\}+\left\{\frac{3 k}{p}\right\}+\ldots+\left\{\frac{(p-1) k}{p}\right\}=\frac{1}{p}+\frac{2}{p}+\cdots \frac{p-1}{p}=$ $\frac{p-1}{2}$ không đổi.

Bài 3.

(a) Gọi $O$ là tâm của $\omega$. Ta có $\angle S D B=\angle A D E=\angle A C B=\angle S B D$ nên $\triangle S B D$ cân tại $S$. Tương tự $\triangle R E C$ cân tại $R$. Biến đổi góc
$$
\angle K F L=\angle K F D=\angle K B D=\angle D C E=\angle E G L \angle K G L,
$$
suy ra $F, K, L, G$ đồng viên.
Do $I \in B C$ nên $\angle B D C=90^{\circ}$, mà $\triangle S B D$ cân tại $S$ nên $S$ là tâm đường tròn $(F D K)$. Tương tự, $R$ là tâm đường tròn $(G E L)$. Ta có
$$
A D \cdot A B=A E \cdot A C, \quad P K \cdot P F=P L \cdot P G,
$$
suy ra $A P$ là trục đẳng phương của hai đường tròn $(F D K)$ và $(G E L)$, do đó $A P \perp R S$.
Mà $A O \perp D E$ nên $A, O, P$ thằng hàng.

(b) Gọi $M, N$ lần lượt là giao điểm của $I S, I R$ với $B C . \triangle S B D$ cân tại $S$ nên suy ra $I S$ là đường trung trực của $B D$, tương tự $I R$ là đường trung
Tập san Toán học STAR EDUCATION
trực của $E C$. Biến đổi góc
$$
\begin{aligned}
& \angle M S D=90^{\circ}-\angle S D B=90^{\circ}-\angle A D E=90^{\circ}-\angle A C B=\angle C N G . \
\Rightarrow & \angle I S R=\angle Y N G \Rightarrow \angle I S Y+\angle Y S R=\angle M Y I+\angle Y I R \Rightarrow \angle I S Y= \
& \angle X Y I=\angle X S I .
\end{aligned}
$$
Vậy $S I$ là tia phân giác của $\angle X S Y$ nên $I$ nằm trên đường trung trực của $X Y$. Mà $I$ cũng nằm trên đường trung trực của $B C$ nên $B X=C Y$.

Bài 4.

Ta chứng minh rằng $s=133$ là số lớn nhất thoả mãn điều kiện bài toán. Trước hết, giả sử rằng $s$ là một số thoả mãn điều kiện đã cho.

Viết $s=9 k+r (k, r \in \mathbb{Z}{\geq 0}, 1 \leq r \leq 9 )$.

Nếu $s \geq 134$, xét một bộ số gồm $k$ số 9 và số còn lại bằng $s-9 k$. Trong bộ số này có không quá một số khác 9 nên khi chia chúng thành hai phần khác rỗng, phải có ít nhất một bộ chứa toàn số 9. Hơn nữa, $$ 9 \cdot 7=63<70<9 \cdot 8 $$ nên bộ số này có tổng tối đa là 63 . Nhưng khi đó tổng của các số còn lại, gọi là $T$, sẽ phải thoả mãn $$ T \geq 134-63=71>70 $$ vô lý do $T \leq 70$. Từ đó phải có $s \leq 133$. Bây giờ ta chứng minh rằng $s=133$ thoả mãn điều kiện bài toán. Trước hết, ta chứng minh rằng với mọi bộ số nguyên dương không vượt quá 10 có tổng bằng 133, khi chia thành hai phần khác rỗng là $X, Y$ khác rống (có thể có các phần tử trùng nhau), sao cho

$$ M=\sum{x \in X} x-\sum_{y \in Y} y \geq 0$$

và $M$ nhỏ nhất có thể, thì $M \leq 8$. Thật vậy, giả sử rằng $M \geq 9$ thì
$$
\sum_{x \in X} \geq \frac{1}{2}\left(\sum_{x \in X} x+\sum_{y \in Y} y+9\right) \geq \frac{133+9}{2}=71 .
$$
Vì mỗi phần tử của $X$ không vượt quá 10 nên $X$ có ít nhất 8 phần tử. Đặt $t=\min X$. Xét hai tập hợp
$$
\left\{\begin{array}{l}
X^{\prime}=X \cup{t} \
Y^{\prime}=Y \backslash{t}
\end{array}\right.
$$
thì $X^{\prime}, Y^{\prime} \neq \emptyset$, đều gồm các số nguyên dương không vượt quá 10 , và có tổng bằng 133. Vì tính nhỏ nhất của $M$ nên
$$
M \leq\left|\sum_{x \in X^{\prime}} x-\sum_{y \in Y^{\prime}} y\right|=\left|\sum_{x \in X} x-\sum_{y \in Y} y-2 t\right|=|M-2 t|
$$
Kết hợp với $M \geq 9$ và $1 \leq t \leq 10$ thì $9 \leq M \leq t \leq 10$. Có hai khả năng sau:

  • Nếu $M=10$ thì
    $$
    \sum_{x \in X} x=\frac{133+10}{2} \notin \mathbb{Z}
    $$
    là một điều vô lý.
  • Nếu $M=9$ thì
    $$
    \sum_{x \in X} x=\frac{133+9}{2}=71 .
    $$
    Nếu $t=9$ thì $X$ gồm toàn số 9 và số 10 , nên có thể viết được
    $$
    71=9 k+10 l\left(k, l \in \mathbb{Z}{\geq 0}\right) . $$ Do đó $9 k \equiv 1(\bmod 10)$, dẫn đến $k \equiv 9(\bmod 10)$ và $k \geq 9$. Hệ quả là $$ 9 k+10 l \geq 9 k \geq 81>71 $$ cũng là điều vô lý. Từ đó điều giả sử là sai hay phải có $M \leq 8$, dẫn đến $$ \sum{y \in Y} y \leq \sum_{x \in X} x \leq \frac{1}{2}\left(\sum_{x \in X}+\sum_{y \in Y} y+8\right)=\frac{133+8}{2} .
    $$
    Nhưng các tổng là số nguyên nên
    $$
    \sum_{y \in Y} y \leq \sum_{x \in X} x \leq 70,
    $$
    nghĩa là cách chia $(X, Y)$ thoả mãn điều kiện bài toán. Tóm lại, $s=133$ là số lớn nhất thoả mãn yêu cầu đề bài. Bài toán kết thúc.

Đề và đáp án thi vào lớp 10 Chuyên Toán TPHCM năm 2022

Bài 1. (1,0 diểm)
Cho $x, y$ là hai số thực thỏa mãn $x y+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1$.
Tính giá trị của biểu thức $M=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)$.
Bài 2. (2,5 diểm)
a) Giải phương trình $\sqrt{x+4}+|x|=x^2-x-4$.
Bài 3. (1,5 diểm)
Cho hình vuông $A B C D$ Trên các cạnh $B C$ và $C D$ lần lượt lấy các điểm $M$ và $N$ sao cho $\angle M A N=45^{\circ}$.
a) Chứng minh $M N$ tiếp xúc với dường tròn tâm $A$ bán kính $A B$.
b) Kẻ $M P$ song song với $A N$ ( $P$ thuộc đoạn $A B)$ và kẻ $N Q$ song song với $A M(Q$ thuộc đoạn $A D)$. Chứng minh $A P=A Q$.
Bài 4. (2,0 diểm)
Cho ba số thực dương $a, b, c$ thỏa $a+b+c=3$.
a) Chứng minh rằng $a b+b c+c a \leq 3$.
b) Tìm giá trị nhỏ nhất của biểu thức $P=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}$.
Bài 5. (2,0 diểm)
Cho tam giác $A B C$ nhọn $(A B<A C)$ có các đường cao $A D, B E, C F$ cắt nhau tại $H$. Đường thẳng $E F$ cắt đường thẳng $B C$ tại $I$. Đường thẳng qua $A$ vuông góc với $I H$ tại $K$ và cắt $B C$ tại $M$.
a) Chứng minh tứ giác $I F K C$ nội tiếp và $\frac{B I}{B D}=\frac{C I}{C D}$.
b) Chứng minh $M$ là trung diểm của $B C$.

Bài 6. (1,0 diểm)
Số nguyên dương $n$ được gọi là “số tốt” nếu $n+1$ và $8 n+1$ dều là các số chính phương.
a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số.
b) Tìm các số nguyên $k$ thỏa mãn $|k| \leq 10$ và $4 n+k$ là hợp số với mọi $n$ là “số tốt”.

Đáp án được thực hiện vởi Star Education

Bài 1.

Điều kiện: $x y \leq 1$. Biến đổi giả thiết
$$
\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=1-x y \Leftrightarrow\left(1+x^2\right)\left(1+y^2\right)=(1-x y)^2 \Leftrightarrow(x+y)^2=0 \Leftrightarrow y=-x .
$$
Thay vào biểu thức $M$ ta được
$$
\begin{aligned}
M & =\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right) \
& =\left(x+\sqrt{1+x^2}\right)\left(-x+\sqrt{1+x^2}\right) \
& =\left(\sqrt{1+x^2}\right)^2-x^2=1
\end{aligned}
$$

Bài 2.

a)

Lời giải:
a) Điều kiện: $\left\{\begin{array}{l}x+4 \geq 0 \\\\ x^2-x-4 \geq 0\end{array} \right.$

$\Leftrightarrow\left[\begin{array}{l}-4 \leq x \leq \frac{1-\sqrt{17}}{2} \\\\ x \geq \frac{1+\sqrt{17}}{2}\end{array}\right.$
Phương trình đã cho tương đương
$$
x^2-\sqrt{x+4}-|x|-(x+4)=0 \Leftrightarrow(|x|+\sqrt{x+4})(|x|-\sqrt{x+4}-1)=0 \Leftrightarrow|x|-1=\sqrt{x+4}
$$

  • Nếu $x \geq 0,(1) \Rightarrow x-1=\sqrt{x+4}$
    $$
    \Rightarrow x^2-2 x+1=x+4 \Leftrightarrow x^2-3 x-3=0 \Leftrightarrow\left[\begin{array}{l}
    x=\frac{3+\sqrt{21}}{2} \text { (Nhận) } \\\\
    x=\frac{3-\sqrt{21}}{2} \text { (Loại) }
    \end{array}\right.
    $$
  • Nếu $x<0,(1) \Rightarrow-x-1=\sqrt{x+4}$
    $$
    \Rightarrow x^2+2 x+1=x+4 \Leftrightarrow x^2+x-3=0 \Leftrightarrow\left[\begin{array}{l}
    x=\frac{-1+\sqrt{13}}{2} \text { (Loại) } \\\\
    x=\frac{-1-\sqrt{13}}{2} \text { (Nhận) }
    \end{array} .\right.
    $$
    Thử lại, ta được $x=\frac{3+\sqrt{21}}{2}$ và $x=\frac{-1-\sqrt{13}}{2}$ là các nghiệm của phương trình đã cho.

b) Điều kiện: $(x+y)(y+z)(z+x) \neq 0$. Hệ dã cho tương dương
$$
\left\{\begin{array} { l }
{ \frac { x } { y + z } + 1 = 2 x } \\\\
{ \frac { y } { z + x } + 1 = 3 y } \\\\
{ \frac { z } { x + y } + 1 = 5 z }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ \frac { x + y + z } { y + z } = 2 x } \\\\
{ \frac { x + y + z } { z + x } = 3 y } \\\\
{ \frac { x + y + z } { x + y } = 5 z }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x+y+z=2 x(y+z) \\\\
x+y+z=3 y(z+x) \\\\
x+y+z=5 z(x+y)
\end{array}\right.\right.\right.
$$
Dễ thấy $x y z \neq 0$. Từ trên suy ra
$$
2 x(y+z)=3 y(z+x)=5 z(x+y) \Leftrightarrow 2\left(\frac{1}{y}+\frac{1}{z}\right)=3\left(\frac{1}{z}+\frac{1}{x}\right)=5\left(\frac{1}{x}+\frac{1}{y}\right) .
$$
Ta tính được $\frac{1}{z}=\frac{19}{x}, \frac{1}{y}=\frac{11}{x} \Rightarrow x=11 y=19 z$. Thay lại vào phương trình $(*)$ ta dược
$$
x+\frac{x}{11}+\frac{x}{19}=2 x\left(\frac{x}{11}+\frac{x}{19}\right) \Leftrightarrow 1+\frac{1}{11}+\frac{1}{19}=2\left(\frac{x}{11}+\frac{x}{19}\right) \Leftrightarrow x=\frac{239}{60} .
$$
Suy ra $y=\frac{239}{660}, z=\frac{239}{1140}$.
Vậy nghiệm duy nhất của hệ là $(x, y, z)=\left(\frac{239}{60}, \frac{239}{660}, \frac{239}{1140}\right)$.

Bài 3.

a) Trên tia đối của tia $D C$ lấy $F$ sao cho $D F=B M$.
Xét $\triangle A D F$ và $\triangle A B M$ có $A D=A B, \angle A D F=\angle A B M=90^{\circ}$ và $D F=B M$.
Do đó $\triangle A D F=\triangle A B M(\mathrm{c}-\mathrm{g}-\mathrm{c})$
$\Rightarrow \angle D A F=\angle B A M$ và $A F=A M$.
Suy ra $\angle D A F+\angle D A N=\angle B A M+\angle D A N=90^{\circ}-45^{\circ}=45^{\circ}$.
$\Rightarrow \angle N A F=45^{\circ}=\angle N A M$, mà $A F=A M$ nên $\triangle N A F=\triangle N A M$. (c-g-c)
Kẻ $A E \perp M N(E \in M N) \Rightarrow A E=A D=A B \Rightarrow M N$ tiếp xúc với $(A, A B)$.
b) Ta có: $\triangle N A F=\triangle N A M \Rightarrow \angle A N F=\angle A N M$, mà $\angle A N F=\angle N A P($ do $D C | A B)$, dẫn đến $\angle A N M=\angle N A P$.

Từ $A N | M P \Rightarrow A P M N$ là hình thang, kết hợp với $\angle A N M=\angle N A P$, ta được $A P M N$ là hình thang cân.
Do đó $A P=M N$, tương tự ta cũng có $A Q=M N$, dẫn dến $A P=A Q$.

Bài 4.

a)

a) Ta có $a^2+b^2 \geq 2 a b, b^2+c^2 \geq 2 b c, c^2+a^2 \geq 2 c a$ nên
$$
2\left(a^2+b^2+c^2\right) \geq 2(a b+b c+c a) \Leftrightarrow a^2+b^2+c^2 \geq a b+b c+c a .
$$
Khi đó
$$
\begin{aligned}
9=(a+b+c)^2 & =a^2+b^2+c^2+2 a b+2 b c+2 c a \
& \geq a b+b c+c a+2(a b+b c+c a)=3(a b+b c+c a)
\end{aligned}
$$
Do đó $a b+b c+c a \leq 3$.
Dấu “=” xảy ra khi và chỉ khi $a=b=c=1$.

b)

b) Ta có
$$
\begin{aligned}
& \frac{a}{b^2+1}-a=\frac{-a b^2}{b^2+1} \geq-\frac{a b^2}{2 b}=-\frac{a b}{2} \
& \frac{b}{c^2+1}-b=\frac{-b c^2}{c^2+1} \geq-\frac{b c^2}{2 c}=-\frac{b c}{2} \
& \frac{c}{a^2+1}-c=\frac{-c a^2}{a^2+1} \geq-\frac{c a^2}{2 a}=-\frac{c a}{2}
\end{aligned}
$$
Do đó
$$
\begin{aligned}
& \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c^2}{a^2+1}-(a+b+c) \geq-\frac{a b+b c+c a}{2} \geq-\frac{3}{2} \
\Rightarrow & \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1} \geq-\frac{3}{2}+a+b+c=\frac{3}{2}
\end{aligned}
$$
Vậy giá trị nhỏ nhất của $P$ là $\frac{3}{2}$, dấu “=” xảy ra khi và chỉ khi $a=b=c=1$.

Bài 5.

Vẽ dường tròn $(O)$ ngoại tiếp $\triangle A B C$
a) Ta có: Các tứ giác $A F D C, A K D I, B F E C, A F H E$ nội tiếp.
$\Rightarrow H F \cdot H C=H D \cdot H A=H K . H I \Rightarrow I F K C$ nội tiếp.
Mặt khác: $\widehat{I F B}=\widehat{A C B}=\widehat{B F D}$ (do các tứ giác $B F E C, A F D C$ nội tiếp)
$\Rightarrow F B$ là phân giác $\widehat{I F D}$.
Mà $F B \perp F C$ nên $F B$ là phân giác trong, $F C$ là phân giác ngoài $\triangle I F D$
$$
\Rightarrow \frac{B I}{B D}=\frac{C I}{C D}
$$
b) Gọi $S$ là giao điểm thứ hai của $I A$ và đường tròn ngoại tiếp $O$.
Ta chứng minh được $I F . I E=I B . I C=I S . I A$
$\Rightarrow A S F E$ nội tiếp hay 5 điểm $A, S, F, H, E$ cùng thuộc đường tròn đường kính $A H$
$\Rightarrow \widehat{A S H}=\widehat{A F H}=90^{\circ}$
Mặt khác do: $I K \perp A M, A D \perp I M$ nên $H$ là trực tâm $\triangle A I M \Rightarrow M H \perp A I$.
Từ đó, ta có: $S, H, M$ thẳng hàng.
Vẽ đường kính $A Q$ của đường tròn ngoại tiếp $\triangle A B C$.
Ta có $\widehat{A S Q}=90^{\circ}$ nên $S, H, M, Q$ thẳng hàng
Xét tứ giác $B H C Q$ có: $B H / / C Q$ (cùng $\perp A C)$ và $C H / / B Q($ cùng $\perp A B)$
Nên $B H C Q$ là hình bình hành nghĩa là có $M$ là trung điểm $B C$.

Bài 6.

Lời giải:
a) Ví dụ: $3\left(3+1=2^2\right.$ và $\left.8 \cdot 3+1=5^2\right), 15\left(15+1=4^2\right.$ và $\left.8 \cdot 15+1=11^2\right)$ và 120 $\left(120+1=11^2\right.$ và $\left.8 \cdot 120+1=31^2\right)$.
b) Nhận xét $a^2 \equiv 0,1(\bmod 3)$ với mọi $a \in \mathbb{N}$.
Đặt $n+1=x^2$ và $8 n+1=y^2(x, y \in \mathbb{N})$.

  • Nếu $n \equiv 1(\bmod 3)$ thì $x^2=n+1 \equiv 2(\bmod 3)$, vô lí.
  • Nếu $n \equiv 2(\bmod 3)$ thì $y^2=8 n+1 \equiv 17 \equiv 2(\bmod 3)$, vô lí.
    Vậy $n \equiv 0(\bmod 3)$ hay $n$ chia hết cho 3 .
    Nếu $k=1,5,7,-5,-7$ thì với $n=3$ (là số tốt), $4 n+k$ nhận các giá trị $13,17,19,7,5$ là các số nguyên tố. (Loại)
    Nếu $k=-1$, với $n=15$ (là số tốt) thì $4 n+k=59$ là số nguyên tố. (Loại)
    Nếu $k=-10$, với $n=3$ thì $4 n+k=2$ là số nguyên tố. (Loại)
    Nếu $k=-9$, với $n=3$ thì $4 n+k=3$ là số nguyên tố. (Loại)
    Nếu $k \geq-8, k$ chẵn hoặc $k$ chia hết cho 3 thì $4 n+k \geq 4 \cdot 3-8=4$ và $4 n+k$ có ước là 2 hoặc 3 , do đó $4 n+k$ là hợp số.
    Vậy các giá trị cần tìm của $k$ là
    $$
    k \in{-8,-6,-4,-3,-2,0,2,3,4,6,8,9,10} .
    $$

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA CÁC TỈNH, THÀNH

ĐỀ THI CHỌN ĐỘI TUYỂN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2008 – 2009 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2009 – 2010 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK 2010 – 2011 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2011 – 2012 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2013 – 2014 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2014 – 2015 – Toán Việt (toanviet.net)

Đáp án thi chọn đội tuyển Toán trường PTNK năm 2015 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội tuyển trường Phổ thông Năng khiếu thi HSG QG năm 2016 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2017 – 2018 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2018 – 2019 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2019 – 2020 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội tuyển trường PTNK năm 2020 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội tuyển toán trường PTNK năm 2021 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN CÁC TỈNH THÀNH KHÁC

Đề thi và đáp án chọn đội tuyển Phổ thông Năng khiếu và các tỉnh thành

Đề thi và đáp án thi chọn đổi tuyển trường PTNK – ĐHQG TPHCM

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2020 – 2021 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2019 – 2020 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2018 – 2019 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2016 – 2017 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội tuyển trường Phổ thông Năng khiếu thi HSG QG năm 2016 – Toán Việt (toanviet.net)

Đáp án thi chọn đội tuyển Toán trường PTNK năm 2015 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2014 – 2015 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2013 – 2014 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2011 – 2012 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK 2010 – 2011 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2009 – 2010 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2008 – 2009 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội tuyển của một số tỉnh thành

Đề thi học sinh giỏi khối 10

Kì thi chọn đội dự tuyển trường Phổ thông Năng khiếu

Đề thi và đáp án chọn đội dự tuyển 10 trường PTNK năm 2023

Đề thi và đáp án chọn đội dự tuyển trường PTNK năm 2022

Đề thi và đáp án chọn đội dự tuyển PTNK năm 2021 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội dự tuyển trường PTNK năm 2020 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội dự tuyển PTNK năm học 2019 – 2020 – Toán Việt (toanviet.net)

Đề và đáp thi chọn đội dự tuyển PTNK năm học 2017 – 2018 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội dự tuyển lớp 10 năm 2016 – 2017 – Toán Việt (toanviet.net)

Đề và đáp án thi chọn đội dự tuyển lớp 10 năm 2012 – 2013 – Toán Việt (toanviet.net)

Kì thi Olympic truyền thống 30/4 (SGD TPHCM)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2011 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2010 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2009 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2008 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2007 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2005 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2004 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2003 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2002 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2000 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1999 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1998 – Toán Việt (toanviet.net)

Kì thi duyên hải Bắc bộ

Kì thi HSG lớp 10 của các tỉnh, thành phố

Đề thi tuyển sinh vào 10 chuyên toán

Trường Phổ thông Năng khiếu

Toán chung cho tất cả các thí sinh

Đáp án đề thi Toán không chuyên trường Phổ thông Năng Khiếu năm 2021 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2020 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2019 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2018 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2017 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2016 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2015 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2014 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2013 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2012 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 PTNK không chuyên 2011 – Toán Việt (toanviet.net)
Môn toán chuyên
ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2021 – Toán Việt (toanviet.net)

Đề thi vào lớp 10 Chuyên Toán vào trường PTNK năm 2020 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2019 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN PHỔ THÔNG NĂNG KHIẾU 2018 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2017 – Toán Việt (toanviet.net)

Đề thi vào lớp 10 chuyên toán Phổ thông Năng khiếu: Năm 2016 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2015 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2014 – Toán Việt (toanviet.net)

Đáp án và bình luận thi vào lớp 10 PTNK năm 2013: Đề chuyên toán – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU 2012 – Toán Việt (toanviet.net)

SGD TP. Hồ Chí Minh

Đề toán chung cho tất cả các thí sinh

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2020 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2019 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2018 – Toán Việt (toanviet.net)

Đề thi và đáp án vào lớp 10 TPHCM 2017 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2016 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2015 – Toán Việt (toanviet.net)

Đề thi và đáp án thi vào lớp 10 TPHCM 2014 – Toán Việt (toanviet.net)

Đề thi và đáp án thi vào lớp 10 TPHCM 2013 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào lớp 10 TPHCM 2012 – Toán Việt (toanviet.net)

Đề thi và đáp án tuyển sinh vào 10 TPHCM 2011 – Toán Việt (toanviet.net)

Đề toán chuyên

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2020 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2019 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2018 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2017 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM NĂM 2016 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM – NĂM 2015 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM – NĂM 2014 – Toán Việt (toanviet.net)

ĐỀ THI VÀO LỚP 10 CHUYÊN TOÁN TP.HCM 2013 – Toán Việt (toanviet.net)

ĐỀ THI VÀO CHUYÊN TOÁN LỚP 10 TP.HCM 2012 – Toán Việt (toanviet.net)

Đề thi thử Star Education

Đề toán chung

ĐỀ THI THỬ VÀO LỚP 10 KHÔNG CHUYÊN – TT STAR EDUCATION 2022 – Toán Việt (toanviet.net)

ĐỀ THI THỬ VÀO LỚP 10 KHÔNG CHUYÊN LẦN 2 TT STAR EDUCATION 2020 – Toán Việt (toanviet.net)

Đề thi thử vào lớp 10 – Không chuyên PTNK – Toán Việt (toanviet.net)

Đề thi thử vào lớp 10 PTNK – Đề toán chung – Lần 2 – Toán Việt (toanviet.net)

Đề toán chuyên

ĐỀ THI THỬ VÀO LỚP 10 TOÁN CHUYÊN – TT STAR EDUCATION 2022 – Toán Việt (toanviet.net)

Đề thi thử vào lớp chuyên toán Star Education năm 2021 – Lần 2 – Toán Việt (toanviet.net)

ĐỀ THI THỬ VÀO LỚP 10 TRUNG TÂM STAR EDUCATION TOÁN CHUYÊN – 2020 – Toán Việt (toanviet.net)

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2010

ĐỀ THI

Câu 1

Giải hệ phương trình: $\quad\left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=9 \\ \left(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y}}\right)\left(1+\frac{1}{\sqrt[3]{x}}\right)\left(1+\frac{1}{\sqrt[3]{y}}\right)=18\end{array}\right.$

Câu 2

Tìm số nguyên dương $n$ lón nhất sao cho tồn tại một tập hợp $[a_1,a_2, \ldots,a_n]$ các hợp số có tính chất:

$\quad$ i) Hai số bất kì trong chúng là nguyên tố cùng nhau.

$\quad$ ii) $1<\mathrm{a}_{\mathrm{i}} \leq(2 \mathrm{n}+5)^2$ với mọi $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

Câu 3

Cho $\mathrm{M}$ là một điểm tùy ý thuộc miền trong tam giác $\mathrm{ABC}$ đều. Gọi $\mathrm{A}_1, \mathrm{~B}_1$, $\mathrm{C}_1$ lần lượt là hình chiếu vuông góc của $\mathrm{M}$ trên các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.

Tìm giá trị nhỏ nhất của: $\quad\mathrm{P}=\frac{\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2}{\left(\mathrm{MA}_1+\mathrm{MB}_1+\mathrm{MC}_1\right)^2}$.

Câu 4

Cho các số thực: $a, b, c \geq 1$ thỏa $a+b+c+2=a b c$.

Chứng minh rằng: $\quad b c \sqrt{\mathrm{a}^2-1}+\mathrm{ca} \sqrt{\mathrm{b}^2-1}+\mathrm{ab} \sqrt{\mathrm{c}^2-1} \leq \frac{3 \sqrt{3}}{2} \mathrm{abc}$

Câu 5

Trong một giải thi đấu thể thao, một môn thể thao có $\mathrm{x}$ huy chương được phát trong $\mathrm{n}$ ngày thi đấu. Ngày thứ nhất người ta phát một huy chương và một phần mười số huy chương còn lại. Ngày thứ hai người ta phát hai huy chương và một phần mười số huy chương còn lại. Cứ tiếp tục, ngày thứ $\mathrm{k}$ người ta phát $\mathrm{k}(3 \leq \mathrm{k} \leq \mathrm{n})$ huy chương và một phần mười số huy chương còn lại. Ngày sau cùng, còn lại $\mathrm{n}$ huy chương đề phát. Hỏi môn thể thao đó có tất cả bao nhiêu huy chương đã được phát và đã phát trong bao nhiêu ngày?

LỜI GIẢI

Câu 1

Giải hệ phương trình: $\quad\left\{\begin{array}{l}\frac{1}{x}+\frac{1}{y}=9 \\ \left(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y}}\right)\left(1+\frac{1}{\sqrt[3]{x}}\right)\left(1+\frac{1}{\sqrt[3]{y}}\right)=18\end{array}\right.$

Lời Giải

Đặt $a=\frac{1}{\sqrt[3]{x}}, b=\frac{1}{\sqrt[3]{y}}$.

Hệ phương trình thành:

$\quad\quad\left\{\begin{array}{l}a^3+b^3=9 \\ (a+b)(1+a)(1+b)=18\end{array} \Leftrightarrow\left\{\begin{array}{c}(a+b)^3-3 a b(a+b)=9 \\ (a+b)(1+a+b+a b)=18\end{array}\right.\right.$

Đặt $S=a+b, P=a b$.

Hệ phương trình thành:

$\quad\quad\left\{\begin{array}{l}S^3-3 P S=9 \\ S(S+P+1)=18\end{array} \Leftrightarrow\left\{\begin{array}{c}S^3-3 P S=9 \\ S^2+P S+S=18\end{array} \Leftrightarrow\left\{\begin{array}{c}S^3-3 P S=9\quad\quad(1) \\ P S=18-S-S^2\quad(2)\end{array}\right.\right.\right.$

Thế $(2)$ vào (1), ta được: $S^3+3 S^2+3 S-63=0 \Leftrightarrow(S+1)^3=64 \Leftrightarrow S=3$ (3)

Thế $(3)$ vào $(2)$, ta được: $\mathrm{P}=2$. Từ đó suy ra $(\mathrm{a}, \mathrm{b})=(1 ; 2)$ hay $(\mathrm{a}, \mathrm{b})=(2 ; 1)$.

Vậy $(x, y)=\left(\frac{1}{8} ; 1\right)$ hay $(x, y)=\left(1 ; \frac{1}{8}\right)$.

Câu 2

Tìm số nguyên dương $n$ lón nhất sao cho tồn tại một tập hợp $[a_1,a_2, \ldots,a_n]$ các hợp số có tính chất:

$\quad$ i) Hai số bất kì trong chúng là nguyên tố cùng nhau.

$\quad$ ii) $1<\mathrm{a}_{\mathrm{i}} \leq(2 \mathrm{n}+5)^2$ với mọi $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

Lời Giải

Giả sử tìm được số nguyên dương $n$ thỏa bài toán.

Kí hiệu $q_j$ là ước nguyên tố nhỏ nhất của $a_j\left(j=1,2, \ldots, n\right.$ ) và $q_i$ là giá trị lớn nhất của các số $q_j$.

Do 2 số bất kì trong chúng là nguyên tố cùng nhau nên các $\mathrm{q}_{\mathrm{j}}$ là phân biệt.

Suy ra $q_i \geq p_n$ ($p_n$ là số nguyên tố thứ n).

Do đó ta có: $(2 n+5)^2 \geq a_i \geq q_i{ }^2 \geq p_n{ }^2 \Rightarrow p_n \leq 2 n+5$.

Ta xét bảng sau:

$\quad\quad\quad\quad\quad\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}\hline n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline u_n=2 n+5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 & 23 & 25 & 27 \\ \hline p_n & 2 & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & 31 \\\hline\end{array}$

Vì $u_{n+1}-u_n=2$ và $p_{n+1}-p_n \geq 2$ mà $p_{10}>u_{10} \Rightarrow p_n>u_n$ với mọi $n \geq 10$.

Suy ra $n=9$, lúc này $[2^2, 3^2, 5^2, 7^2, 11^2, 13^2, 17^2, 19^2, 23^2]$ thỏa 2 điều kiện bài toán.

Vậy $n=9$ là số nguyên dương lớn nhất thỏa yêu cầu bài toán.

Câu 3

Cho $\mathrm{M}$ là một điểm tùy ý thuộc miền trong tam giác $\mathrm{ABC}$ đều. Gọi $\mathrm{A}_1, \mathrm{~B}_1$, $\mathrm{C}_1$ lần lượt là hình chiếu vuông góc của $\mathrm{M}$ trên các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.

Tìm giá trị nhỏ nhất của: $\quad\mathrm{P}=\frac{\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2}{\left(\mathrm{MA}_1+\mathrm{MB}_1+\mathrm{MC}_1\right)^2}$.

Lời Giải

Cách 1:

Gọi $\mathrm{D}, \mathrm{E}, \mathrm{F}$ tương ứng là trung điểm của các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$.

Ta có: $S_{ABC}=S_{MBC}+S_{MCA}+S_{MAB}$

$\quad\quad\Rightarrow \frac{\mathrm{a}^2 \sqrt{3}}{4}=\frac{1}{2} \mathrm{a}\left(MA_1+MB_1+MC_1\right) \Rightarrow MA_1+MB_1+MC_1=\frac{\mathrm{a} \sqrt{3}}{2}$

Mặt khác: $MD^2=\frac{MB^2+MC^2}{2}-\frac{BC^2}{4}$ ; $ME^2=\frac{MC^2+MA^2}{2}-\frac{AC^2}{4}$; $M F^2=\frac{M^2+M B^2}{2}-\frac{\mathrm{AB}^2}{4}$

$\quad\quad\Rightarrow \mathrm{MD}^2+\mathrm{ME}^2+\mathrm{MF}^2=\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2-\frac{3 \mathrm{a}^2}{4}$

$\quad\quad\Rightarrow  \mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2=\mathrm{MD}^2+\mathrm{ME}^2+\mathrm{MF}^2+\frac{3 \mathrm{a}^2}{4}$ $\quad\quad\quad\quad\quad =\mathrm{MD}^2+\mathrm{ME}^2+\mathrm{MF}^2+\left(\mathrm{MA}_1+\mathrm{MB}_1+\mathrm{MC}_1\right)^2$

Mà $\mathrm{MD}^2+M \mathrm{ME}^2+\mathrm{MF}^2 \geq \mathrm{MA}_1^2+\mathrm{MB}_1^2+M \mathrm{MC}_1^2 \geq \frac{1}{3}\left(\mathrm{MA}_1+M B_1+\mathrm{MC}_1\right)^2$

$\quad\quad\Rightarrow M A^2+M B^2+M C^2 \geq \frac{4}{3}\left(M A_1+M_1 B_1+M C_1\right)^2$

Do đó: $P=\frac{M A^2+M B^2+M C^2}{\left(M A_1+M B_1+M C_1\right)^2} \geq \frac{4}{3}$.

Đẳng thức xảy ra $\Leftrightarrow M$ là tâm của tam giác đều $\mathrm{ABC}$.

Vậy giá trị nhỏ nhất của $\mathrm{P}$ là $\frac{4}{3}$.

Cách 2:

$\text { Ta có: } S_{ABC}=S_{MBC}+S_{MCA}+S_{MAB} \Rightarrow \frac{\mathrm{a}^2 \sqrt{3}}{4}=\frac{1}{2} \mathrm{a}\left(MA_1+MB_1+MC_1\right)$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\Rightarrow  \mathrm{MA}_1+\mathrm{MB}_1+\mathrm{MC}_1=\frac{\mathrm{a} \sqrt{3}}{2}( * )$

$\quad\quad\quad(\overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+\overrightarrow{\mathrm{MC}})^2 \geq 0$

$\quad\quad\Rightarrow \mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2+2(\overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MB}}+\overrightarrow{\mathrm{MB}} \cdot \overrightarrow{\mathrm{MC}}+\overrightarrow{\mathrm{MC}} \cdot \overrightarrow{\mathrm{MA}}) \geq 0$

$\quad\quad\Rightarrow \mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2+\left(\mathrm{MA}^2+\mathrm{MB}^2-\mathrm{AB}^2+\mathrm{MB}^2+\mathrm{MC}^2\right.$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left(-B C^2+M C^2+M A^2-C A^2\right) \geq 0$

$\quad\quad\Rightarrow 3\left(\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2\right) \geq 3 \mathrm{a}^2 \Rightarrow \mathrm{MA}^2+\mathrm{MB}^2+\mathrm{MC}^2 \geq \mathrm{a}^2(* *)$

Từ $( * )$ và $( ** )$: $\Rightarrow P \geq \frac{\mathrm{a}^2}{\left(\frac{\mathrm{a} \sqrt{3}}{2}\right)^2}=\frac{4}{3}$.

Dấu “=” xảy ra $\Leftrightarrow \overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+\overrightarrow{\mathrm{MC}}=\overrightarrow{0} \Leftrightarrow \mathrm{M}$ là trọng tâm tam giác $\mathrm{ABC}$.

Vậy giá trị nhỏ nhất của $P$ là $\frac{4}{3}$.

Câu 4

Cho các số thực: $a, b, c \geq 1$ thỏa $a+b+c+2=a b c$.

Chứng minh rằng: $\quad b c \sqrt{\mathrm{a}^2-1}+\mathrm{ca} \sqrt{\mathrm{b}^2-1}+\mathrm{ab} \sqrt{\mathrm{c}^2-1} \leq \frac{3 \sqrt{3}}{2} \mathrm{abc}$

Lời Giải

Ta có: $\frac{\mathrm{VT}}{\mathrm{abc}} =\sqrt{1-\frac{1}{\mathrm{a}^2}}+\sqrt{1-\frac{1}{\mathrm{~b}^2}}+\sqrt{1-\frac{1}{\mathrm{c}^2}} \leq \sqrt{3\left[3-\left(\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}\right)\right]}$

$\quad\quad\quad\quad =\sqrt{9-3\left(\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}\right)} \leq \sqrt{9-\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right)^2}$

Mà từ giả thiết ta có: $\quad\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}+\frac{2}{a b c}=1$.

Ta có: $\quad\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a} \leq \frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2$ và $\frac{1}{a b c} \leq \frac{1}{27}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^3$

Đặt: $\quad t=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ ta được

$\quad\frac{1}{3} \mathrm{t}^2+\frac{2}{27} \mathrm{t}^3 \geq 1 \Leftrightarrow 2 \mathrm{t}^3+9 \mathrm{t}^2-27 \geq 0 \Leftrightarrow(2 \mathrm{t}-3)(\mathrm{t}+3)^2 \geq 0 \Leftrightarrow \mathrm{t} \geq \frac{3}{2}$

Suy ra: $\quad\frac{\mathrm{VT}}{\mathrm{abc}} \leq \sqrt{9-\frac{9}{4}}=\frac{3 \sqrt{3}}{2}$

Vậy: $\quad b c \sqrt{a^2-1}+c a \sqrt{b^2-1}+a b \sqrt{c^2-1} \leq \frac{3 \sqrt{3}}{2} a b c$

Câu 5

Trong một giải thi đấu thể thao, một môn thể thao có $\mathrm{x}$ huy chương được phát trong $\mathrm{n}$ ngày thi đấu. Ngày thứ nhất người ta phát một huy chương và một phần mười số huy chương còn lại. Ngày thứ hai người ta phát hai huy chương và một phần mười số huy chương còn lại. Cứ tiếp tục, ngày thứ $\mathrm{k}$ người ta phát $\mathrm{k}(3 \leq \mathrm{k} \leq \mathrm{n})$ huy chương và một phần mười số huy chương còn lại. Ngày sau cùng, còn lại $\mathrm{n}$ huy chương đề phát. Hỏi môn thể thao đó có tất cả bao nhiêu huy chương đã được phát và đã phát trong bao nhiêu ngày?

Lời Giải

Gọi $\mathrm{u}_{\mathrm{k}}$ là số huy chương còn lại khi bắt đầu ngày thi đấu thứ $\mathrm{k}(\mathrm{k}=1,2, \ldots, \mathrm{n})$.

Ta có: $\mathrm{u}_1=\mathrm{x} ; \mathrm{u}_2=\mathrm{u}_1-\left[1+\frac{1}{10}\left(\mathrm{u}_1-1\right)\right]=\frac{9}{10} \mathrm{u}_1-\frac{9}{10} .1$

$\quad\quad\quad\mathrm{u}_3=\mathrm{u}_2-\left[2+\frac{1}{10}\left(\mathrm{u}_2-2\right)\right]=\frac{9}{10} \mathrm{u}_2-\frac{18}{10}=\frac{9}{10} \mathrm{u}_2-\frac{9}{10} \cdot 2$

$\quad\quad\quad\text { …….. }$

$\quad\quad u_{k+1}=u_k-\left[k+\frac{1}{10}\left(u_k-k\right)\right]=\frac{9}{10} u_k-\frac{9 k}{10}=\frac{9}{10} u_k-\frac{9}{10} \cdot k$ $\quad(1)$ và $\quad u_n=n$

  • Tính $u_k$ theo $\mathrm{k}$ :

Cách 1: Đặt $\quad u_k=v_k+pk+q$, ta có:

(1) $\quad\Leftrightarrow v_{k+1}+pk+p+q=\frac{9}{10}\left(v_k+pk+q\right)-\frac{9}{10}{k}$

$\quad\quad\Rightarrow v_{k+1}=\frac{9}{10} v_k+k\left(\frac{9}{10} p-\frac{9}{10}-p\right)+\frac{9}{10} q-p-q$

Chọn $p, q$ thỏa $\left\{\begin{array}{l}\frac{9}{10} p-\frac{9}{10}-p=0 \\ \frac{9}{10} q-p-q=0\end{array}\Rightarrow p=-9\right.$ và $q=90$

Cách 2: Xét $\quad u_{k+1}=\frac{9}{10} u_k\quad(2)$

Ta có $\quad u_k^*=\left(\frac{9}{10}\right)^{k-1}\quad u_1$ là nghiệm của $(2)$

Đặt $\quad u_k=v_k-9 k+90$ ta có: $v_1=u_1-81=x-81$ và $v_{k+1}=\frac{9}{10} v_k$ với mọi $k$.

Suy ra: $v_1=x-81 ; v_2=\frac{9}{10} v_1 ; \ldots ; v_k=\frac{9}{10} v_{k-1} \Rightarrow v_k=\left(\frac{9}{10}\right)^{k-1}(x-81)$

Giả sử (1) có nghiệm riêng $\tilde{u_k}=Ak+B \Rightarrow \tilde u_k=-9 k+90$.

Vậy $\quad u_k=(x-81)\left(\frac{9}{10}\right)^{k-1}-9(k-10)$.

$\quad\quad\Rightarrow u_k=Cu_k^*+\tilde u_k=Cx\left(\frac{9}{10}\right)^{k-1}-9 k+90$

$\quad\quad\Rightarrow \mathrm{u}_{\mathrm{k}}=(\mathrm{x}-81)\left(\frac{9}{10}\right)^{\mathrm{k}-1}-9(\mathrm{k}-10)$

Theo giả thiết

$\quad\quad\quad u_n=n \Leftrightarrow n=(x-81)\left(\frac{9}{10}\right)^{n-1}-9(n-10) \Leftrightarrow x=81+\frac{10^n}{9^{n-1}}(n-9)$

Vì $x$ là số nguyên dương nên suy ra $n=9$ và $x=81$.

 

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2011

ĐỀ THI

Câu 1

Giải phương trình sau trên tập số thực: $\quad 9 \sqrt{x^3+8}=2\left(x^2+8\right)\quad\quad(1)$

Câu 2

Chứng minh rằng không tồn tại các sốnguyên $\mathrm{x}, \mathrm{y}, \mathrm{z}$ thỏa mãn hệ thức:

$\quad\quad\quad(x+2010)^2+(x+2012)^2=(x+y+z+2008)(y+z-x-2014)$.

Câu 3

Cho tam giác $\mathrm{ABC}$ nội tiếp đường tròn $(\mathrm{O})$ và ngoại tiếp đường tròn (I). Gọi $\mathrm{D}, \mathrm{E}, \mathrm{F}$ lần lượt là các tiếp điểm của (I) với các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$. Dựng đường tròn $\left(\mathrm{O}_1\right)$ tiếp xúc ngoài với (I) tại điểm $\mathrm{D}$ và tiếp xúc trong với $(\mathrm{O})$ tại điểm $\mathrm{K}$, đường tròn $\left(\mathrm{O}_2\right)$ tiếp xúc ngoài với (I) tại điểm $\mathrm{E}$ và tiếp xúc trong với $(\mathrm{O})$ tại điểm $\mathrm{M}$, đường tròn $\left(\mathrm{O}_2\right)$ tiếp xúc ngoài với (I) tại điểm $\mathrm{F}$ và tiếp xúc trong với $(\mathrm{O})$ tại điểm $\mathrm{N}$. Chứng minh rằng:

a) Các đường thẳng DK, EM, FN đồng quy tại một điểm $\mathrm{P}$.

b) Đường thẳng $\mathrm{OP}$ đi qua trực tâm $\mathrm{H}$ của tam giác $\mathrm{DEF}$.

Câu 4

Cho a, b, c là ba số thực không âm thỏa mãn a ${ }^2+4 b^2+9 c^2=14$.

Chứng minh: $3 b+8 c+a b c \leq 12$.

Câu 5

Cho hàm số: $\mathrm{F}(\mathrm{x})=\sum_{\mathrm{k}=0}^{2011}(\mathrm{k}-2011 \mathrm{x})^2 \mathrm{C}_{2011}^{\mathrm{k}} \mathrm{x}^{\mathrm{k}}(\mathrm{l}-\mathrm{x})^{2011-\mathrm{k}}$

Tìm giá trị lớn nhất của hàm số trên đoạn $[0 ; 1]$

 

LỜI GIẢI

Câu 1

Giải phương trình sau trên tập số thực: $\quad 9 \sqrt{x^3+8}=2\left(x^2+8\right)\quad\quad(1)$

Lời Giải

Điều kiện: $x \geq-2$

Phương trình tương đương:

$\quad\quad\quad\quad\quad 9 \sqrt{(x+2)\left(x^2-2 x+4\right)}=2\left[2(x+2)+x^2-2 x+4\right]$

Vì $x^2-2 x+4=(x-1)^2+3 \geq 3$

Chia cả hai vế của phương trình $(2)$ cho $x^2-2 x+4$, ta được

$\quad\quad\quad\quad\quad 4\left(\frac{x+2}{x^2-2 x+4}\right)-9 \sqrt{\frac{x+2}{x^2-2 x+4}}+2=0$

$\quad\quad\quad\quad \Rightarrow \frac{x+2}{x^2-2 x+4}=\frac{1}{16} \Rightarrow x=9 \pm \sqrt{109}$ (nhận)

Câu 2

Chứng minh rằng không tồn tại các sốnguyên $\mathrm{x}, \mathrm{y}, \mathrm{z}$ thỏa mãn hệ thức:

$\quad\quad\quad(x+2010)^2+(x+2012)^2=(x+y+z+2008)(y+z-x-2014)$.

Lời Giải

Phương trình đã cho tương đương với

$\quad\quad\quad\quad(x+2010)^2+(x+2012)^2=(y+z-3)^2-(x+2011)^2$

$\quad\quad\quad\Leftrightarrow (x+2010)^2+(x+2011)^2+(x+2012)^2=(y+z-3)^2$

$\quad\quad\quad\Leftrightarrow 3 x^2+12066 x+2010^2+2011^2+2012^2=(y+z-3)^2$

Vế trái của phương trình chia cho 3 có số dư là 2 , vế phải của phương trình chia cho 3 có số dư là 0 hoặc 1 .

Vậy phương trình đã cho không có nghiệm nguyên.

Câu 3

Cho tam giác $\mathrm{ABC}$ nội tiếp đường tròn $(\mathrm{O})$ và ngoại tiếp đường tròn (I). Gọi $\mathrm{D}, \mathrm{E}, \mathrm{F}$ lần lượt là các tiếp điểm của (I) với các cạnh $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$. Dựng đường tròn $\left(\mathrm{O}_1\right)$ tiếp xúc ngoài với (I) tại điểm $\mathrm{D}$ và tiếp xúc trong với $(\mathrm{O})$ tại điểm $\mathrm{K}$, đường tròn $\left(\mathrm{O}_2\right)$ tiếp xúc ngoài với (I) tại điểm $\mathrm{E}$ và tiếp xúc trong với $(\mathrm{O})$ tại điểm $\mathrm{M}$, đường tròn $\left(\mathrm{O}_2\right)$ tiếp xúc ngoài với (I) tại điểm $\mathrm{F}$ và tiếp xúc trong với $(\mathrm{O})$ tại điểm $\mathrm{N}$. Chứng minh rằng:

a) Các đường thẳng DK, EM, FN đồng quy tại một điểm $\mathrm{P}$.

b) Đường thẳng $\mathrm{OP}$ đi qua trực tâm $\mathrm{H}$ của tam giác $\mathrm{DEF}$.

Lời Giải

a) Trước hết ta $\mathrm{CM}$ bổ đề: “Cho $\mathrm{X}$, $\mathrm{Y}$ là hai điểm trên đường tròn $(\mathrm{O})$, một đường tròn $\left(O^{\prime}\right)$ tiếp xúc $X Y$ tại $U$ và tiếp xúc trong với $(O)$ tại $V$.

Khi đó, đường thẳng $\mathrm{UV}$ đi qua trung điểm $\mathrm{Z}$ của cung $\mathrm{XY}$ không chứa $\mathrm{V}$.” Thật vậy, xét phép vị tự tâm $V:\left(O^{\prime}\right) \rightarrow(O)$.

Khi đó $X Y \rightarrow d$ thỏa mãn $d / / X Y$ và $d$ tiếp xúc $(O)$ tại $Z$ là ảnh của $U$ $\Rightarrow Z$ là trung điểm cung $X Y$.

Xét bài toán đã cho:

Gọi $\mathrm{A}_1, \mathrm{~B}_1, \mathrm{C}_1$ là giao điểm của $\mathrm{DK}, \mathrm{EM}, \mathrm{FN}$ với $(\mathrm{O})$, theo Bổ đề $\mathrm{A}_1, \mathrm{~B}_1, \mathrm{C}_1$ là các trung điểm của các cung $\mathrm{BAC}, \mathrm{CBA}, \mathrm{ACB}$. Gọi $\mathrm{A}_0, \mathrm{~B}_0, \mathrm{C}_0$ là các điểm đối xứng của $\mathrm{A}_1, \mathrm{~B}_1, \mathrm{C}_1$ qua $\mathrm{O}$, khi đó $\Delta \mathrm{A}_0 \mathrm{~B}_0 \mathrm{C}_0, \Delta \mathrm{A}_1 \mathrm{~B}_1 \mathrm{C}_1$ có các cạnh song song.

Mặt khác: $\quad B_0 \mathrm{C}_0, \mathrm{EF} \perp \mathrm{AI}$

$\quad\quad\quad\quad\mathrm{A}_0 \mathrm{C}_0, \mathrm{FD} \perp \mathrm{BI}$

$\quad\quad\quad\quad\mathrm{A}_0 \mathrm{~B}_0, \mathrm{DE} \perp \mathrm{CI}$

Suy ra $\Delta \mathrm{A}_0 \mathrm{~B}_0 \mathrm{C}_0, \Delta \mathrm{DEF}$ có các cạnh song song. Do đó $\Delta \mathrm{A}_1 \mathrm{~B}_1 \mathrm{C}_1, \triangle \mathrm{DEF}$ có các cạnh song song và không bằng nhau $\left(\triangle \mathrm{A}_1 \mathrm{~B}_1 \mathrm{C}_1\right.$ nội tiếp $(\mathrm{O}), \triangle \mathrm{DEF}$ nội tiếp (I))

$\quad\quad\Rightarrow \exists$ phép vị tự biến $\triangle \mathrm{DEF}$ thành $\Delta \mathrm{A}_1 \mathrm{~B}_1 \mathrm{C}_1$

$\quad\quad\Rightarrow \mathrm{DA}_1, \mathrm{~EB}_1, \mathrm{FC}_1$ đồng quy tại tâm $\mathrm{P}$ của phép vị tự.

b) Từ câu $\mathrm{a}) \Rightarrow \mathrm{P}, \mathrm{O}$, I thẳng hàng (1)

Gọi $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ là các giao điểm các đường cao $\mathrm{DD}^{\prime}, \mathrm{EE}^{\prime}, \mathrm{FF}^{\prime}$ của $\triangle \mathrm{DEF}$ với (1). của cung $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \Rightarrow \mathrm{B}^{\prime} \mathrm{C}^{\prime} \perp \mathrm{ID} \Rightarrow \mathrm{B}^{\prime} \mathrm{C} / / \mathrm{BC}$ (do $\mathrm{BC} \perp \mathrm{ID}$ )

Tương tự $\mathrm{C}^{\prime} \mathrm{A}^{\prime} / / \mathrm{CA}, \mathrm{A}^{\prime} \mathrm{B}^{\prime} / / \mathrm{AB}$, và $\mathrm{H}$ là tâm đường tròn nội tiếp $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$

Tữ đó $\triangle \mathrm{ABC}, \triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ có các cạnh song song và không bằng nhau (do $\triangle \mathrm{ABC}$ nội tiếp $(\mathrm{O}), \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ nội tiếp $\left.(\mathrm{I})\right) \Rightarrow \exists$ phép vị tự biến $\Delta \mathrm{ABC}$ thành $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.

$\quad\quad\Rightarrow \mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}{ }^{\prime}$ đồng quy tại tâm phép vị tự $\mathrm{Q} \Rightarrow \mathrm{Q}, \mathrm{I}, \mathrm{O}$ thẳng hàng (2)

Mặt khác $\mathrm{I}, \mathrm{H}$ là tâm nội tiếp $\Delta \mathrm{ABC}, \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \Rightarrow \mathrm{Q}, \mathrm{H}, I$ thẳng hàng (3)

Từ $(1),(2),(3)$ có đpcm.

Câu 4

Cho a, b, c là ba số thực không âm thỏa mãn a ${ }^2+4 b^2+9 c^2=14$.

Chứng minh: $3 b+8 c+a b c \leq 12$.

Lời Giải

Bất đẳng thức đã cho tương đương: $6 b+16 c+2 a b c \leq 24$ (1)

  • Áp dụng bất đẳng thức AM-GM ta có:

$\quad\quad\quad\quad\quad 6 b+16 c \leq 3\left(b^2+1\right)+8\left(c^2+1\right)=11+3 b^2+8 c^2$

$\quad\quad\quad\quad\quad\quad\quad\quad =11+\left(a^2+4 b^2+9 c^2\right)-a^2-b^2-c^2=25-a^2-b^2-c^2$

Nên để chứng minh (1) ta chỉ cần chứng minh bất đẳng thức:

$\quad\quad\quad\quad\quad a^2+b^2+c^2-1 \geq 2 a b c \quad(2) \text {, với } a, b, c \text { không âm. }$

  • Do giả thiết $\mathrm{a}^2+4 \mathrm{~b}^2+9 \mathrm{c}^2=14$, bất đẳng thức (2) có thể viết lại như sau:

$\quad\quad\quad\quad\quad 14\left(a^2+b^2+c^2\right)-\left(a^2+4 b^2+9 c^2\right) \geq 28 a b c$

$\quad\quad\quad\quad\Leftrightarrow 13 a^2+10 b^2+5 c^2 \geq 28 a b c$

$\quad\quad\quad\quad\Leftrightarrow \left(13 a^2+10 b^2+5 c^2\right) \sqrt{a^2+4 b^2+9 c^2} \geq 28 \sqrt{14} a b c$

  • Lại áp dụng bất đẳng thức AM-GM, ta có:

$\quad\quad\quad 13 a^2+10 b^2+5 c^2 \geq 28 \sqrt[28]{\left(a^2\right)^{13}\left(b^2\right)^{10}\left(c^2\right)^5}=28 \sqrt[24]{a^{13} b^{10} c^5}$

và: $\quad a^2+4 b^2+9 c^2 \geq 14 \sqrt[14]{a^2\left(b^2\right)^4\left(c^2\right)^4}=14\left(\sqrt[14]{a b^4 c^9}\right)^2$

  • Do đó: $\left(13 \mathrm{a}^2+10 \mathrm{~b}^2+5 \mathrm{c}^2\right) \sqrt{\mathrm{a}^2+4 \mathrm{~b}^2+9 \mathrm{c}^2}$

$\quad\quad\quad\quad\geq 28 \sqrt[14]{a^{13} b^{10} c^5} \sqrt{14\left(\sqrt[14]{a b^4 c^9}\right)^2}=28 \sqrt{14} a b c$

Đẳng thức chỉ xảy ra khi $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(1,1,1)$

Bài toán được chứng minh xong.

Câu 5

Cho hàm số: $\mathrm{F}(\mathrm{x})=\sum_{\mathrm{k}=0}^{2011}(\mathrm{k}-2011 \mathrm{x})^2 \mathrm{C}_{2011}^{\mathrm{k}} \mathrm{x}^{\mathrm{k}}(\mathrm{l}-\mathrm{x})^{2011-\mathrm{k}}$

Tìm giá trị lớn nhất của hàm số trên đoạn $[0 ; 1]$

Lời Giải

Ta có

$\quad\quad\quad A =\sum_{k=0}^n(k-n x)^2 C_n^k x^k(1-x)^{n-k}$

$\quad\quad\quad\quad =(n x)^2 \sum_{k=0}^n C_n^k x^k(1-x)^{n-k}+\sum_{k=0}^n k^2 C_n^k x^k(1-x)^{n-k}-2 n x \sum_{k=0}^n k C_n^k x^k(1-x)^{n-k}$

Xét:

$\quad\quad\quad A_1 =\sum_{k=0}^n k C_n^k x^k(1-x)^{n-k}=\sum_{k=1}^n k C_n^k x^k(1-x)^{n-k}$

$\quad\quad\quad\quad =n \sum_{k=1}^n C_{n-1}^{k-1} x^k(1-x)^{n-k}=n x \sum_{k=1}^n C_{n-1}^{k-1} x^{k-1}(1-x)^{n-k}$

$\quad\quad\quad\quad =n x[x+(1-x)]^{n-1}=n x$

$\quad\quad\quad A_2 =\sum_{k=0}^n k^2 C_n^k x^k(1-x)^{n-k}=\sum_{k=1}^n k^2 C_n^k x^k(1-x)^{n-k}$

$\quad\quad\quad\quad =n \sum_{k=1}^n k C_{n-1}^{k-1} x^k(1-x)^{n-k}$

$\quad\quad\quad\quad =n \sum_{k=1}^n C_{n-1}^{k-1} x^k(1-x)^{n-k}+n \sum_{k=1}^n(k-1) C_{n-1}^{k-1} x^k(1-x)^{n-k}$

$\quad\quad\quad\quad =n x+n \sum_{k=1}^n(k-1) C_{n-1}^{k-1} x^k(1-x)^{n-k}$

$\quad\quad\quad\quad =n x+n(n-1) \sum_{k=2}^n C_{n-2}^{k-2} x^k(1-x)^{n-k}=n x+n(n-1) x^2 $

$\quad\quad\quad A_3=\sum_{k=0}^n C_n^k x^k(1-x)^{n-k}=[x+(1-x)]^n=1$

Vậy $A=(n x)^2+n x+n(n-1) x^2-2(n x)^2=n x(1-x)$

Áp dụng kết quả trên ta được $\mathrm{f}(\mathrm{x})=2011 \mathrm{x}(1-\mathrm{x})$

Do $\mathrm{x} \in[0 ; 1]$ nên $\mathrm{x}, 1-\mathrm{x} \geq 0$. Từ đó theo bất đẳng thức Cauchy:

$\quad\quad\quad\quad\quad\quad\quad\quad f(x) \leq 2011 \cdot\left(\frac{x+(1-x)}{2}\right)^2=\frac{2011}{4}$

Dấu đẳng thức xảy ra khi $x=\frac{1}{2}$

Vậy $maxf(x)=\frac{2011}{4}$ đạt được khi $x=\frac{1}{2}$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2009

ĐỀ THI

Câu 1

Giải phương trình: $\quad x^3+3 x^2-3 \sqrt[3]{3 x+5}=1-3 x$.

Câu 2

Tìm tất cả các số nguyên tố $\mathrm{p}$ sao cho tồn tại các số nguyên dương $n, x, y$ thỏa mãn: $p^n=x^3+y^3$.

Câu 3

Cho đoạn thẳng $\mathrm{AC}$ cố định với $\mathrm{K}$ là trung điểm. Hai điểm $\mathrm{B}$ và $\mathrm{D}$ phân biệt, di động và luôn đối xứng nhau qua $\mathrm{K}$ và đường thẳng $\mathrm{BD}$ không trùng với đường thẳng $\mathrm{AC}$. Đường phân giác của $\widehat{\mathrm{BCD}}$ cắt $\mathrm{AD}$ và $\mathrm{AB}$ lần lượt tại $\mathrm{I}$ và $\mathrm{J}$.

Đường tròn ngoại tiếp tam giác $\mathrm{ABD}$ và đường tròn ngoại tiếp tam giác $\mathrm{AIJ}$ cắt nhau tại điểm $\mathrm{M}$ khác $\mathrm{A}$. Gọi $\mathrm{H}$ là hình chiếu của $\mathrm{M}$ trên trung trực của $\mathrm{AC}$ và $\mathrm{N}$ là giao điểm của $\mathrm{CH}$ và $\mathrm{KM}$.

Chứng minh khi $\mathrm{B}$ di động như trên thì $\mathrm{N}$ di động trên một đường cố định.

Câu 4

Cho a, b, c là các số thực dương.

Chứng minh rằng: $\quad\sqrt{\frac{2 \mathrm{a}}{\mathrm{a}+\mathrm{b}}}+\sqrt{\frac{2 \mathrm{~b}}{\mathrm{~b}+\mathrm{c}}}+\sqrt{\frac{2 \mathrm{c}}{\mathrm{c}+\mathrm{a}}} \leq 3$.

Câu 5

Cho tam giác $\mathrm{ABC}$ không cân có hai đỉnh $\mathrm{B}, \mathrm{C}$ cố định và đỉnh $\mathrm{A}$ di động. Qua $\mathrm{B}$ dựng đường thẳng $\mathrm{d}$ vuông góc với $\mathrm{BC}$, $\mathrm{d}$ cắt trung tuyến $\mathrm{AI}$ của tam giác $\mathrm{ABC}$ tại $\mathrm{K}$. Gọi $\mathrm{H}$ là trực tâm của tam giác $\mathrm{ABC}$. Chứng minh rằng nếu $\mathrm{IH}$ song song với $\mathrm{KC}$ thì điểm $\mathrm{A}$ di động trên đường cố định.

 

LỜI GIẢI

Câu 1

Giải phương trình: $\quad x^3+3 x^2-3 \sqrt[3]{3 x+5}=1-3 x$.

Lời Giải

Phương trình đã cho tương đương $(x+1)^3=3 \sqrt[3]{3 x+5}+2$

Đặt $\sqrt[3]{3 x+5}=y+1$, suy ra $3 x+5=(y+1)^3$ và $(1)$ trở thành $(x+1)^3=3 y+5$.

Vậy ta có hệ phương trình $\left\{\begin{array}{l}(x+1)^3=3 y+5 \\ (y+1)^3=3 x+5\end{array}\right.$

Trừ vế theo vế hai phương trình của hệ trên, ta được

$\quad\quad\quad\quad\quad(x+1)^3-(y+1)^3=-3(x-y)$

$\quad\quad\quad\quad\Leftrightarrow(x-y)\left[(x+1)^2+(x+1)(y+1)+(y+1)^2+3\right]=0 \Leftrightarrow x=y$

$\quad\quad\quad\quad\text { (Vì } \left.(x+1)^2+(x+1)(y+1)+(y+1)^2+3>0, \forall x, y \in \mathbb{R}\right)$

Vậy ta có phương trình: $(x+1)^3=3 x+5 \Leftrightarrow x^3+3 x^2-4=0$ $\Leftrightarrow x=1$ hoặc $x=-2$.

Vậy phương trình đã cho có 2 nghiệm: $x=1$ và $x=-2$.

Câu 2

Tìm tất cả các số nguyên tố $\mathrm{p}$ sao cho tồn tại các số nguyên dương $n, x, y$ thỏa mãn: $p^n=x^3+y^3$.

Lời Giải

$p^n=x^3+y^3\quad(*)$

  • Với $\mathrm{p}=2$ ta có $2^1=1^3+1^3$.
  • Vó́i $p=3$ ta có $3^2=1^3+2^3$.

Ta chứng minh khi $\mathrm{p}>3$ thì không tồn tại các số nguyên dương $\mathrm{n}, \mathrm{x}, \mathrm{y}$ thỏa đề bài.

Thật vậy, giả sử ngược lại, chọn $n, x, y$ thỏa $(*)$ sao cho $n$ bé nhất.

Do $\mathrm{p} \neq 2$ nên $(\mathrm{x}, \mathrm{y}) \neq(1,1)$; khi đó:

$\quad\quad\quad\quad\quad x^2-x y+y^2=(x-y)^2+x y>1 \text { và } x+y>1$

Do đó $x^2-x y+y^2$ và $x+y$ đều là bội của $p$.

$\quad\quad\quad\quad\Rightarrow(x+y)^2-\left(x^2-x y+y^2\right)=3 x y \vdots p$

Do $p>3$ nên $x \vdots p$ hoặc $y \vdots p$

Mà $(x+y) \vdots p$ nên $x$ và $y$ đều chia hết cho $p$.

Điều này cho ta:

$(*) \Leftrightarrow \mathrm{p}^{\mathrm{n}-3}=\left(\frac{\mathrm{x}}{\mathrm{p}}\right)^3+\left(\frac{\mathrm{y}}{\mathrm{p}}\right)^3 \Leftrightarrow \mathrm{p}^{\mathrm{n}^{\prime}}=\mathrm{x}^{\prime 3}+\mathrm{y}^{\prime^3}$ với $\left(\mathrm{n}^{\prime}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)=\left(\mathrm{n}-3, \frac{\mathrm{x}}{\mathrm{p}}, \frac{\mathrm{y}}{\mathrm{p}}\right)$

do đó $\mathrm{n}^{\prime}<\mathrm{n}$ (trái giả thiết $\mathrm{n}$ là nhỏ nhất).

Vậy chỉ có $\mathrm{p}=2$ và $\mathrm{p}=3$ thỏa đề bài.

Câu 3

Cho đoạn thẳng $\mathrm{AC}$ cố định với $\mathrm{K}$ là trung điểm. Hai điểm $\mathrm{B}$ và $\mathrm{D}$ phân biệt, di động và luôn đối xứng nhau qua $\mathrm{K}$ và đường thẳng $\mathrm{BD}$ không trùng với đường thẳng $\mathrm{AC}$. Đường phân giác của $\widehat{\mathrm{BCD}}$ cắt $\mathrm{AD}$ và $\mathrm{AB}$ lần lượt tại $\mathrm{I}$ và $\mathrm{J}$.

Đường tròn ngoại tiếp tam giác $\mathrm{ABD}$ và đường tròn ngoại tiếp tam giác $\mathrm{AIJ}$ cắt nhau tại điểm $\mathrm{M}$ khác $\mathrm{A}$. Gọi $\mathrm{H}$ là hình chiếu của $\mathrm{M}$ trên trung trực của $\mathrm{AC}$ và $\mathrm{N}$ là giao điểm của $\mathrm{CH}$ và $\mathrm{KM}$.

Chứng minh khi $\mathrm{B}$ di động như trên thì $\mathrm{N}$ di động trên một đường cố định.

Lời Giải

(Xem hình 1)

Gọi $\mathrm{P}, \mathrm{Q}$ là tâm đường tròn $(\mathrm{AIJ})$ và $(\mathrm{ADB}) \Rightarrow \mathrm{PQ}$ vuông góc $\mathrm{AM}\quad(1)$

Ta có $\widehat{\mathrm{AIJ}}=\widehat{\mathrm{BCJ}}=\widehat{\mathrm{DCJ}}=\widehat{\mathrm{AJI}}\quad\quad(2)$

$\quad\quad\widehat{\mathrm{PJA}}=\frac{180^{\circ}-\widehat{\mathrm{APJ}}}{2}=90^{\circ}-\widehat{\mathrm{AIJ}}\quad(3)$

$\quad\quad\widehat{\mathrm{PAD}}=\frac{180^{\circ}-\widehat{\mathrm{API}}}{2}=90^{\circ}-\widehat{\mathrm{AJI}}\quad(4)$

Từ $(2),(3)$ và (4) suy ra $\widehat{\mathrm{PJA}}=\widehat{\mathrm{PAI}}\quad(5)$

Mặt khác $\mathrm{PA}=\mathrm{PJ}\quad\quad\quad\quad\quad\quad\quad\quad(6)$

Vì $\widehat{\mathrm{BJC}}=\widehat{\mathrm{DCJ}}=\widehat{\mathrm{BCJ}}$ nên $\Delta \mathrm{BCJ}$ cân tại $\mathrm{B} \Rightarrow \mathrm{AD}=\mathrm{BC}=\mathrm{BJ}\quad(7)$

Từ $(5),(6)$ và $(7)$ suy ra $\triangle P A D=\Delta P J B \Rightarrow P B=P D$ mà $Q B=Q D$

$\quad\quad\Rightarrow P Q$ là trung trực của $B D \Rightarrow P Q$ vuông góc $B D\quad(8)$

Từ (1) và (8) suy ra $\mathrm{AM} / / \mathrm{BD}\quad(9)$

$\quad\quad\Rightarrow \mathrm{AMDB}$ là hình thang cân (do $\mathrm{AMDB}$ nội tiếp)

$\quad\quad\Rightarrow \widehat{\mathrm{MDB}}=\widehat{\mathrm{ABD}}=\widehat{\mathrm{BDC}}$ và $\quad\quad\widehat{\mathrm{DBC}}=\widehat{\mathrm{BDA}}=\widehat{\mathrm{DBM}}$

Do đó $\Delta \mathrm{DBM}=\Delta \mathrm{DBC} \Rightarrow \mathrm{BD}$ vuông góc $\mathrm{MC}\quad(10)$

Từ $(9)$ và $(10) \Rightarrow \widehat{\mathrm{AMC}}=90^{\circ} \Rightarrow \mathrm{M}$ thuộc đường tròn $(\mathrm{K})$ đường kính $\mathrm{AC}$ cố định.

  • (Xem hình 2) Dựng $\mathrm{NE} \perp \mathrm{AC}$ và $\mathrm{MF} \perp \mathrm{AC}$.

Ta có $\frac{\mathrm{CE}}{\mathrm{KC}}=\frac{\mathrm{NE}}{\mathrm{HK}}=\frac{\mathrm{NE}}{\mathrm{MF}}=\frac{\mathrm{KN}}{\mathrm{KM}}$

Mặt khác $\mathrm{KC}=\mathrm{KM} \Rightarrow \mathrm{NK}=\mathrm{EC}$

$\quad\quad\Rightarrow \mathrm{NK}=\mathrm{d}(\mathrm{N} ;(\Delta)$ ), với $\Delta$ là đường thẳng vuông góc $\mathrm{AC}$ tại $\mathrm{C}$

$\quad\quad\Rightarrow \mathrm{N}$ thuộc parabol $(\mathrm{P})$ cố định có tiêu điểm $\mathrm{K}$ và đường chuẩn $(\Delta)$. $($ đpcm $)$

Câu 4

Cho a, b, c là các số thực dương.

Chứng minh rằng: $\quad\sqrt{\frac{2 \mathrm{a}}{\mathrm{a}+\mathrm{b}}}+\sqrt{\frac{2 \mathrm{~b}}{\mathrm{~b}+\mathrm{c}}}+\sqrt{\frac{2 \mathrm{c}}{\mathrm{c}+\mathrm{a}}} \leq 3$.

Lời Giải

Đặt $\mathrm{x}=\sqrt{\frac{\mathrm{b}}{\mathrm{a}}}, \mathrm{y}=\sqrt{\frac{\mathrm{c}}{\mathrm{b}}}, \mathrm{z}=\sqrt{\frac{\mathrm{a}}{\mathrm{c}}}$, ta có $\mathrm{x}, \mathrm{y}, \mathrm{z}>0$ và $\mathrm{xyz}=1$.

Bất đẳng thức đã cho trở thành: $\sqrt{\frac{2}{1+\mathrm{x}^2}}+\sqrt{\frac{2}{1+\mathrm{y}^2}}+\sqrt{\frac{2}{1+\mathrm{z}^2}} \leq 3$

Giả sử $x y \leq 1 \Rightarrow z \geq 1$.

  • Ta chứng minh bất đẳng thức sau: $\frac{1}{1+x^2}+\frac{1}{1+y^2} \leq \frac{2}{1+x y}\quad(1)$

Thật vậy, $(1) \Leftrightarrow\left(2+x^2+y^2\right)(1+x y) \leq 2\left(1+x^2\right)\left(1+y^2\right)$ $\Leftrightarrow(1-x y)(x-y)^2 \geq 0 \quad$ (đúng)

  • Ta có: Theo bất đẳng thức Bunhiacopxki
    $\left(\sqrt{\frac{2}{1+x^2}}+\sqrt{\frac{2}{1+y^2}}\right)^2 \leq 2\left(\frac{2}{1+x^2}+\frac{2}{1+y^2}\right)=4\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)$

Theo bất đẳng thức (1) suy ra: $4\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right) \leq \frac{8}{1+x y}=\frac{8 z}{1+z}$

Suy ra $\sqrt{\frac{2}{1+x^2}}+\sqrt{\frac{2}{1+y^2}} \leq 2 \sqrt{\frac{2 z}{1+z}}$. Mặt khác, ta lại có $\sqrt{\frac{2}{1+z^2}} \leq \frac{2}{1+z}$.

Do vậy, ta sẽ chứng minh $2 \sqrt{\frac{2 z}{1+z}}+\frac{2}{1+z} \leq 3$.

Thật vậy, ta có: $2 \sqrt{\frac{2 z}{1+z}}+\frac{2}{1+z} \leq 3 \Leftrightarrow 2 \sqrt{2 z(z+1)}+2 \leq 3(1+z)$

$\Leftrightarrow 2 z-2 \sqrt{2 z(z+1)}+(z+1) \geq 0 \Leftrightarrow(\sqrt{2 z}-\sqrt{z+1})^2 \geq 0$ (luôn đúng).

Vây bất đẳng thức đã được chứng minh. Dấu “=” xảy ra khi $x=y=z=1$.

Câu 5

Cho tam giác $\mathrm{ABC}$ không cân có hai đỉnh $\mathrm{B}, \mathrm{C}$ cố định và đỉnh $\mathrm{A}$ di động. Qua $\mathrm{B}$ dựng đường thẳng $\mathrm{d}$ vuông góc với $\mathrm{BC}$, $\mathrm{d}$ cắt trung tuyến $\mathrm{AI}$ của tam giác $\mathrm{ABC}$ tại $\mathrm{K}$. Gọi $\mathrm{H}$ là trực tâm của tam giác $\mathrm{ABC}$. Chứng minh rằng nếu $\mathrm{IH}$ song song với $\mathrm{KC}$ thì điểm $\mathrm{A}$ di động trên đường cố định.

Lời Giải

Chọn hệ trục tọa độ $\mathrm{Oxy}$ với $\mathrm{O}$ trùng I và trục $\mathrm{Ox}$ là đường thẳng $\mathrm{BC}$.

Chuẩn hóa $\mathrm{BC}=2$. Khi đó, tọa độ $\mathrm{B}(-1 ; 0)$ và $C(1 ; 0)$.

Giả sử tọa độ điểm $\mathrm{A}\left(\mathrm{x}_0 ; \mathrm{y}_0\right)$ với $\mathrm{y}_0 \neq 0$ và $\mathrm{x}_0 \neq 0$.

Khi đó, trực tâm $\mathrm{H}(\mathrm{x}, \mathrm{y})$ là nghiệm của hệ phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad\left\{\begin{array}{l}\overrightarrow{\mathrm{AH}} \cdot \overrightarrow{\mathrm{BC}}=0 \\ \overrightarrow{\mathrm{BH}} \cdot \overrightarrow{\mathrm{AC}}=0\end{array}\right.$

$\quad\quad\quad\quad\quad\quad\quad\Leftrightarrow\left\{\begin{array}{l}\mathrm{x}=\mathrm{x}_0 \\ \left(\mathrm{x}_0-1\right)(\mathrm{x}+1)+\mathrm{y}_0 \mathrm{y}=0\end{array} \Rightarrow \mathrm{H}\left(\mathrm{x}_0 ; \frac{1-\mathrm{x}_0^2}{\mathrm{y}_0}\right)\right.$

Gọi $\mathrm{K}$ là giao điểm của $\mathrm{d}$ và $\mathrm{AI}$, khi đó tọa độ $\mathrm{K}$ là nghiệm của hệ phương trình

$\quad\quad\quad\quad\quad\quad\quad\quad\left\{\begin{array}{l}x=-1 \\ y=\frac{y_0}{x_0} x\end{array} \Rightarrow K\left(-1 ;-\frac{y_0}{x_0}\right)\right.$

Theo giả thiết ta có: $\mathrm{IH} / / \mathrm{KC}$

$\quad\quad\quad\quad\quad\quad\quad\Rightarrow \overrightarrow{\mathrm{IH}} ; \overrightarrow{\mathrm{KC}} \text { cùng phương } \Leftrightarrow \frac{\mathrm{y}_0}{\mathrm{x}_0} \cdot \mathrm{x}_0-2 \frac{1-\mathrm{x}_0^2}{\mathrm{y}_0}=0 \Leftrightarrow \frac{\mathrm{x}_0^2}{1}+\frac{\mathrm{y}_0^2}{2}=1 \text {. }$

Vậy A di động trên đường Elíp (E): $\frac{x^2}{1}+\frac{y^2}{2}=1$ cố định.

Đó là điều phải chứng minh.

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2008

ĐỀ THI

Câu 1

Giải hệ phương trình $\left\{\begin{array}{l}\left|y+\frac{1}{x}\right|+\left|\frac{13}{16}+x-y\right|=x+\frac{1}{x}+\frac{13}{16} \\ x^2+y^2=\frac{97}{36} \\ x<0 \\ y>0\end{array}\right.$

Câu 2

Cho đường tròn $(O)$. $A B$ là dây cung không phải là đường kính. $\mathrm{H}$ là điểm trong đoạn $\mathrm{AB}$. Đường thẳng qua $\mathrm{H}$ vuông góc với $\mathrm{AB}$ cắt cung lớn $\mathrm{AB}$ tại $\mathrm{K}$. I thuộc đoạn $\mathrm{HK}$. IA cắt lại $(\mathrm{O})$ tại $\mathrm{C}$. IB cắt lại $(\mathrm{O})$ tại $\mathrm{D}(\mathrm{C}$ khác $\mathrm{D})$. Gọi $\mathrm{d}$ là đường thẳng đi qua trung điểm $\mathrm{AD}$ và $\mathrm{BC}$. Chứng minh rằng đường thẳng đối xứng của $\mathrm{CD}$ qua $\mathrm{d}$ đi qua một điểm cố định khi I thay đổi.

Câu 3

Xét a, b, c $>0$ tùy ý. Tìm giá trị lớn nhất của:

$\quad\quad\quad\quad\quad\quad\mathrm{T}=\frac{\sqrt{\mathrm{abc}}}{(1+\mathrm{a})(1+\mathrm{a}+\mathrm{b})(1+\mathrm{a}+\mathrm{b}+\mathrm{c})}$

Câu 4

Cho tam giác $A B C$ nội tiếp đương tròn $(O)$ tâm $O$ bán kính $R, A=30^{\circ}, \widehat{C}<90^{\circ}$. Tổng khoảng cách từ $\mathrm{O}$ đến $\mathrm{AB}, \mathrm{AC}$ là 2 và $\mathrm{AB}+\mathrm{AC}=2+\sqrt{3}$. Tính $\mathrm{R}$.

Câu 5

Trong mặt phẳng cho $T$ là tập hợp hữu hạn điểm. Giữa hai điểm nào đó của $\mathrm{T}$ có nối nhau bởi cung tròn có hai mút là hai điểm đó. Một cung như vậy ta gọi là một cạnh. Kí hiệu s(A) là số cạnh có được có hai điểm mút thuộc tập $\mathrm{A}$. Biết rằng với mọi tập con $\mathrm{A}$ khác rỗng của $\mathrm{T}$ thì $\mathrm{s}(\mathrm{A}) \leq 2|\mathrm{~A}|-2$. Cho $\mathrm{A}_{\mathrm{i}}$ với $\mathrm{i}=1,2, \ldots, \mathrm{k}(\mathrm{k}>1)$ là các tập con khác rỗng của $\mathrm{T}$ đôi một giao nhau khác rỗng.

Nếu $s\left(A_i\right)=2\left|\mathrm{~A}_i\right|-2$ với i $=1,2, \ldots, \mathrm{k}$.

Chứng minh rằng $s\left(\bigcup_{i=1}^k A_i\right)=2\left|\bigcup_{i=1}^k A_i\right|-2$.

Câu 6

Chứng minh rằng phương trình $2^{\mathrm{x}}+3^{\mathrm{x}}=\mathrm{yx}^2$ có vô hạn nghiệm nguyên dương $\mathrm{x}, \mathrm{y}$.

Câu 7

Cho tam giác $\mathrm{ABC}, \mathrm{R}$ là bán kính đường tròn ngoại tiếp tam giác đó. Chứng minh rằng

$\quad\quad\quad\quad\quad\quad B C^2 \leq A B^2+C A^2+R^2\quad\quad\quad\quad\quad\quad(1)$

LỜI GIẢI

Câu 1

Giải hệ phương trình $\left\{\begin{array}{l}\left|y+\frac{1}{x}\right|+\left|\frac{13}{16}+x-y\right|=x+\frac{1}{x}+\frac{13}{16} \\ x^2+y^2=\frac{97}{36} \\ x<0 \\ y>0\end{array}\right.$

Lời Giải

Áp dụng bất đẳng thức trị tuyệt đối ta có hệ $\left\{\begin{array}{l}y+\frac{1}{x} \geq 0, \frac{13}{6}+x-y \geq 0 \\ x^2+y^2=\frac{97}{36} \\ x<0 \ y>0\end{array}\right.$

Từ $\quad\left\{\begin{array}{l}y+\frac{1}{x} \geq 0, \frac{13}{6}+x-y \geq 0 \\ x<0\end{array}\right.$, suy ra $\quad 6 x^2+13 x+6 \leq 0$.

Từ $\quad 0<y \leq 13 / 6+x$, suy ra $\quad x^2+y^2 \leq x^2+(13 / 6+x)^2$

Do đó $\quad 97 / 36 \leq x^2+(13 / 6+x)^2$, hay $\quad 6 x^2+13 x+6 \geq 0$.

Vậy $\quad 6 x^2+13 x+6=0$. Do đó $\quad x=-3 / 2$ hoặc $x=-2 / 3$.

Tóm lại $\quad(x=-3 / 2, y=2 / 3),(x=-2 / 3, y=3 / 2)$. Thử lại thoả mãn hệ.

Câu 2

Cho đường tròn $(O)$. $A B$ là dây cung không phải là đường kính. $\mathrm{H}$ là điểm trong đoạn $\mathrm{AB}$. Đường thẳng qua $\mathrm{H}$ vuông góc với $\mathrm{AB}$ cắt cung lớn $\mathrm{AB}$ tại $\mathrm{K}$. I thuộc đoạn $\mathrm{HK}$. IA cắt lại $(\mathrm{O})$ tại $\mathrm{C}$. IB cắt lại $(\mathrm{O})$ tại $\mathrm{D}(\mathrm{C}$ khác $\mathrm{D})$. Gọi $\mathrm{d}$ là đường thẳng đi qua trung điểm $\mathrm{AD}$ và $\mathrm{BC}$. Chứng minh rằng đường thẳng đối xứng của $\mathrm{CD}$ qua $\mathrm{d}$ đi qua một điểm cố định khi I thay đổi.

Lời Giải

Kí hiệu như hình vẽ. T là hình chiếu của $I$ trên $\mathrm{CD} ; \mathrm{M}, \mathrm{N}$ là trung điểm $\mathrm{IA}, \mathrm{ID} ; \mathrm{P}, \mathrm{Q}$ là trung điểm của $\mathrm{BC}, \mathrm{AD}$.

  • $\mathrm{MQ}=\mathrm{IN}=\mathrm{TN}, \mathrm{QN}=\mathrm{IM}=\mathrm{HM}$

và $\widehat{\mathrm{HMQ}}=\widehat{\mathrm{TNQ}}$

(Vì góc $\widehat{\mathrm{HMI}}=2 \widehat{\mathrm{BAC}}$ và $\widehat{\mathrm{TNI}}=2 \widehat{\mathrm{BDC}}$ )

Do đó $\mathrm{QH}=\mathrm{QT}$. Tương tự $\mathrm{PH}=\mathrm{PT}$.

Vậy $\mathrm{T}$ và $\mathrm{H}$ đối xứng nhau qua $\mathrm{d}$.

Kết luận: Khi I di động thì ảnh đối xứng của DC qua d luôn qua điểm cố định $\mathrm{H}$.

Câu 3

Xét a, b, c $>0$ tùy ý. Tìm giá trị lớn nhất của:

$\quad\quad\quad\quad\quad\quad\mathrm{T}=\frac{\sqrt{\mathrm{abc}}}{(1+\mathrm{a})(1+\mathrm{a}+\mathrm{b})(1+\mathrm{a}+\mathrm{b}+\mathrm{c})}$

Lời Giải

Đặt $u=\frac{a}{1+a}, v=\frac{b}{(1+a)(1+a+b)}$

$\quad\quad w=\frac{c}{(1+a+b)(1+a+b+c)}, s=\frac{1}{1+a+b+c}$

Ta có $u+v+w+s=1$ và $T^2=u v w s$.

Từ bất đẳng thức Côsi, ta có $\mathrm{T} \leq 1 / 16$. Dấu bằng có được khi:

$\quad\quad\quad\quad \frac{a}{1+a}=\frac{b}{(1+a)(1+a+b)}=\frac{c}{(1+a+b)(1+a+b+c)}=\frac{1}{1+a+b+c}=\frac{1}{4}$.

Giải hệ ta có $\mathrm{a}=1 / 3, \mathrm{~b}=2 / 3, \mathrm{c}=2$.

Vậy giá trị lớn nhất của T là $1 / 16$.

Câu 4

Cho tam giác $A B C$ nội tiếp đương tròn $(O)$ tâm $O$ bán kính $R, A=30^{\circ}, \widehat{C}<90^{\circ}$. Tổng khoảng cách từ $\mathrm{O}$ đến $\mathrm{AB}, \mathrm{AC}$ là 2 và $\mathrm{AB}+\mathrm{AC}=2+\sqrt{3}$. Tính $\mathrm{R}$.

Lời Giải

Xét 3 trường hợp:

1) $\quad\widehat{\mathrm{B}}=90^{\circ}$ : Lúc đó $\mathrm{O}$ là trung điểm của $\mathrm{AC}$ nên

$\quad\quad\quad\quad\mathrm{BC}=4>\mathrm{AB}+\mathrm{AC}=2+\sqrt{3}$. Vô lý.

2) $\quad\widehat{\mathrm{B}}<90^0:$ Ta có $\mathrm{AB}+\mathrm{AC}=2+\sqrt{3}$.

Suy ra $\quad 2 R\left(\cos x+\cos \left(30^{\circ}-x\right)\right)=2+\sqrt{3}, R\left(\sin x+\sin \left(30^{\circ}-x\right)\right)=2$

Hay $\quad 4 R\left(\cos 15^0 \cos \left(x-15^0\right)\right)=2+\sqrt{3}, R\left(\sin 15^0 \cos \left(x-15^0\right)\right)=1$

Suy ra $\quad\tan 15^{\circ}=4 /(2+\sqrt{3})>1$. Vô lý.

3)$\quad\widehat{\mathrm{B}}>90^{\circ}:2\mathrm{R}\left(\cos\mathrm{x}+\cos\left(30^{\circ}+\mathrm{x}\right)\right)=2+\sqrt{3},\mathrm{R}\left(\sin\mathrm{x}+\sin\left(30^{\circ}+\mathrm{x}\right)\right)=2$.

Hay $\quad 4 R\left(\cos 15^{\circ} \cos \left(x+15^{\circ}\right)\right)=2+\sqrt{3}, R\left(\sin \left(x+15^{\circ}\right) \cos 150^{\circ}\right)=1$

Suy ra $\quad R^2=\frac{1+\left(\frac{2+\sqrt{3}}{4}\right)^2}{\cos ^2 15^0}=\frac{23+4 \sqrt{3}}{4(2+\sqrt{3})} \Rightarrow R=\frac{1}{2} \sqrt{\frac{23+4 \sqrt{3}}{2+\sqrt{3}}}$.

Vậy $\quad R=\frac{\sqrt{34-15 \sqrt{3}}}{2}$

Câu 5

Trong mặt phẳng cho $T$ là tập hợp hữu hạn điểm. Giữa hai điểm nào đó của $\mathrm{T}$ có nối nhau bởi cung tròn có hai mút là hai điểm đó. Một cung như vậy ta gọi là một cạnh. Kí hiệu s(A) là số cạnh có được có hai điểm mút thuộc tập $\mathrm{A}$. Biết rằng với mọi tập con $\mathrm{A}$ khác rỗng của $\mathrm{T}$ thì $\mathrm{s}(\mathrm{A}) \leq 2|\mathrm{~A}|-2$. Cho $\mathrm{A}_{\mathrm{i}}$ với $\mathrm{i}=1,2, \ldots, \mathrm{k}(\mathrm{k}>1)$ là các tập con khác rỗng của $\mathrm{T}$ đôi một giao nhau khác rỗng.

Nếu $s\left(A_i\right)=2\left|\mathrm{~A}_i\right|-2$ với i $=1,2, \ldots, \mathrm{k}$.

Chứng minh rằng $s\left(\bigcup_{i=1}^k A_i\right)=2\left|\bigcup_{i=1}^k A_i\right|-2$.

Lời Giải

Quy nạp:

  • Nếu $\mathrm{k}=2$, gọi $\mathrm{A}, \mathrm{B}$ là hai tập và $\mathrm{a}, \mathrm{b}, \mathrm{c}$ lần lượt là số phần tử của $\mathrm{A}, \mathrm{B}, \mathrm{A} \cap \mathrm{B}$ thì $|\mathrm{A} \cup \mathrm{B}|=\mathrm{a}+\mathrm{b}-\mathrm{c}$.

  • Giả sử $\quad s(A \cup B)<2(a+b-c)-2$. Suy ra số cạnh hai đầu mút trong $A \cup B$ nhưng không đồng thời thuộc $A$ nhỏ hơn

$\quad\quad\quad\quad\quad\quad\quad 2(a+b-c)-2-s(A)=2(a+b-c)-2-(2 a-2)=2(b-c)$

  • Một cạnh có hai mút trong $\mathrm{B}$ thì hoặc hai mút thuộc $\mathrm{B} \backslash \mathrm{A}$ hoặc hai mút thuộc A. $\cap$ B hoặc hai mút thuộc hai tập $B \backslash A, A \cap B$.

Do đó số cạnh có hai mút thuộc $\mathrm{B} \backslash \mathrm{A}$ hoặc hai mút thuộc hai tập $\mathrm{B} \backslash \mathrm{A}, \mathrm{A} \cap \mathrm{B}$ nhỏ hơn $2(\mathrm{~b}-\mathrm{c})$.

Suy ra $\quad s(A \cap B)>s(B)-2(b-c)=2 b-2-2 b+2 c=2 c-2$ (mâu thuẫn).

  • Nếu $\quad s\left(\bigcup_{i=1}^n A_i\right)=2\left|\bigcup_{i=1}^n A_i\right|-2$ và $s\left(A_{n+1}\right)=2\left|A_{n+1}\right|-2$ thì từ giả thiết

$\bigcup_{i=1}^n A_i \cap A_{n+1} \neq \varnothing \text { nên từ trường hợp } \mathrm{k}=2 \text { ta có } s\left(\bigcup_{i=1}^{n+1} A_i\right)=2\left|\bigcup_{i=1}^{n+1} A_i\right|-2 .$

Câu 6

Chứng minh rằng phương trình $2^{\mathrm{x}}+3^{\mathrm{x}}=\mathrm{yx}^2$ có vô hạn nghiệm nguyên dương $\mathrm{x}, \mathrm{y}$.

Lời Giải

Nhận xét: Nếu $\mathrm{x}, \mathrm{y}$ nguyên dương, $\mathrm{m}$ là số nguyên dương lẻ và $\mathrm{x}+\mathrm{y}$ chia hết cho $m$ thì $x^m+y^m$ chia hết cho $m(x+y)$.

Thật vậy:

$\quad\quad\quad\quad x^m+y^m=(x+y) \sum_{l=0}^{m-1}(-1)^l x^{m-1-l} y^l$

$\quad\quad\quad\quad\sum_{l=0}^{m-1}(-1)^l x^{m-1-l} y^l=m y^{m-1}+x^{m-1}-y^{m-1}-\left(x^{m-1}+y^{m-1}\right) y$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad +\left(x^{m-3}-y^{m-3}\right) y^2-\cdots-\left(x^2-y^2\right) y^{m-3}-(x+y) y^{m-2}$

Do đó $\quad x^m+y^m$ chia hết cho $m(x+y)$.

$\text { Xét dãy }\quad u_1=1, u_{k+1}=\frac{2^{u_k}+3^{u_k}}{u_k}$

Bằng quy nạp ta chứng minh $\frac{2^{u_k}+3^{u_k}}{u_k{ }^2} \in \mathbb{N}$ và dãy là tăng

  • k=1: hiển nhiên.
  • Giả sử $\quad\frac{2^{u_k}+3^{u_k}}{u_k{ }^2} \in \mathbb{N}$ và $\frac{2^{u_k}+3^{u_k}}{u_k{ }^2}>1$.

Suy ra $\quad 2^{u_k}+3^{u_k}=\mathrm{Iu}_{\mathrm{k}}^2, l$ lé và $l>1$.

Theo nhận xét trên $\quad(2^{u_k})^I+(3^{u_k})^I \vdots I(2^{u_k}+3^{u_k})$  với $\quad l=\frac{2^{u_k}+3^{u_k}}{u_k{ }^2}$ thì

$\quad\quad\quad\quad\frac{2^{u_{k+1}}+3^{u_{k+1}}}{u_{k+1}{ }^2}>1$, $\frac{2^{u_{k+1}}+3^{u_{k+1}}}{u_{k+1}{ }^2} \in \mathbb{N}$

Kết luận: Phương trình có vô số nghiệm nguyên dương $\mathrm{x}, \mathrm{y}$.

Câu 7

Cho tam giác $\mathrm{ABC}, \mathrm{R}$ là bán kính đường tròn ngoại tiếp tam giác đó. Chứng minh rằng

$\quad\quad\quad\quad\quad\quad B C^2 \leq A B^2+C A^2+R^2\quad\quad\quad\quad\quad\quad(1)$

Lời Giải

Bất đẳng thức (1) tương đương với

$\quad\quad\quad\quad\quad 4 R^2 \sin ^2 A \leq 4 R^2 \sin ^2 B+4 R^2 \sin ^2 C+R^2$

$\quad\quad\quad\quad\Leftrightarrow 4 \sin ^2 A \leq 4 \sin ^2 B+4 \sin ^2 C+1$

$\quad\quad\quad\quad\Leftrightarrow 4\left(1-\cos ^2 A\right) \leq 2(1-\cos 2 B)+2(1-\cos 2 C)+1$

$\quad\quad\quad\quad\Leftrightarrow 4 \cos ^2 A-2(\cos 2 B+\cos 2 C)+1 \geq 0$

$\quad\quad\quad\quad\Leftrightarrow 4 \cos ^2 A+4 \cos A \cos (B-C)+1 \geq 0$

$\quad\quad\quad\quad\Leftrightarrow(2 \cos A+\cos (B-C))^2+\sin ^2(B-C) \geq 0$

Dấu bằng xảy ra khi $\sin (\mathrm{B}-\mathrm{C})=0$ và $2 \cos \mathrm{A}+\cos (\mathrm{B}-\mathrm{C})=0$.

Do đó $\mathrm{B}=\mathrm{C}$ và $\cos \mathrm{A}=-\frac{1}{2}$ hay tam giác $\mathrm{ABC}$ cân tại $\mathrm{A}$ và $\widehat{\mathrm{A}}=120^{\circ}$.